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Abstract

Staphylococci have become the most common causes of nosocomial bacterial infections, and this fact, along with increasing problems
associated with antimicrobial resistance, spurs the need for finding immunotherapeutic alternatives to prevent and possibly treat these
infections. Most virulent, clinical isolates of both coagulase-negative staphylococci (CoNS) andStaphylococcus aureuscarry theica locus
which encodes proteins that synthesize a polymer of�-1-6 linkedN-acetyl glucosamine residues (PNAG). Animal studies have shown
purified PNAG can elicit protective immunity against both CoNS andS. aureus, suggesting its potential as a broadly protective vaccine
for many clinically important strains of staphylococci.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the past 25 years Gram-positive cocci in general, and
staphylococci in particular, have become the primary bac-
terial organisms isolated from nosocomial infections[1,2].
Associated with this increase in occurrence is the increase in
antimicrobial resistance[3,4] which has lead to intense inter-
est in alternative strategies to prevent and control infection.
One obvious approach is the development of immunothera-
peutics that could be used prophylactically for prevention of
infection in high risk patients and possibly therapeutically
as an adjunct for standard antibiotic therapy. The challenge
of developing such reagents lies principally in identification
of antigenic targets for vaccines and definition of immune
effectors that mediate resistance to infection.

For extant vaccines that prevent bacterial infections by
targeting the killing of the microbial cell, surface polysac-
charides have been the most effective. Usually these are
referred to as capsular polysaccharides, and immunogenic
polysaccharides or protein-polysaccharide conjugates from
Haemophilus influenzae, Streptococcus pneumoniaeand
Neisseria meningitidishave proven highly successful in
controlling infections due to these pathogens[5–10]. Many
comparable vaccines based on surface polysaccharides are
being developed for bacterial pathogens such as group B
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streptococcus[11], Klebsiella pneumoniae[12], Entero-
cocci [13,14]andPseudomonas aeruginosa[15,16]. This is
predicated upon the strong consensus that when it is feasi-
ble to induce immunity to bacterial surface polysaccharides
this usually results in the most effective vaccine.

For Staphylococcus aureus, two major groups of sur-
face polysaccharides have been identified and targeted for
vaccine development. Work by Karakawa and co-workers
[17–19] established a capsule typing system forS. aureus
composed on 11 different serologic types. Two of these,
types 1 and 2, appear to be expressed by only individual
clones ofS. aureusand are not found among clinical iso-
lates [20,21]. However, for the remaining nine serotypes,
only two of these, types 5 and 8, have actually been shown
to be antigens that represent serologically distinct capsules
[17,19]. There is no antigenic or definitive serologic charac-
terizations for any of the other capsule types that indicates
they are distinct surface polysaccharides. However, the vast
majority of isolates ofS. aureusexpress either the type 5
or type 8 capsule, making these reasonable targets for vac-
cine development. Indeed, intense interest has been focused
on such development[22–27]and a recent clinical trial of a
bivalent type5/type 8 conjugate vaccine given to hemodial-
ysis patients showed a reduction in rates of bacteremia dur-
ing the early phases of the study, but this reduction was not
maintained at the conclusion of the study at 54 weeks[22].

A second surface polysaccharide, found on bothS. aureus
andS. epidermidis, is a poly-N-acetyl glucosamine (PNAG)
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antigen associated with a number of important biologic and
pathologic properties of these organisms[28–34]. The anti-
gen was first described by Tojo et al.[28] as the capsular
polysaccharide/adhesin (PS/A) ofS. epidermidisalthough a
definitive chemical composition and structure was not given.
The first report on the chemical properties of this antigen
came from Mack et al.[33] who had previously attributed to
this antigen the property of mediating intercellular adherence
of coagulase-negative staphylococci (CoNS) and named the
factor the polysaccharide intercellular adhesin (PIA). Later
on McKenney et al. found the same material expressed in
S. aureus[35] although they mistakenly identifiedN-acetyl
succinate as a major component of the vaccine. Recent stud-
ies have corrected this misidentification[36] and attributed
it to the generation of a degradation product of the PNAG
molecule that was produced during acid hydrolysis in order
to perform NMR determinations of the structure of PS/A
[37]. Another variant of the PNAG polymer was described
as the slime-associated antigen (SAA)[38] which was re-
ported to contain about 70% glucosamine. Likely the rest
of the material was contaminants. Finally, Rupp and Archer
described a hemagglutinin ofS. epidermidis[39] which was
later shown to be PIA[40]. There is now clear consensus
that PS/A, PIA and SAA are all chemically PNAG.

1.1. PS/A, PIA and PNAG-relatedness of their chemical
and biological properties

PS/A was identified by immunologic means as a cap-
sule of many important clinical isolates of CoNS that had
the property of forming a biofilm or producing “slime”
in vitro when grown on plastic or glass[28]. Christensen
and co-workers[41–44] were instrumental in identifying
slime-producing CoNS as major causes of biomedical de-
vice infections starting in the early 1980s. Isolation of PS/A
identified a major factor in the slime whose properties ap-
peared to promote adherence of bacteria to plastic and for-
mation of a biofilm[28]. Transposon mutants were identified
that lost production of PS/A[45], but the exact genes that
were interrupted were never identified. The PS/A mutants
were found to have reduced virulence in models of endo-
carditis[46,47]and expression of PS/A antigen was needed
to promote resistance of CoNS to innate opsonic factors.

PIA was first described in 1992 by Mack et al.[48] as
a factor whose expression was induced by glucose leading
to increased intercellular adhesion among CoNS. A genetic
locus in CoNS involved in production of a hexosamine
polysaccharide involved in intercellular accumulation was
then identified in a strain ofS. epidermidis. PIA was next
isolated and purified and then reported to be a small molec-
ular weight (<28 kDa) linear polymer of�-1-6-linked
N-acetyl glucosamine residues[33] with some O-linked
substituents of succinate and phosphate. Heilmann et al.
[49] followed this up by identifying the biosynthetic locus
for PIA, termed theica locus for intercellular adhesin and
initially reported the presence of three open reading frames

(ORFs), ica, icaB, and icaC and a divergently transcribed
apparent regulator, theicaR gene, separated fromicaA by
an approximately 200 base-pair promoter region. A fourth
ORF,icaD, was then identified[50] whose coding sequence
started in the 5′ end of theicaA gene and finished in the
3′ beginning of theIcaB gene. Expression of the IcaA and
icaD proteins in membranes resulted in the synthesis of an
oligomer of �-1-6-linked N-acetyl glucosamine about 20
residues in length using UDP-N-acetyl glucosamine as a
starting substrate, and addition of the IcaC protein further
increased the oligomer’s size. The role for IcaB remains
undefined. Clearly these genes and their protein products
are responsible for synthesis of the PIA.

The distinction between PIA and PS/A was founded on
the reported inability to show that theica locus was needed
for initial adherence of CoNS to plastic tissue culture wells
that were manufactured in Europe[51]. However, in the
same report, loss ofica genes resulted in a loss of adher-
ence ofS. epidermidisto glass[51]. Thus it was suggested
that PS/A mediated the initial adherence of CoNS to plastic
and similar surfaces while PIA mediated accumulation of
the cells into a biofilm i.e., intercellular accumulation. When
McKenney et al. studied the clonedica genes expressed in
S. carnosusprovided by Heilmann et al.[51] they found in
fact they could isolate the PS/A material[34] and indicated
it was a high molecular weight glucosamine polymer con-
taining N-linked succinate. However, the succinate was sub-
sequently found to have been misidentified[36,37] and, in
fact, they had isolated a high molecular weight�-1-6-linked
N-acetyl glucosamine with evidence of small amounts of
O-linked succinate and acetate. Thus, both PS/A and PIA
were found to be chemically identical, with some differences
reported in the molecular size and larger differences in the
biologic functions of these molecules.

As it turned out, the claim that PS/A mediated initial
adherence of CoNS to plastic and PIA the accumulation of
cells into biofilms was largely predicated on the results of
studies withS. carnosuscarrying the clonedica genes and
its interaction with tissue culture wells. When Heilmann
performed the biofilm assay on tissue culture plates from the
United States (Corning brand) using the identical methods
she used in Germany to characterize theica locus, she found
that in factS. carnosuscarrying theica genes readily formed
a biofilm on the plastic plates manufactured in the United
States (Fig. 1). Thus, even this distinction between PS/A
and PIA was found to be due to some trivial differences in
manufacture of tissue culture wells and it is now accepted
that PIA and PS/A are the same chemical entity-PNAG.

1.2. Occurrence of ica genes and PNAG-expression
in S. aureus

In 1999 McKenney et al.[35] reported that theica
genes were present in clinical isolates ofS. aureusand
expression of the PNAG antigen (incorrectly identified
as poly-N-succinyl glucosamine or PNSG) was mostly
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Fig. 1. Biofilm formation in tissue culture wells (Corning brand) by
S. carnosuscarrying a plasmid with theica genes fromS. epidermidis
(pCN27) and expressing PNAG or carrying the plasmid without additional
DNA (pCA44). In contrast to the initial report thatS. carnosus(pCN27)
did not make a biofilm on plastic[49] this experiment showed that with
the Corning brand of tissue culture plate a biofilm is formed. The inability
of S. carnosus(pCN27) to form a biofilm on one brand of tissue culture
plate was the basis for distinguishing PIA and PS/A, which are now
clearly known to be the same molecule.

associated with in vivo growing organisms. However, when
grown in vitro in rich medium (brain heart infusion broth)
supplemented with glucose, there was increased expression
of the PNAG antigen (Fig. 2). They also showed expression
of PNAG by S. aureusin lung sections from two cystic fi-
brosis patients and in six of nine sputum samples also from
cystic fibrosis patients[35]. Strains ofS. aureusisolated
from infected mice had increased PNAG expression in vitro,
but after five passages the expression returned to a low state
[35]. Cramton et al. rapidly followed this up with a similar

Fig. 2. Induction of expression of PNAG in clinical isolates ofS. aureus
following growth in glucose-supplemented media. Strains were grown
in either brain-heart infusion broth (BHIB) or BHIB supplemented with
0.25% glucose (BHIB/G) overnight, cells recovered by centrifugation and
used to adsorb out a standard dilution of rabbit antibody to purified PNAG
[35]. The antiserum was added to an ELISA plate coated with purified
PNAG and the percentage inhibition of antibody binding measured. The
geometric mean percentage inhibition of antibody binding, indicative of
PNAG-expression, was significantly lower (P < 0.01, t-test) in strains
grown in BHIB compared to those grown in BHIB/G.

report that theica locus was present inS. aureus[52] and
was needed for biofilm formation by this organism. This
report made no distinction between initial adherence and
accumulation of cells into biofilms, as both properties inS.
aureuswere affected by deleting most of theica locus. Sev-
eral subsequent reports confirmed that theica genes were
found in most clinical isolates ofS. aureus[53,54]and those
reports that did not findica genes in the majority of isolates
[54] were criticized for using primers designed for theS. epi-
dermidis icagenes for investigatingS. aureus[55]. There is
about 70–80% identity at the nucleotide level of theicagenes
in these two species[35,52], so primers based more onS. au-
reussequences would be optimal for finding these genes in
S. aureus. Among bovine isolates ofS. aureuscausing mas-
titis, 100% of 35 strains were found to carry theica genes
[56]. Peacock et al.[57] identified sevenS. aureusgenes en-
coding putative virulence factors out of 33 studied that were
strongly associated with invasive strains when compared
with strains ofS. aureuscarried by healthy blood donors and
the ica genes were one of these seven. Thus, the presence of
ica and the expression of PNAG is strongly associated with
virulent strains ofS. aureusandS. epidermidis[31,58,59].

1.3. Role of the PNAG surface polysaccharide in virulence
of Staphylococcal infections

Accepting that PS/A, PIA and SAA are all basically
PNAG polymers synthesized by proteins encoded by the
ica locus, there is a fair amount of data that this polymer
plays an important role in the virulence of infections due
to CoNS. However, outside of epidemiologic associations
of the occurrence of theica locus in invasive isolates ofS.
aureus[57], there is surprisingly little information available
about the role of PNAG in virulence of this species. Data
reported in abstract form[75] indicate a reduced level of
virulence ofS. aureusstrains deleted for theica locus when
tested in a model of endocarditis in rats (Fig. 3). In this
model it was found the infectious dose for 50% (ID50) of
the animals infected with the wild type strain was<43 cfu,
as all five animals infected with this dose had evidence of
endocarditis, while for theica-deleted strain the ID50 was
6.9 × 106 cfu (P < 0.001, logit analysis). Ten of 24 ani-
mals infected with the wild-type strain at doses≤106.3 died
7–9 days after infection while none of 16 infected with the
mutant strain died (P < 0.001, Fisher’s exact test). Thus,
in endocarditis it appears from this one study that PNAG is
a virulence factor forS. aureus. In contrast, Francois et al.
[60] reported no difference in virulence between wild-type
andica deletentS. aureusstrains in a model of foreign body
infection using tissue cages implanted into guinea pigs.
However, in this model the cages are first implanted in the
animals and left for 3 weeks before infection, allowing the
cages to become coated with host proteins. Given the abil-
ity of S. aureusto bind to numerous host proteins including
fibrinogen, fibronectin, collagen and others[61–63]it is not
surprising that when confronted with a foreign body coated
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Fig. 3. Virulence of a wild-type and isogenic mutant ofS. aureusstrain 10833 deleted for theica locus in a rat model of endocarditis[23]. Rats with
intraaortic catheters were infected with the dose of the wild type or mutant strain indicated on theX-axis and sacrificed at the time shown above the data
bars, endocardial vegetations identified, excised, weighed, homogenized and serial dilutions plated for bacterial enumeration. The lower limit ofdetection
(10 cfu/vegetation) is indicated and rats challenged with the indicated doses had no detectable vegetations or bacteria in their hearts. Bars represent
means and error bars the S.E.M. Rats challenged with the higher doses of the wild-type strain had to be sacrificed early as they would not survive a
longer period, further illustrating the enhanced virulence of the wild type strain compared to theica-mutant in this model of infection. By comparative
analysis of the overall cfu/gm of vegetation achieved, regardless of the day of sacrifice, it took approximately 4 logs more of theica-deleted strain to
reach comparable vegetation levels as did the wild type parental strain.

with host proteins the surface PNAG is not required for ad-
herence and biofilm formation and thus a role in virulence
may not be manifest in this setting.

Early studies on biofilm-producing phenotypic variants
of S. epidermidis[64,65] indicated that the variants unable
to make a strong biofilm were less virulent in a mouse
model of foreign body infection. In contrast, Patrick et al.
[66] suggested in vitro slime production was not necessarily
associated with pathogenesis of CoNS, particularly in the
absence of a foreign body. A later study in mice showed
wide heterogeneity in the ability of strains of CoNS with
different biofilm phenotypes to produce infections[67]
but concluded there was some association between biofilm
elaboration and virulence. Deighton et al.[68] compared the
virulence of five biofilm-positive and five biofilm-negative
strains in a mouse abscess model without a foreign body im-
planted and found the biofilm-positive strains caused more
abscesses that persisted longer with higher bacterial counts
compared with the five biofilm-negative strains. However,
these studies were conducted without knowledge as to the
biochemical or genetic basis for biofilm production and
classifying strains as biofilm positive or negative was based
on in vitro measurements, which are known to vary widely
based on conditions used to asses biofilm formation.

Subsequent studies with genetically manipulated strains
of S. epidermidisgave more conclusive data that the
biofilm-positive phenotype was associated with virulence.
Transposon mutants ofS. aureusstrain M187 that lead
to a biofilm-negative phenotype[45] were found to be
avirulent in a rabbit model of endocarditis[46] following
high dose-inoculation, and similarly were poorly virulent
in a model of endocarditis following hematogenous spread
from a contaminated intravascular catheter[47]. These
studies focused on the role of the PNAG-polymer as an an-
tiphagocytic bacterial capsule, that in addition to promoting

adherence of Staphylococci to biomaterials also prevented
opsonic killing due to endogenous complement and phago-
cytic activity. However, Perdreau-Remington et al.[69] did
not find any difference in virulence in a rabbit model of
endocarditis when comparing the strong biofilm-producing
S. epidermidisstrain RP62A with a chemical mutant defi-
cient in production of biofilm. In a rat model of intravenous
catheter associated infection[70], Rupp et al.[71] showed
that there was less infection with a mutant ofS. epidermidis
strain 1457 unable to make the PNAG polymer compared
with the parental strain. Another study showed the same
effect with anica mutant in strain O-47[72]. In a related
model of foreign body infections in mice, the same strain
of S. epidermidisdeficient in production of biofilms caused
fewer abscesses and adhered to the implanted foreign body
less well than did the parental strain. Overall, the general
consensus from these studies is that elaboration of the
PNAG polymer by CoNS, particularlyS. epidermidis, is not
only epidemiologically associated with pathogenic strains
[73] but plays an important role in virulence as determined
by animal studies.

1.4. Role of the PNAG surface polysaccharide in
vaccination

As ica genes and PNAG-expression are found commonly
among clinical isolates of both CoNS andS. aureus, it is ob-
viously an attractive vaccine candidate with the potential to
elicit immunity to both of these common causes of nosoco-
mial infection. As this polymer was first identified as PS/A in
CoNS, the first studies on the vaccine potential of the PNAG
polymer were performed with the PS/A material, although
the level of purity of the vaccine could not be ascertained as
its chemical nature was not known at the time. Nonetheless,
from subsequent studies it is highly likely that the major
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component of the vaccine was PNAG. This immunogen was
shown to reduce the number of days that rabbits had positive
blood cultures, in comparison to non-immune controls, in a
model of catheter-related bacteremia[29]. Passive therapy
using polyclonal and monoclonal antibody to the polymer
also conferred protection. In a rabbit model of endocarditis,
immunization with the PS/A/PNAG polymer also markedly
reduced the rate of occurrence of positive blood cultures and
protected against the development of infected vegetations
[30]. When it was discovered that theica locus was present
in most isolates ofS. aureusand PNAG was expressed, it
was also found that active or passive immunization protected
mice against infection with eight different clinical isolates
in a kidney infection model[35]. Additionally, rabbit anti-
sera raised to purified PNAG has shown passive protective
efficacy against infection in a rat model of endocarditis us-
ing a wild-type strain ofS. aureusbut not an isogenic strain
deleted for theica locus (Fig. 4). In this experiment, rats
with intra-aortic catheters were challenged withS. aureus
strain 10833 with either an intact or deletedica locus; the
challenge dose for the wild-type strain was 2×104 cfu per rat
whereas for the less virulent mutant strain the challenge dose
had to be 9× 106 cfu per rat in order to achieve comparable
levels of infected vegetations with these two strains. Four
days after infection animals were sacrificed and vegetations
identified, excised, weighed and homogenized for bacterial
levels. Immune serum to PNAG significantly (P = 0.0014,
t-test) reduced the bacterial levels in vegetations in rats in-
fected with the wild type strain but had no effect in animals
infected with theica deletent (Fig. 4). All seven of the ani-
mals infected with the wild-type strain and treated passively
with normal rabbit serum had infected vegetations com-
pared with only three of eight animals treated with immune
serum (P = 0.02, Fisher’s exact test). This experiment pro-

Fig. 4. Passive protection mediated by rabbit antibody to purified PNAG
in a rat model of endocarditis. Animals with intraaortic catheters were
treated with 0.5 ml of either normal (NRS) or immune serum to PNAG
and then infected with either 2× 104 cfu/rat of the wild-type, parental
strain or 9×106 cfu/rat for the less virulentica-mutant strain. This higher
challenge dose for the mutant strain was needed in order to achieve
comparable levels of infection in the aortic valve vegetations. Four days
later animals were sacrificed and levels of bacteria in the vegetations
determined. Bars represent means and error bars the S.E.M.

vided additional data indicating the potential of antibody to
PNAG to protect againstS. aureusinfection and also showed
the specificity of the protection in regard to the inability
to protect against infection with the strain lacking an intact
ica locus.

Although to date there are the only three published stud-
ies in the peer-reviewed literature on the vaccine potential
of PNAG, there is continued on-going work on the immuno-
chemical properties of the antigen to enhance immunogenic-
ity and protective efficacy. A recent abstract[76] indicated
that conjugating PNAG to diphtheria toxoid enhanced its im-
munogenicity in mice and rabbits compared with antibody
levels obtained using unconjugated PNAG[36]. The antis-
era had opsonic killing activity against a variety ofS. aureus
strains and oneS. epidermidisstrain. Another abstract[77]
showed that antibodies to PNAG were produced by cystic fi-
brosis patients with staphylococcal colonization or infection,
indicating that the antigen was expressed in vivo at a suffi-
cient level to induce antibody. Overall, continued work on a
PNAG vaccine is progressing, with both direct animal stud-
ies and correlative studies on responses of infected humans
on-going, with the ultimate goal of a clinical assessment of
active and passive immunotherapies directed at this antigen.

2. Conclusion

It is now clear that the various forms of staphylococcal
surface polysaccharides identified as PS/A, PIA and SAA
are the same chemical entity-PNAG. The structure was first
identified by W. Fischer as reported by Mack et al.[33]
although the material isolated in this case was of a small
molecular weight. Papers describing an N-linked succi-
nate component[34,35] were incorrect in this identification
[36,37]. The biosynthetic proteins for PNAG are encoded
by theica locus first identified by Heilmann et al.[49] in S.
epidermidisand subsequently by McKenney et al. inS. au-
reus[35] followed shortly thereafter by Cramton et al.[52].
Studies inS. epidermidisand other CoNS show a clear as-
sociation of PNAG production and virulence based on both
epidemiologic studies of clinical isolates and animal studies
of phenotypic variants and genetic mutants. Immunization
with PNAG protected against infection in rabbits due to
catheter-associated bacteremia[29] and endocarditis[30].
In S. aureus, PNAG production is found in virtually all clin-
ical isolates and immunization has been reported to protect
mice against infection caused by up to eight different clin-
ical isolates[35]. PNAG purified from an over-producing
mutant of S. aureusstrain MN8 [74] is immunogenic in
laboratory animals[36] and work reported in abstract form
indicates conjugation of PNAG to carrier proteins enhances
immunogenicity. Further studies in different animal models
and identification of the optimal form of PNAG for testing
in animal, and eventually human, immunogenicity studies
is clearly warranted and if the proper types of immune ef-
fectors mediating resistance can be identified then there is a
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potential for PNAG to mediate protective immunity against
the majority of virulent strains of CoNS andS. aureus.
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