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RESUMEN
Las células T autorreactivas que escapan al proceso de selección nega-

tiva en el timo han de ser inactivadas o eliminadas en la periferia. En res-
puesta a una estimulación parcial o subóptima, las células T se vuelven
anérgicas e incapaces de proliferar y producir citocinas en respuesta a
encuentros posteriores con el antígeno. Las señales mediadas por calcio tie-
nen un papel importante en la inducción de anergia, por medio de la acti-
vación de un programa de auto-inactivación intrínseco a la célula depen-
diente de calcio/calcineurina/NFAT. Esta revisión se centra en la descrip-
ción de nuestros conocimientos actuales acerca de los mecanismos regu-
ladores de la expresión de un programa de expresión génica específico de
la anergia de las células T, y cómo las proteínas codificadas por esos genes
imponen un estado funcional falta de respuesta a nuevos estimulos. Esto
se lleva a cabo mediante la localización y la modulación de la actividad
de sucesos cruciales para la activación de las células T, incluyendo fenó-
menos como la atenuación de las señales del receptor de linfocitos T (TCR)
y la inhibición de la transcripción de citocinas. 

PALABRAS CLAVE: Tolerancia / Anergia de células T / NFAT / Célu-
las T reguladoras.

ABSTRACT
Self-reactive T cells that escape negative selection in the thymus must

be inactivated or eliminated in the periphery. In response to a partial or
suboptimal stimulation, T cells become anergic and unable to prolifera-
te and express cytokines in response subsequent re-encounters with anti-
gen. Calcium signaling plays a central role in the induction of anergy, cau-
sing the activation of a calcium/calcineurin/NFAT-dependent cell-intrin-
sic program of self-inactivation. This review will focus on our current
knowledge on the mechanisms that regulate the expression of an anergy-
specific program of gene expression in T cells, and how the proteins enco-
ded by those genes impose a state of functional unresponsiveness by tar-
geting and modulating the activity of crucial events required for the acti-
vation of T cells, which include downregulation of TCR signaling and
inhibition of cytokine transcription.
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INTRODUCTION
A successful adaptive immune system requires the

development of the ability to eliminate pathogens, while at
the same time it must remain tolerant to self-antigens. This
is accomplished through a series of control mechanisms
that, for T cells, involve central selection of developing
thymocytes in the thymus and peripheral mechanisms that
regulate the activity of mature T cells(1-3). Self-reactive T cells
that escape negative selection in the thymus have the potential
to start dangerous reactions against self-tissues. A series of
mechanisms contribute to the establishment of peripheral
tolerance, including deletion of self-reactive T cells, antigen
ignorance, suppression by regulatory T cells (Tregs) and T
cell anergy(4-6). 

Exposure to self-antigen in the periphery may lead to
cell death. Mature T cells may be eliminated from the
periphery through apoptosis induced by antigen-dependent
stimulation of self-reactive T cells, in a process that resembles
what occurs during negative deletion of thymocytes(4,7,8).
Signaling through Fas, which promotes an intrinsic death
pathway, Bcl-2 and Bim have been shown to modulate T
cell tolerance. Mouse models with defective Bim or Fas and
transgenic animals that overexpress Bcl-2 show defects in
peripheral T cell tolerance. These mice develop
lymphoproliferative responses with increased production
of autoantibodies, supporting the role of T cell-deletion in
the maintenance of immune tolerance(9-12). 

Tregs cells have an important role in the maintenance
of the peripheral tolerance against self-antigens. Treg-
mediated suppression is an active process by which a specific
population of T cells is able to regulate the activity of self-
reactive T cells(3,6). Suppression by Tregs might be mediated
by soluble molecules (e.g. cytokines) and/or require cell-
to-cell contact(13-17). Tregs can be classified in two major types:
natural Tregs, which develop in the thymus and are
characterized by the expression of CD4, CD25 and the
forkhead family transcription factor Foxp3; and a more
heterogeneous group of induced Tregs, that include regulatory
T cells type 1 (Tr1), producing IL-10, T helper 3 cells (Th3),
which secrete TGF-β, and Foxp3+ iTregs, which may develop
in the periphery from naïve T cells after antigenic stimulation,
under specific conditions(18-21,22). Although activated human
CD4+ T cells may upregulate expression of Foxp3 without
acquiring suppressive ability(23), different studies have
demonstrated that this transcription factor is the main
regulator of Treg development and function(18,20,24,25).
Consequently, forced expression of Foxp3 in T cells allows
them to acquire regulatory ability(20). Different subtypes of
Tregs may use different potential suppression mechanisms,
which can utilize inhibitory cytokines such as IL-10, IL-35

and TGF-β, or require cell-to-cell contact(13-17). Cytolysis
mediated by granzyme A, in humans, and by granzyme B
in mice, has also been implicated in Treg-mediated suppression.
Tregs can induce cytolysis on target T cells, in a granzyme
dependent-manner(26,27). Some studies have also indicated
that Treg cells might induce IL-2 deprivation-mediated
apoptosis in responder Foxp3- T cells; however Treg cell-
mediated suppression of Il-2 mRNA transcription is not
restored by addition of exogenous IL-2(28,29). The ectoenzymes
CD39 and CD73 can induce production of pericellular
adenosine, which activates the adenosine A2A receptor and
suppresses effector T cell functions. In addition, A2A
engagement also promotes Treg generation by inhibiting
IL-6 expression(30). T cells can also be suppressed by transfer
of the inhibitory second messenger cyclic AMP from Tregs(31).
Suppression has also been shown to respond to targeting
of dendritic cells. Dendritic cells interact with surface
molecules expressed by Tregs, such as CTLA-4, LAG-3,
through CD80/CD86 and MHC Class II, respectively, leading
to an inhibition of their capacity to activate conventional
T cells(14,17,32). Finally, it has been suggested that Tregs can
induce the production of indoleamine 2,3 dioxigenase (IDO),
an immunoregulatory tryptophan-degrading enzyme on
dendritic cells(33,34). A better understanding of Treg-mediated
tolerance may come from a more detailed characterization
of how different types of Tregs may exert their suppressive
activity and how the context in which suppression takes
place may modulate Treg function and development.

T cell anergy is also a mechanism of peripheral tolerance
in which lymphocytes are functionally inactivated following
antigen encounter(35-37). Recognition of antigen (signal 1) in
the absence of co-stimulation (signal 2) causes T cells to
enter an anergic state, defined by defective activation in
response to antigen re-encounter, which translates in decreased
proliferation and defective production of IL-2 and other
cytokines(38-40). Engagement of the CD28 costimulatory
receptor seems to have a pivotal role in preventing the
induction of clonal anergy, either through a direct effect,
inhibiting the synthesis or function of anergic factors; or
through an indirect effect, by inducing the production of
IL-2(41-43). Although this “2 signal” model provides a simple
mainframe to understand how clonal anergy is induced, in
vivo T cells are likely to receive many different signaling
inputs. The balance between costimulatory signals and
inhibitory signals determines the nature of the response
of T cells to antigen, leading to immunity or anergy. For
instance, CD28 and ICOS co-receptors provide positive
signals that promote and sustain T-cell responses(44-46); while
CTLA-4 and PD-1 are negative co-receptors that limit
responses, controlling the extent of the immune response
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and protecting against the development of autoimmune
diseases(47-54). It is therefore the integration of positive and
inhibitory signals that controls the establishment of an
anergic tolerant status in vivo in T cells.

A different model of in vivo anergy has been described
that occurs following transfer of T cell receptor (TCR)
transgenic T cells into a T cell-deficient mouse that expresses
the cognate antigen for the transferred T cells. These T cells
become unresponsive, but as opposed to the classical clonally
anergic T cells, they require permanent antigen exposure
to remain anergic. Furthermore, signaling blockade occurs
upstream of Ras and seems to respond to defective zeta
chain-associated protein of 70 KDa (Zap-70) activation. This
state has been termed adaptive tolerance(55-57). Although we
will focus our review on the current knowledge on the
mechanisms that regulate clonal anergy in vitro and in vivo,
it is likely that different anergy-inducing mechanisms may
be activated depending on the specific context in which the
anergizing stimulus is delivered.

SIGNALING CASCADES 
THAT INDUCE T CELL ANERGY

Complete T cell activation requires recognition through
the antigen specific TCR of peptides presented by self-
histocompatibility complex (MHC) molecules on antigen
presenting cells, in addition to a co-stimulatory signals, as
the one delivered by CD28. As discussed above, stimulation
of T cells by engagement of their antigen receptor in the
absence of co-stimulation leads to clonal anergy(1,37). This
partial activation does not efficiently activate mitogen-
activated protein kinases (MAPK), or the phosphoinositide
3-kinase/protein kinase B (PI3K/AKT) and IκB-kinase (IKK)
signaling pathways, which leads to changes in the genetic
program expressed in those T cells. Instead, a specific anergy-
associated program of gene expression is induced(43,58,59).
This situation can also be caused by chronic exposure to
antigens or in response to a high-dose soluble antigen(60).
High levels of extracellular adenosine, which may be released
by tumor cells or Tregs, can also induce anergy in CD4+ T
cells(30,61,62). Whether these conditions also result in limited
co-stimulatory signaling remains to be determined. 

In T cells, engagement of the TCR complex induces a
conformational change that makes the cytosolic tails of the
different CD3 chains accessible to phosphorylation(63). TCR
clustering promotes the recruitment of the CD4 or CD8
co-receptors and the associated src-family kinase Lck,
which phosphorylates immunoreceptor tyrosine based
activation motifs (ITAMS) on the CD3 chains(64,65). Docking
sites are then created for Zap-70, which binds through its

tandem src homology 2 (SH2) domains and is also
phosphorylated by Lck(66,67). Zap-70 phosphorylates the
membrane-associated linker for T-cell activation (LAT)
and the SH2 domain-containing leukocyte protein 76 KDa
(SLP-76), which is recruited with Grb2-related adapter
downstream of Shc (GADS)(68). These adaptor proteins
create a docking site for the phospholipase C-γ1 (PLCγ1),
which is activated by the Tec family kinase Itk. PLCγ1
cleaves the membrane phospholipid phosphatidylinositol-
4, 5-biphosphate (PIP2) into inositol 1,4,5-triphosphate
(IP3) and diacylglycerol (DAG). DAG diffuses laterally in
the plasma membrane to activate Ras and the MAPK
pathway, likely through activation of RasGRP1. IP3 induces
the aperture of calcium channels in the endoplasmic
reticulum, which releases intracellular calcium stores. The
subsequent increase in the intracellular calcium concentration
levels leads to the opening of calcium-released activated
calcium channels (CRAC) in the plasma membrane(69,70).
While full activation of MAPK and IKK requires costimulation
through CD28, intracellular calcium increases required for
optimal activation of the calcineurin/ Nuclear factor of
activated T cells (NFAT) axis are attained through TCR
engagement(71). As we will discuss below, this unbalanced
activation of calcium signaling is responsible for the induction
of the anergic state in T cells(1,43,72,73). Establishment of hypo-
responsiveness in anergic T cells may also result from a
lack of activation of the mammalian target of rapamycin
(mTOR)(74,75). mTOR is an atypical serine/threonine protein
kinase that regulates cell growth and proliferation, gene
transcription, mRNA turnover and translation, ribosomal
biogenesis, vesicular trafficking, autophagy, cytoskeletal
organization, cell size and mammalian development(76).
mTOR is activated PI3K and AKT through TCR/CD28/IL-
2 receptor co-stimulation, and it has been shown to play
a crucial role in the regulation of T cell function(77). mTOR
activity has been proposed to be required to avoid the
establishment of an anergic state(78). Consequently, T cells
activated in the presence of the mTOR inhibitor rapamycin
become anergic even when costimulatory receptors are
engaged(79). This effect is independent of the regulatory
effect of mTOR on the cell cycle, as activation in the presence
of cell cycle inhibitors that do not target mTOR does not
result in anergy(80). Anergy in T cells can be reversed by
signaling through the IL-2 receptor. This effect is independent
of CD-28 costimulation, since exogenous IL-2 can reverse
anergy in the absence of CD28 engagement(41). lL-2 signaling
also prevents the expression of genes that are crucial in
the establishment of anergy in T cells, such as DGKα,
Caspase-3, Ikaros, Cbl-b and Grail, and this effect is blocked
by the presence of the mTOR inhibitor rapamycin(42). All
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these data suggest, thus, that mTOR acts a sensor of
environmental signals in T cells that determines whether
they will be activated or become anergic(75,78). In addition,
mTOR is also involved in regulating the fate of T cells
leading to differentiation into effector cells or Tregs, which
in turn are anergic. Under normal activating conditions in
the absence of TGF-β, T cells lacking mTOR differentiate
into Foxp3+ Tregs, but are not able to differentiate into
effector T helper 1(Th1), Th2, or Th17 cells(74). The
PI3K/AKT/mTOR signaling pathway has been shown to
regulate Foxp3 expression, since its inhibition induces the
expression of this transcription factor in activated CD4+ T
cells(81). Moreover, the expression of a constitutively active
AKT impairs Foxp3 upregulation(82). There is evidence that
of the AKT/mTOR signaling pathway can inhibit the
activation of Smad3(83), providing a possible mechanism
as to how mTOR activity may be able to dowregulate Foxp3
expression. 

TRANSCRIPTIONAL REGULATION OF T CELL ANERGY
Despite the possibility that different forms of anergy

may exist, different studies have characterized that the
induction of clonal anergy in CD4+ T cells is dependent on
NFAT transcription factors. Analysis of the phenotype of
mice lacking different NFAT family members supports the
crucial role that NFAT transcription factors have in the
regulation of T cell tolerance(84). Mice that lack NFAT1
and/or NFAT4 develop hyperproliferative disorders with
defects in the mechanisms that regulate T cell inactivation
and anergy(85-87). As described above, TCR engagement in
absence of co-stimulation, leads to activation of calcium
signaling with limited Ras-MAPK and IKK activation.
Increased levels of intracellular calcium promote the
activation of the calcium/calmodulin-dependent phosphatase
calcineurin. Calcineurin can then dephosphorylate NFAT
proteins, which are present in the cytosol in a highly
phosphorylated state. Dephosphorylated NFAT proteins
translocate into the nucleus, where they can cooperate with
other transcription factors to induce the activation of specific
programs of gene expression(71,88,89). NFAT activity is mainly
regulated by its subcellular localization. NFAT nuclear
localization is a net result of the rate of nuclear import/export,
which is regulated by means of interplay between calcineurin
and NFAT kinases. NFAT is maintained in the cytosol in
a hyperphosphorylated state by cytosolic maintenance
kinases. In the nucleus, it can be rephosphorylated by
nuclear kinases, which regulate the retention and shuttling
out of NFAT proteins(89-99). NFAT proteins are also subject
to regulation through other mechanisms, which might

contribute to modulate the expression of NFAT-dependent
genes. Sumoylation of NFAT1 has been identified as a
nuclear retention mechanism, and it might also regulate
NFAT transcriptional activity(100). Sumoylation of the isoform
C of NFAT2 induces relocalization to promyelotic leukemia-
nuclear bodies and promotes recruitment of histone
deacetylases (HDCACs), which results in repression of the
Il2 promoter(101). Additionally, poly-ADP-ribosylation can
also regulate NFAT nuclear export and NFAT-dependent
transcriptional activity, suggesting that Poly(ADP-ribose)
polymerase-1 could act as a corepressor or coactivator of
NFAT, as it has been described for other transcription
factors(102-104). NFAT proteins have also been shown to
cooperate with transcriptional repressors, such as ICER, a
member of the CREB/CREM family of transcription factors,
PPRγ and P21 SNFT(102,104). However, it is not known whether
these complexes may cooperate with NFAT in the regulation
of T cell inactivation and therefore in the induction of
anergy.

During T cell activation, induction of NFAT and Activator
Protein (AP)-1 transcription factors cooperatively regulates
the expression of T cell activation-associated genes(105-108).
However, there is ample evidence that shows that in response
to tolerizing stimuli CD4+ T cells induce a specific set of
genes which are different from those expressed in activated
T cells(1,43,58,59). The transcription of these genes is NFAT1-
dependent, since in Nfat1–/– T cells and T cells treated with
the calcineurin inhibitor cyclosporine fail to induce their
expression and do not become anergic in response to anergizing
stimuli(43). The expression of NFAT-dependent anergy-
associated genes is responsible for the induction of an
unresponsive state and for the inhibition of cytokine expression
in anergic T cells(72,109-116). 

Although NFAT may cooperate with other transcription
factors to induce the expression of some of the genes expressed
in T cells in response to an anergizing stimulus, we have
recently shown that NFAT1 dimers are the transcriptional
complexes that regulate the induction of many anergy-
associated genes in T cells. NFAT dimers bind to κB-like
sites, containing two tandem consensus NFAT-binding sites
separated by one or two nucleotides(117-119). The importance
of NFAT dimers in the expression of anergy-inducing genes
is supported by the fact that mutant NFAT proteins unable
to form dimers are incapable of inducing the expression
of several anergy-associated genes and fail to restore the
susceptibility to anergizing stimuli in Nfat1–/– T cells(119).
Furthermore, we have found NFAT dimer sites in the proximal
promoter Grail, an E3 ubiquitin ligase which has a crucial
role in the regulation of T cell anergy, that when mutated
prevent the calcium-induced expression of this gene(119). The
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nature of the NFAT-containing transcriptional complexes
determines, thus, the outcome of the T cell response to
antigen: activation if, as a consequence of concomitant
engagement of the TCR and costimulatory receptors,
NFAT/AP-1 complexes form and bind to the promoters of
genes involved in a productive T cell response; or anergy
if, in response to a suboptimal stimulation, inefficient AP-
1 activation occurs leading to the formation of NFAT
homodimers, which induce the expression of anergy-inducing
genes (Figure 1). Recruitment of NFAT and AP-1 to composite
sites is likely to prevent formation of the much lower affinity
NFAT homodimers on κB-like sites, thereby preventing the
expression of anergy-associated genes(1). 

Other transcription factors may also be implicated in
the expression of anergy-inducing genes. Early growth
response 2 and 3 (Egr-2/ Egr-3) are upregulated in response
anergic stimuli and regulate the expression of inhibitory
proteins that promote anergy(115). The expression of Egr-
2/Egr-3 is in turn regulated by NFAT. These transcription
factors can also suppress Egr-1 and NAB2 expression, which
cooperate to induce IL-2 production. This may result in the
inhibition of Il2 expression as a previous step to the
establishment of an anergic state(115,120,121).

ANERGY-ASSOCIATED PROTEINS MAINTAIN THE
UNRESPONSIVE STATE IN ANERGIC T CELLS
THROUGH THE INHIBITION OF TCR SIGNALING

Anergic T cells upregulate an NFAT/calcineurin-
dependent anergic program of gene expression. Proteins
encoded by anergy-associated genes can directly inhibit
signaling pathways activated by TCR and/or CD28
engagement, and cause suppression of T cell responses
to subsequent antigen encounters and the maintenance
of an anergic state(73,122-125). Anergic T cells express at least
three different E3 ubiquitin ligases(72,109,111). In a model of
clonal anergy, some of these ligases translocate to the
plasma membrane and target specific proteins that positively
regulate T cell activation for ubiquitination and
degradation(72,126-128). Although the mechanisms underlying
the role of ubiquitination in the maintenance of T cell
anergy are still not completely characterized, recent studies
have unveiled that these E3 enzymes play an essential
role in the anergy-associated down-modulation of TCR
signaling.

Egr2 and Egr3 induce the expression of Cbl-b, a RING-
type E3 protein, in anergic T cells(115). The involvement of
this enzyme in T cell anergy is underscored by the fact that

Figure 1. Distinct NFAT-containing transcriptional complexes regulate T cell activation and anergy. Engagement of the TCR and CD28 induces the activation
of different signaling cascades that include among others PKC-θ, MAPKs and calcium/calmodulin (CaM) /calcineurin (Cn). Those signaling pathways lead to
the activation of a series of transcription factors, including NF-κB (p50, p65), AP-1 (Fos, Jun) and NFAT. Under these conditions, NFAT forms transcriptional
complexes with AP-1 on composite sites located in the promoters of many cytokine genes and induces their expression. In the absence of costimulation, AP-1 proteins
are not fully activated and instead NFAT dimers are formed that direct the expression of anergy-associated genes. It is also likely that transcriptional complexes
formed by NFAT and other transcription factors may contribute to the expression of some of the anergy-inducing genes.
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the loss of Cbl-b impairs induction of T-cell tolerance both
in vitro and in vivo, and mice deficient in this E3 ligase develop
spontaneous signs of autoimmunity(111,129). While several
targets have been identified for the ubiquitin ligase activity
of Cbl-b(72,130-133), after receiving an anergizing stimulus, T
cells that do not express this enzyme show reduced inactivation
and degradation of PLC-γ1 and slower kinetics of synapse
disintegration than control anergic T cells(72,111). Interestingly,
Cbl-b has also been shown to regulate anergy in B and NKT
cells(133, 134). 

Grail is also a RING-type E3 protein, which is expressed
in anergic T cells. Upregulation of Grail expression is caused
by binding of NFAT dimers to two κB-like NFAT dimer
sites located in its proximal promoter(119). Grail is crucial for
the establishment of T-cell tolerance both in vitro and in
vivo(109,112,135,136). Grail causes deficient activation of RhoA by
targeting for ubiquitination and stabilizing the Rho guanine
dissociation inhibitor (RhoGDI)(127). Grail has also been
reported to bind and ubiquitinate several transmembrane
proteins, including the tetraspanin superfamily members
CD81 and CD151 and the costimulatory molecule CD40L,
targeting them for degradation(126,128,137). In addition,
overexpression of Grail has been shown to impair actin
cytoskeletal organization negatively affecting T cell-antigen-
presenting cell interactions(138). The importance of Grail in
T cell tolerance has been supported by a recent study that
has characterized a Grail-deficient mouse model. T cells
from this mouse are hyperresponsive and resistant to anergy
induction in vivo(112). 

The E3 ligase Itch was first characterized in studies
of a spontaneous mutation that produced mice with
constant itching of the skin and induced the development
of autoimmune disease(139). This HECT-type E3 ligase is
also expressed in anergic T cells. Upon restimulation, Itch
translocates into detergent-insoluble microdomains in
the plasma membrane, where it can ubiquitinate PLC-γ1
and PKC-θ recruited to the TCR signalosome. Ubiquitination
of these proteins sorts them into the endocytic pathway
where they are eventually degraded by the lysosomes(72).
Itch can also target Jun family transcription factors (e.g.
JunB and c-Jun), although the relevance of this process
to anergy in T cells is still not known(140). Similar to Cbl-
b, Itch-deficient T cells show impaired induction of
anergy(72).

How the function of these E3 ligases may integrate to
induce hyporesposiveness in anergic T cells, and the specific
targets responsible for that effect remain yet to be determined.

Deltex1 (DTX1) has also been recently shown to regulate
T cell activation and tolerance. As an E3 ligase, it may be
responsible for the downregulation of the MAP kinase ERK

kinase kinase 1 (MEKK1)(141). Expression of DTX1 is regulated
by NFAT in anergic T cells, where, independently of its
ubiquitin ligase activity, it regulates the expression of Cbl-
b and the growth arrest and DNA-damage-inducible 45‚
(Gadd45‚) through cooperation with Egr2(142). 

Clonally anergic T cells were initially characterized by
their impaired ability to activate Ras signaling(143). Recent
evidence indicates that this impairment may be explained,
at least in part, by the conversion of DAG into phosphatidic
acid mediated by diacylglycerol kinase-α (DGK-α)(113,116).
This kinase is expressed in a NFAT-dependent manner in
anergic T cells(43,113). Decreased levels of DAG caused by
increased expression of DGK-α prevent activation of the
Ras-dependent ERK/MAPK signaling cascade. Accordingly,
in vivo induction of T cell anergy in mice deficient in DGK-
α is greatly impaired(113,116).

Our laboratory has discovered that Caspase-3, another
calcium/NFAT-dependent gene which is upregulated in
anergic T cells(43), is required for the induction of T cell
unresponsiveness(114). Caspase-3 is a crucial effector of
apoptosis and other cell functions in the immune system(144-

154). In anergic T cells, Caspase-3 is likely activated by calcium-
activated calpains, and recruited to the plasma membrane,
where it cleaves and inactivates GADS and the guanine-
nucleotide exchange factor Vav1, blocking TCR signaling.
Furthermore, pharmacologic inhibition or genetic deletion
of Caspase-3 in T cells makes them resistant to anergizing
stimuli. The inability of activated Caspase-3 to induce cell
death in anergic T cells is likely due to a tightly controlled
subcellular compartmentalization of Caspase-3, which is
restricted to the plasma membrane, preventing access to
pro-apoptotic substrates(114). 

Recently, the type III histone deacetylase Sirt1 has been
shown to be essential for maintenance of T cell tolerance
in mice. Sirt1 is expressed in anergic T cells where it binds
and deacetylates c-Jun, which results in the inactivation
of this transcription factor(155). The importance of Sirt1 in
the maintenance of T cell tolerance is underscored by the
fact that T cells from mice lacking Sirt1 are hyperresponsive
and resistant to the induction of anergy in vitro, which
translates in vivo in the development of autoimmunity in
these animals(155).

Calcium signaling has also been shown to be responsible
for an impaired activation of LAT. This defect seems to be
a consequence of decreased recruitment of this adaptor
protein to the immunological synapse caused by defective
palmitoylation(156). It should prove very valuable to identify
the mechanisms that regulate the activity of the palmitoyl
acyl transferases responsible for this defect in anergic T
cells.
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ANERGY-INDUCING PROTEINS ALSO MAINTAIN
AN UNRESPONSIVE STATE IN ANERGIC T CELLS
BY SILENCING CYTOKINE GENE EXPRESSION

One of the consequences that ensue after T cells receive
tolerogenic stimuli is a marked defect in the capacity of
those cells to produce and secrete cytokines when new
antigen is encountered. This impairment is not only the
result of the inhibition of signaling pathways downstream
of the TCR, but recent reports have clearly established
that cytokine expression in anergic T cells is also regulated
at the transcriptional level. Transcriptional repressors are
responsible for the active suppression of cytokine gene
expression. Furthermore, binding of those repressors
induces epigenetic modifications that may be responsible
for the long-lasting nature of the anergic phenotype(5,84).

Changes in the expression of the Il2 gene have been shown
to correlate with specific epigenetic changes. As T cells
develop and differentiate, they acquire the capacity to
respond to antigen with increasing ability to produce IL-
2. This increased ability to express IL-2 is associated with
increased histone acetylation of the Il2 locus. This effect
cannot be achieved merely by TCR engagement and requires
costimulatory signals, likely through CD28(157). Partial
activation of T cells does not only result in a passive loss
of histone acetylation on the Il2 promoter, but an active
mechanism of chromatin remodeling is engaged. Several
HDACs that modify this locus are recruited and prevent
histone reacetylation in response to restimulation, even
in the presence of costimulation, in anergic T cells(110,158).
Ikaros expression is upregulated in a calcium/NFAT

Figure 2. Proteins encoded by anergy-associated genes are responsible for blocking signaling downstream of the TCR and repressing cytokine expression in anergic
T cells. Upregulation of the expression of Cbl-b is induced in anergic cells by Egr2 and Deltex. Cbl-b-mediated ubiquitination of Vav1, PLC-γ1 and PKC-θ regulates
their function and degradation. Cbl-b can also bind the p85 subunit of PI3K and inhibit its recruitment by CD28. Itch also targets PLC-γ1 and PKC-θ for
ubiquitination and subsequent degradation, and it can also downregulate Jun activity. Grail has been reported to stabilize RhoGDI through ubiquitination,
which ultimately interferes with TCR-induced actin cytoskeleton reorganization. Grail also regulates the turnover of membrane associated receptors such as CD40L.
The HDAC Sirt1 deacetylates and inactivates cJun in anergic cells. Caspase-3 cleaves and prevents the activation-induced membrane-recruitment of GADS and
Vav1. DGK· transforms DAG into phosphatidic acid (PA), preventing activation of DAG-dependent signaling downstream of the TCR. In anergic T cells, Ikaros
binds to the Il2 promoter where it recruits HDACS that induce epigenetic changes in this locus, which lead to repression of Il2 expression.

 Inmunol 29/1 -56p  25/5/10  11:33  Página 26



27

INMUNOLOGÍA RUT VALDOR, FERNANDO MACIAN

signaling-dependent manner during anergy induction(43,110).
Ikaros is the founding member of a kruppel-like zinc finger
family of transcription factors that have key roles in the
regulation of lymphocyte development(159-162). In anergic
T cells, Ikaros directly binds to the Il2 promoter and induces
histone deacetylation on this locus, a modification associated
with silent chromatin (Figure 2)(110,158). Supporting the
crucial role of this transcriptional factor in T cell anergy,
T cells deficient in Ikaros or expressing a dominant-negative
form of this transcription factors become resistant to
anergy(110,158). 

Expression of IL-2 in activated T cells also correlates
with DNA demethylation on the proximal promoter of this
cytokine(163). In anergic T cells, increased DNA methylation
of the Il2 promoter has also been shown to enforce
downregulation of Il2 expression in an in vivo model of
superantigen-induced T-cell anergy. These results further
confirm that cytokine expression is modulated by epigenetic
changes that are actively induced and maintained in anergic
T cells(164). 

Other mechanisms involving transcriptional repression
have been also proposed to account for the inhibition of
Il2 expression in anergic T cells. CREM/CREB complexes
and p50 homodimers bind the Il2 promoter and may
contribute to silencing its expression in a number of anergy
models(165,166). Tob, a member of the Tob and BTG anti-
proliferative protein family, is also upregulated in anergic
T cells and contributes to the repression of Il2 expression
in these cells(167). As described for Ikaros(158), Tob is also
involved in enforcing the costimulation requirement in
naïve T cells. The function of Tob is likely mediated through
enhanced binding of Smad repressors to the Il2 promoter(167).
Interestingly, Smad3 also binds and silences the Il2 promoter
in anergic cells, responding to increased levels of the cell
cycle regulator p27kip(168). 

ANERGY IN TREGS
Tregs are also anergic. Foxp3+ Tregs do not produce IL-

2 when activated with anti-CD3 and anti-CD28(58,169,170). As
we discussed before, a major factor that regulates the
development and function of Tregs is the forkhead winged-
helix transcription factor Foxp3(18,20,171,172). Foxp3 expression
in Tregs depends on NFAT, since NFAT2 can cooperate
with Smad3 to induce Foxp3 gene expression in response
to signals received trough the TGF-β and the IL-2 receptors(173).
Recently, complexes of the transcription factors RunX and
CBF‚ have also been shown to be essential in the maintenance
of Foxp3 expression in Tregs(174). Foxp3 binds to the regulatory
regions of the Il2 and Ifng loci, suppressing the production

of IL-2 and IFN-γ in Tregs(175). Silencing of these cytokine
genes responds to the ability of Foxp3 to recruit chromatin
remodeling complexes containing histone deacetylases(176).
Indeed, the chromatin at the Il2 locus in Tregs has been
shown to present a closed conformation that is not altered
when those cells are activated with anti-CD3 and anti-
CD28(177). Foxp3 can form complexes with NFAT1 that bind
to the Il2 promoter. This interaction displaces AP-1 and
prevents it from forming activating complexes with NFAT
at the NFAT/AP-1 composite sites located on the Il2 promoter.
This mechanism may also contribute to prevent Il2 expression
in Tregs(178). Additionally, Foxp3 can also directly interact
with c-Jun, preventing binding of AP-1 complexes to their
targets, including the Il2 promoter(179). Interestingly, Foxp3
and NFAT1 interactions not only control IL-2 expression,
but also Treg function. Mutations that prevent this interaction
lead to loss of suppressive capability of Tregs both in vitro
and in a mouse model of autoimmune diabetes(178). These
results might indicate that anergy and suppressive activity
are coupled in Tregs. Alternatively, they may just indicate
that NFAT/Foxp3 complexes regulate the expression of
many other target genes in Tregs. It remains yet to be
determined if the mechanisms that regulate unresponsiveness
in anergic T cells are also engaged in Tregs. In support of
this possibility, Grail expression is also upregulated in
Tregs, and in vitro overexpression of Grail confers T cells a
regulatory phenotype(180). Recently, it has been reported
that Eos, a member of the Ikaros family of transcription
factors, interacts with Foxp3 and promotes chromatin
modifications, which mediate silencing of Foxp3-dependent
genes in Tregs(181). Therefore, similar to the role that Ikaros
plays in anergic T cells, Eos also seems to have a critical
role in regulating gene transcription in Tregs and in
modulating their suppressor activity. Recent work has
suggested a possible role for NFAT proteins in the regulation
of Treg-mediated suppression. Grail, a NFAT-dimer dependent
gene expressed in anergic T cells, is also upregulated in
CD4+ T cells when suppressed by Tregs(182). Moreover, T
cells that lack NFAT1 and NFAT4 become resistant to
suppression by Tregs(183). These results suggest, thus, a
central role for NFAT in anergy, and in the Treg-mediated
dominant form of tolerance.

CONCLUDING REMARKS
The last few years have seen important advances in

our understanding of the complex molecular mechanisms
that regulate the induction and maintenance of anergy in
T cells. Unchecked calcium signaling that results from a
partial stimulation leads to the activation of NFAT proteins
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but minimal AP-1 activation, which requires costimulation.
In the absence of other activation-induced transcriptional
partners, a NFAT-dependent program of gene expression
is engaged. A series of studies have identified and
characterized many of the negative regulators of T cell
activation induced by calcium/NFAT signaling in anergic
T cells. NFAT dimers may play a crucial role in the regulation
of the expression of anergy-associated genes. These include,
among others, E3 ubiquitin ligases, caspase 3 and DGKα,
which inhibit T cell function by blocking TCR-activated
proximal signaling events; and Ikaros, which represses Il2
transcription. In vivo, T cells are likely to also receive input
from the engagement of other negative regulatory receptors,
such as CTLA-4 or the A2A receptor, which may contribute
to the establishment of an unresponsive state in self-reactive
T cells. How those signals may be integrated and the context
in which they may contribute to induce T cell anergy still
need to be established. Our understanding of how T cell
unresponsiveness is maintained has also changed. Uncoupled
signaling from the TCR is not the only mechanism that
keeps anergic T cells unresponsive. A series of epigenetic
changes that include histone modifications and DNA
methylation contribute to establish a stable repression of
cytokine expression and play a key role in the maintenance
of T cell anergy. Furthermore, we are now beginning to
understand how the mechanisms that control T cell anergy
and regulatory T cell function may integrate. The identification
and characterization of the signaling networks that are
responsible for the inhibition of TCR signaling and the
suppression of cytokine transcription in anergic T cells
would definitively offer new targets for the design of
therapeutic approaches modulating tolerance to more
effectively treat autoimmune diseases, allergy, cancer and
graft rejection.
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