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Several species of Leishmania cause human diseases

that range from self-healing cutaneous lesions to fatal

visceral leishmaniasis, mucosal leishmaniasis and dif-

fuse cutaneous leishmaniasis. Drug resistance and

toxicities associated with chemotherapy emphasize

the need for a safe, effective vaccine. Studies of the

immunopathogenesis and mechanisms of protective

immunity define several features that should be met

by an effective vaccine. The leishmaniases are unique

among parasitic diseases because a single vaccine has

the potential to protect against more than one species

(disease) and be successful at both treating and

preventing disease. In addition, several antigens have

been identified and characterized that might be poten-

tial vaccine candidates. In this article, we focus on

advances made with second-generation vaccines

against leishmaniasis.

Immunology of leishmaniasis

Leishmaniasis is caused by several species of protozoan
parasites that are transmitted by the bite of the female
phlebotomine sand fly. Leishmaniasis is currently ende-
mic in 88 countries, and is a threat to 350 million people
with a worldwide prevalence of 12 million cases.

Acquired resistance to leishmaniasis is mediated by
T cells [1]. T-cell-deficient mice succumb rapidly after
infection with Leishmania and adoptive transfer of
normal T cells confers resistance to these animals. More-
over, patients with AIDS are highly susceptible to
leishmaniasis either as a result of concurrent infection
or reactivation of older, sub-clinical infection [2]. Among
T cells, CD4C T cells are crucial for resistance, whereas
CD8C T cells participate more in the memory events of
the immune response than as effector cells involved in
parasite elimination. More recently, a role for CD4C
CD25C regulatory T cells has been identified in the
persistence of Leishmania major infections [3].

In humans, there is a good correlation between T helper
1 cell (Th1) responses and resistance to cutaneous
leishmaniasis (CL). Generally, a predominance of cells
that produce interferon g (IFN-g) occurs in healing,
cutaneous lesions, whereas in chronic cutaneous and
mucosal lesions there is a mixture of Th1 and Th2
cytokines with an abundance of interleukin 4 (IL-4) and
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IL-10 [4]. In visceral leishmaniasis (VL) however, no
association between increased IL-4 and active disease has
been identified. In the spleen, mRNAs that encode IFN-g
and IL-4 are elevated during active disease and decline
significantly after cure. The same cytokine profile occurs
after antigenic stimulation of peripheral blood monocytes
from patients [5]. However, a direct correlation between
production of IL-10 and active disease is reported in
patients with VL [6].

Innate immunity has an important role in the control of
Leishmania infections. To respond rapidly to organisms
that have not been encountered previously, a highly
effective system of innate immunity has developed that
enables pattern-recognition receptors to respond to con-
served, pathogen-associated molecular patterns. Toll-like
receptors (TLRs) have a central role in orchestrating the
type and strength of this response. Recently, important
immunomodulatory roles of natural killer cells [7,8], IL-1a
and myeloid differentiation factor 88 [9] have been
identified in early resistance to infection, development of
acquired immunity and the pathology observed during
infection with Leishmania parasites.
Vaccine studies

Vaccination against human cutaneous leishmaniasis has
been practiced for centuries. Deliberate inoculation of
virulent organisms from the pus of an active lesion is an
ancient practice [10]. Promastigotes of L. major grown in
culture were first used in Russia in 1937 to induce
protection against natural infection [11]. More recently,
standardized inoculums of culture promastigotes have
been developed by Israeli scientists and used in several
trials [11]. This process, known as ‘leishmanization’, is
still used in some countries, notably Uzbekistan [12].
Leishmanization been is efficacious against Old World CL
[13]. However, several basic, logistical problems preclude
the widespread use of this procedure to prevent CL,
including difficulty in standardizing the virulence of the
vaccine and occasional severe, persistent lesions resulting
from the innoculum [14]. Vaccination using a crude
antigen preparation obtained from promastigote forms of
various species of Leishmania, either with or without BCG
(bacillus of Calmette and Guerin) as adjuvant, has been
tested against CL and VL in human clinical trials in both
the Old and New World. Generally, there is no evidence
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that two injections of autoclaved L. major results in
significant protection compared with BCG alone [15].

Vaccination trials that demonstrate that either a
cocktail of five, killed Leishmania stocks or a single strain
of Leishmania amazonensis induces significant protection
from disease caused by natural infection [16], has led to
the registration in Brazil of a vaccine for leishmaniasis.
These studies also indicate that delayed-type hypersensi-
tivity (DTH) conversion might be used as a surrogate
marker for protective immunity.

Overall, the results from several clinical trials using
whole parasite antigens vary from 0–75% efficacy against
CL and little (!6%) or no protection against VL
[13–15,17–19]. Although these crude vaccine approaches
are not ideal, they confirm some of the animal data that
indicates that induction of protection against leishmania-
sis is feasible and can be achieved with either a viable
vaccine or with parasite components.

It is certain that a consistently effective, stable and
reliable source of vaccine against leishmaniasis is unlikely
to arise from whole-parasite approaches. The manufactur-
ing, quality control, potency and stability issues are likely
to be insurmountable for any but extremely local situ-
ations with relaxed regulatory requirements. Indeed, the
variability seen with the whole-parasite-vaccine trials is
reminiscent of the experience with BCG. Efforts must be
made to produce one or more consistent, safe and effective
vaccines against leishmaniasis. Although several new
approaches used in modern vaccinology are being inves-
tigated in models of experimental leishmaniasis, only one
defined second-generation vaccine has reached clinical
trials in humans [20].

Second-generation vaccine development

An ideal vaccine against leishmaniasis should have
several properties, including (i) it must be safe; (ii) a
minimum number of immunizations must induce long-
term protection against most or all human pathogens that
cause leishmaniasis; (iii) it must be free of animal
products that are used to manufacture the product; (iv)
it must be produced as cost-effectively as possible; and (v)
it should be effective in both treating and preventing
leishmaniasis. Other attributes (e.g. a needle-free, single-
dose vaccine) could also be listed. To develop such a
vaccine, it is essential to characterize protective antigens
and to deliver them in creative systems that are optimized
to meet both scientific and regulatory standards.

Candidates for second-generation vaccines

From experimental vaccine studies in the mouse model it
is evident that solid protection against either syringe or
sand-fly challenge can be achieved with defined proteins.
It is also clear that not all antigens protect against
leishmaniasis in the mouse model, which has enabled the
selection of a few antigens as candidate vaccines. Several
Leishmania proteins have been identified, based on abun-
dance and surface localization [21], T-cell clones, screening
of antigen pools [22] and screening expression librarieswith
sera from infected animals and humans [23–30]. These
include glycoprotein 63 (gp63) [31], membrane glycoprotein
46 (gp46, also known as M-2) [32], Leishmania homolog of
www.sciencedirect.com
receptors activated for C kinase (p36/LACK) [33], cysteine
proteinase (CP)B and CPA [34], LD1 antigens [35],
hydrophilic acylated surface protein B1 (HASPB1) [36],
LCR1 [37], salivary protein 15 (SP15) [38], M-2 [39],
promastigote surface antigen 2 (PSA-2) [40], histone H1
[41], Leishmania elongation and initiation factor (LeIF)
[42], L. major homolog of the eukaryotic stress-inducible
protein-1 (LmSTI1) [30], and the L. major homologue of
the eukaryotic thiol-specific-antioxidant (TSA) [43].

The ideal vaccine is a pan-Leishmania vaccine that
includes several molecules that are, preferably, conserved
among different species and expressed abundantly on the
tissue amastigote stage. Many of the antigens mentioned
above meet these criteria, but few protect against more
than one species in animal models. Apart from protection,
another important consideration is safety. Many of the
protective antigens of Leishmania are highly conserved
with mammalian proteins, so steps must be taken to
ensure that anti-host responses are not induced, particu-
larly with prophylactic application.
Adjuvant and delivery selection

Most vaccine studies aim to limit parasite replication in
the vertebrate host. Over the past decade several
investigators have searched for genes encoding leishma-
nial proteins that induce protection against CL and VL in
experimental models [22,29,33,35,36,42–47]. However,
identifying candidate antigens is not enough. Appropriate
antigen delivery to induce the right type of immune
response against leishmaniasis (i.e. induction of a strong
antigen-specific Th1 response) is another crucial com-
ponent of an effective vaccine. The two adjuvants that are
approved in human vaccines, alum and squalene, induce
potent antibody responses but are poor inducers of
antigen-specific Th1 responses. Several strategies, includ-
ing IL-12, live vectors, naked DNA, DNA vaccines
encapsulated in microspheres and oligonucleotides (CpG
sequences), have been evaluated extensively in pre-
clinical models.

Subcutaneous injection of IL-12 and soluble leishma-
nial antigens (SLAs), induces a strong, anti-SLA Th1
response with no detectable Th2 response to this antigen
mix [48]. IL-12 has been used successfully as a Th1
adjuvant for antigens in both murine and non-human-
primate models of several infectious diseases, including
leishmaniasis [49–51]. One drawback of IL-12 is its
inability to stimulate strong immunological memory to
the immunizing antigen. Thus, vaccination of BALB/c
mice with the leishmanial homologue of receptors for
activated C kinase (LACK) protein mixed with IL-12 as
adjuvant results in short-term protection against chal-
lenge with L. major [50]. By contrast, vaccination with
either LACK DNA or LACK protein and IL-12 DNA
induces long-term protection [52].

Vaccines that encode gp63 and gp46 have also been
tested as DNAvaccines, either alone or in combination, in
BALB/c mice challenged with Leishmania mexicana [53].
These studies demonstrate that mice immunized with a
combination of high-dose plasmids (50 mg of each antigen)
have higher levels of protection than mice immunized
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with either individual plasmids or low-dose plasmids
(20 mg of each plasmid) [53].

The A2 genes are amastigote-stage-specific, form part
of a multigene family of at least 11 genes and are
considered to be virulence factors that are required for
the survival of Leishmania parasites in the mammalian
host. A2 has been tested both as a recombinant protein
(with IL-12 as adjuvant) and as a DNA vaccine in the
murine model of VL. These studies demonstrate that
immunization of mice with A2 confers significant protec-
tion against challenge infection with L. Donovani [54].

DNA vaccines that encode histone H1, CPB and CPA,
either alone or in combination, encapsulated in micro-
spheres, have been also tested in mice. These studies
demonstrate that CPA DNA is not protective, and that
CPB DNA and a combination of both DNA vaccines are
only partially protective for up to 14 weeks after challenge
with L. major [53]. The addition of alum and IL-12 as
adjuvant did not increase either the immunogenicity or
protection of these DNA vaccines. Recombinant CPA and
CPB proteins mixed with poloxamer as adjuvant have also
been tested in the L. major mouse model of CL,
demonstrating that CPA is not protective and that CPB
elicits only partial protection. More recently, a construct
has been developed in which the CPA and CPB genes are
fused to give rise to a single hybrid protein. Protection
studies in BALB/c mice indicate that the hybrid CPA/B
elicits a protective immune response against L. major
challenge. Similar studies using a cocktail of Leishmania
infantum type I and II cysteine proteinases have been
performed in mixed-breed dogs.

Vaccination studies using either recombinant histone
H1 antigen or a long synthetic peptide representing the
complete L. major histone H1 sequence, each formulated
with Montanide ISA 721 as adjuvant, have also been
performed in an African green monkey model of CL [53].

The fucose mannose ligand (FML) is a complex
glycoprotein fraction that has been used to immunize
both mice and dogs against L. donovani and L. infantum.
Adjuvants used in combination with FML or the gp36
component of the FML antigen complex include alum,
BCG, IL-12, saponin and QuilA. These studies indicate
that vaccines that contain FML/gp36 provide significant
protection (reduction in parasite burden and increased
survival rates) in the murine model of L. donovani.
Another study that has monitored naturally exposed
dogs for 2 years demonstrates that this antigen induces
significant protection against canine VL [53].

Several other adjuvant and delivery systems deserve
attention. These include methods to deliver antigen such
as vectored DNA (adenovirus and pox virus), peptides that
target APC, water-in-oil emulsions (mineral oil and
squalene), oil-in-water emulsions (MF59) and TLR ago-
nists including monophosphoryl lipid A (MPLw) and CpG.

Until recently, a major hurdle in the development of
vaccines against infectious diseases was the availability of
safe, effective, T-cell adjuvants. Previously, only IL-12
with antigen afforded consistent prophylactic efficacy in
animal models of CL. Given that IL-12 does not provide
long-term immunity and is not being developed as an
adjuvant for use in human vaccines, we have evaluated
www.sciencedirect.com
candidate leishmanial antigens in the presence of several
adjuvants, including those that contain MPLw and might
be more suitable for human use.

MPLw is a detoxified derivative of 4 0-monophosphoryl
lipid A of lipopolysaccharide (LPS) obtained from
Salmonella minnesota. Several studies demonstrate that
it is a potent immunostimulant through activation of
TLR4 [55] that lacks the toxic properties of LPS. MPLw

has been used as an adjuvant in several safety and
immunogenicity human clinical trials, including vaccines
for malaria, hepatitis B, genital herpes, allergy desensi-
tization and human papilloma virus. These studies find
that MPLw is well tolerated with no evidence of systemic
toxicity and is likely to be included in vaccines for several
human indications. MPLw is likely to be the first T-cell
adjuvant to be approved for human use.

Thus, the use of MPLw as a vaccine adjuvant for
leishmaniasis is a practical solution. In addition, MPLw is
a logical adjuvant because it activates antigen-presenting
cells through TLR-4, a receptor that contributes to the
control of parasite growth in both the innate and acquired
immune response to Leishmania infection [56].

Development of Leish-111f as a vaccine candidate

An ideal vaccine against leishmaniasis is unlikely to
consist of a single antigen. Our approach (research and
preclinical validation) is to select antigens with demon-
strated ability to protect mice and non-human primates,
and to test antigen combinations in both prophylactic and
therapeutic models (Figure 1).

TSA

The L. major homologue of eukaryotic TSAwas discovered
by screening expression libraries [43] to characterize the
immune responses elicited by proteins isolated from
filtrates of L. major promastigote cultures. Immunizing
BALB/c mice with recombinant TSA protein formu-
lated with either IL-12 or TSA DNA results in the
development of strong cellular immune responses and
confers protective immune responses against infection
with L. major [43,49,57].

LmSTI1

LmSTI1 was identified by screening an L. major amasti-
gote cDNA library with sera from BALB/c mice infected
with L. major [29]. Vaccination experiments with recom-
binant LmSTI1 protein plus either IL-12 or LmSTI1 DNA
elicit a mixed cellular response that is skewed toward a
Th1 phenotype, and protects BALB/c mice [29,30,49,57].

LeIF

LeIF was identified by screening a Leishmania brazilien-
sis genomic library with sera from a patient with mucosal
leishmaniasis (ML). LeIF stimulates the innate immune
system to produce IL-12, IL-18 and IFN-g, and, therefore,
is a Th1 inducer. LeIF has immuno-therapeutic properties
in mice [8,27,42,58].

The protective efficacy of LmSTI1 and TSA has also
been tested in rhesus monkeys [49]. Although used less
than the mouse, this model is accepted as a system that
mirrors human immunity more closely [51,59]. Monkeys
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Figure 1. Proposed timelines for the development of a defined vaccine against human leishmaniasis.
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immunized with a preparation containing LmSTI1 and
TSA with the recombinant human IL-12 and alum as
adjuvant mount excellent protection against challenge
with L. major [49].

Recent studies using the mouse model point to high
immunogenicity and protective efficacy of the antigens
LmSTI1, TSA and LeIF formulated with the adjuvant
MPLw-SE.

Constructing Leish-111f

The concept of producing a polyprotein containing several
Leishmania antigens is based on the practical consider-
ation of producing a multi-antigen vaccine as inexpen-
sively as possible. For this reason, a polyprotein was made
that comprises the three priority candidate antigens, TSA,
LmSTI1 and LeIF, fused in tandem. This polyprotein is
called Leish-111f (Figure 2). In prophylactic immunization
studies, long-term protection in BALB/c mice is achieved
using 2 mg of Leish-1111f. The most effective combination
of Leish-111f, which is formulated with 20 mg of MPLw-SE,
affords protection for O14 weeks [55,60]. No decrease in
immunogenicity, diversity of epitope recognition and
protection is noted with Leish-111f compared with protein
mixtures. The Leish-111f– MPLw-SE vaccine has been
evaluated extensively in preclinical safety and toxicology
studies in five animal species, with no adverse effects
observed.

Post-infection vaccine studies

Whole-parasite vaccines have been used therapeutically
in leishmaniasis for decades, with mixed results. In
general, this approach is applied to cases of drug-
refractory disease. Overall, post-infection immunization
is safe. We have reported that immunotherapy with
recombinant leishmanial antigens can have therapeutic
effects in humans with chemotherapy-refractive ML [61].
In these studies, patients were treated with a mixture of
antigens including TSA, LmSTI1 and LeIF. The results of
TRENDS in Parasitology 
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the study are impressive, with 10 out of 11 patients cured
following re-treatment courses of immunotherapy.

Clinical development of Leish-111f in MPLw-SE

It is important to obtain safety and immunogenicity data
in healthy volunteers who react positively and negatively
in skin tests for Leishmania as a prelude to developing a
prophylactic vaccine. Information on both antigen and
adjuvant dose that induce optimal responses are import-
ant. The overall clinical development plan for Leish-111f–
MPLw-SE is to perform safety and efficacy studies in
therapeutic and prophylactic applications in parallel.
Detailed analyses of the immune response will be
performed in the context of these trials, which should
enable us to predict vaccine formulations that have the
best chance of success in efficacy trials. These trials will be
performed against multiple species of Leishmania in
several countries. It is hoped that a comprehensive
approach will be the fastest path to product approval. As
a first step, a Phase I, double-blind, dose-escalation trial in
normal volunteers has been performed in the USA (BB-
IND 10116.0037). Safety and immunogenicity has been
demonstrated at each dose of protein (10, 20 and 40 mg)
and the results are being evaluated currently. Therapeutic
trials in ML (Peru) and CL (Brazil) (BB-IND-11505) are
ongoing to evaluate safety and efficacy of the candidate
vaccine used in combination with standard chemotherapy.
The goal of these studies is to develop safer therapeutic
regimens of shorter duration than those used currently for
these diseases.

Concluding remarks

Major progress has been made in defining the major T-cell
antigens of Leishmania spp. that have desirable proper-
ties as vaccine candidates. From the ongoing identification
and characterization of w30 vaccine-candidate antigens,
three have been selected and fused to develop a vaccine
against CL and mucocutaneous leishmaniasis. Each of
these three T-cell antigens, LmSTI1, TSA and LeIF, are
present in both amastigote and promastigote forms of the
parasite, conserved among most Leishmania species that
cause human disease (a requisite for ensuring cross-
species protection), and elicit primarily a Th1-type
immune response in murine and human cells
[27,29,42,43]. Two of the antigens, rLmSTI1 and rTSA,
protect mice and non-human primates against fatal
Leishmania infections [49]. The rLeIF antigen is thera-
peutically effective against leishmaniasis in mice. It also
has potent Th1-adjuvant properties, including eliciting
IL-12 and IL-18 [8,27,42,58], both of which are potent
inducers of IFN-g, maintain memory–effector Th1 cells
and are required for primary immunity to leishmaniasis.
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The combination of these antigens has been used success-
fully to treat patients with drug-resistant ML [61]. These
results in patients give us confidence in the ability of
animal models to predict successful candidates for
prophylactic and therapeutic vaccines in humans. The
vaccine formulation that contains Leish-111f and
MPLw-SE confers protection in animal models against
leishmaniasis caused by L. major, L. amazonensis and
L. infantum. Although completion of a Phase I study in the
USA is an important milestone in developing a second-
generation leishmaniasis vaccine, it is only the beginning
of a long process and we hope that there will be clinical
trials of other candidates during the coming years.
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