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Taxonomy of Hyphomycetes has always been a challenging problem, with
experts viewing species in different ways and modifying the taxonomy of groups
to reflect their best evaluation of species limits and concepts. The advent of
phylogenetic analysis, relatively easy DNA sequencing techniques and PCR has
provided an opportunity for mycology to move from a strictly morphological
analysis of species to phylogenetic analysis of DNA sequences. Phylogenetic
theory dictates that data from different loci will produce congruent or at least
non-contradictory evolutionary histories of a clonal lineage. Tests of tree
congruence such as the index of association can show whether lineages are
clonal, and has revealed that some species long thought to be clonal are
cryptically recombining. Genealogical concordance phylogenetic species
recognition allows unambiguous identification of species boundaries.
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acids. Crude preparations of nucleic acids can be extracted
and the rRNA can be sequenced directly. Studies based on
18S rRNA sequences answered many long-standing evolu-
tionary questions and led to major revisions of the syste-
matics of bacteria [73, 74] and the fungi [2, 4, 5, 34, 71].
The first sequence based phylogenetic studies in the Peni-
cillia and Aspergilli used 28S rRNA sequences [10, 30].

In the past 20 years some major theoretical and
technical advances have made the study of DNA sequen-
ces tractable. We can easily amplify specific loci using
PCR [52] and sequence the DNA from those amplified
fragments [32, 56]. With automated DNA sequencing
equipment using fluorescent dye technology we are free of
the hazard of radioactive tracers used in the past. Because
DNA sequencing has become an accessible technology for
many mycologists, the challenge is to carefully collect
data and interpret it in an appropriate manner, melding
organismal knowledge with phylogenetic knowledge [70].

Molecular phylogenetics of fungi

Sequencing artifacts

Practical DNA sequencing methods introduced in
1979 [32, 56] no longer have significant technical pro-
blems, but low quality sequences still appear in GenBank.
Primarily these problems are related to the purity and qua-
lity of reagents, the amplified DNA, and somewhat less
frequently to the conditions of electrophoresis. Oligonu-
cleotide primers used in PCR define the ends of the DNA
fragment being amplified and must be sufficiently specific
(18-20 base length) that only the targeted gene is amplified.
Lower specificity may allow two or more loci to co-amplify
from a single primer pair. Cross contamination of cultures,
DNAs and reagents used in PCR [23] can also cause
amplification of a mixed sequence DNA fragment or frag-
ments. Sequences from mixed amplicons are unreadable.

DNA sequences from pure amplicons can be inco-
rrectly read if the DNA strands are not completely denatu-
red during electrophoresis. In high mol% G+C DNAs such
as Penicillium species ITS region, one must be very careful
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Phylogeny is the study of patterns of organismal
descent deduced from comparative analysis of homolo-
gous features or attributes. Hennig [19] proposed a system
for phylogenetic systematics with the primary require-
ments that members of a species be related by descent, that
character evolution be polarized by comparison of the
ingroup (study group) with homologous characters in the
outgroup (most closely related species not in the study
group) and that species be recognized on the basis of syna-
pomorphic (shared-derived) characters rather than plesio-
morphic (ancestral) characters.

Phylogeny of evolutionary lineages historically has
been studied by examining fossils in datable rock strata.
This is a reliable way to estimate times of divergence, but
is limited by insufficient sampling of fossil beds [62].
Fungi have a fossil record that is incomplete and possibly
will remain that way because of the difficulties of recove-
ring these fossils and the failure of fossilization in many
soft tissued species [51].

Lacking a good fossil record, mycologists have tur-
ned to molecular methods to study fungal phylogeny.
Early sequencing studies were mostly based on ribosomal
(r) RNA molecules. rRNA molecules are present in cellu-
lar organisms as a large percentage of the total nucleic
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to avoid partial renaturation during electrophoresis, which
causes compression artifacts. When compressions occur,
more than one fragment migrates in the gel with the same
apparent molecular weight. Instead of a regular ladder of
DNA fragments each one base longer than the previous
one, there will be steps missing from the DNA ladder, and
some steps will be doubled because two different DNA
fragments are co-migrating. The total number of bases
read will be less than the number actually present in the
amplified fragment. The co-migrating fragments will both
be detected at the same base position making the true
sequence uncertain. Such positions are reported as Ns.
Some studies using ITS or 28S rRNA sequences from
Aspergillus and Penicillium species [15, 30, 38, 68] some-
times include sequences that appear to be compressed.
Including an isolate of known sequence in a DNA sequen-
cing project provides a useful positive control. Using
sequences containing unreadable base positions as the
basis for phylogenetic inference is problematic unless con-
tamination and compression artifacts can be excluded as
causes of the Ns.

DNA sequences in protein coding genes are trans-
lated into amino acids. Many DNA analysis programs pre-
dict amino acid sequences from the DNA sequence. If the
DNA sequences from protein coding genes cannot be
translated into proteins, the DNA fragment either repre-
sents a pseudogene or the primary sequence is flawed.

Some DNA contains repetitive sequence elements
such as poly A (10-20 consecutive adenosine residues).
The sequence read after poly A regions is usually unclear,
possibly due to infidelity during amplification or sequen-
cing reactions. Sequences are normally clear and readable
from either end until the poly A region. Designing and
using sequencing primers close to the poly A region will
usually allow the sequence to be read. DNA regions con-
taining alternating runs of poly G and poly C are likely to
self-anneal during sequencing, forming hairpin double
stranded loops in the DNA that terminate polymerase acti-
vity. In those cases the sequence stops or is very weak
after the hairpin regions. Raising the temperature for the
elongation reaction by 2-3 °C can sometimes overcome
this type of problem. Capillary sequencers that use premi-
xed gel polymers and denaturants, and that have very pre-
cise temperature control during electrophoresis generally
prevent compression artifacts. Older sequencers where
gels and denaturants are freshly made in the lab, and
which have less sensitive temperature control during elec-
trophoresis must be monitored closely to prevent compres-
sions.

Analytical techniques

Alignment of DNA sequences is performed using
programs such as CLUSTAL [66] followed by visual opti-
mization of the alignment. Visual examination is crucial
because CLUSTAL does not always give proper alignments
when the sequences have significantly different lengths. ITS
sequences vary greatly in length, and some protein loci have
different lengths due to variable numbers of introns. Phylo-
genetic analysis of aligned sequences can be performed
using program packages for phylogenetic analysis. These
include PAUP* [64], PHYLIP, MEGA and many others
[http://evolution.genetics.washington.edu/phylip.html].
There are three main analytical approaches based on genetic
distance, parsimony or likelihood. The neighbor-joining
technique of tree formation is computationally quick and the
method for computing genetic distance can be chosen to fit
the evolutionary model. An appropriate evolutionary model
can be determined from the dataset using MODELTEST

[48]. Models of DNA evolution are discussed by Nei [35]
and Nei and Kumar [36]. Parsimony analysis also requires
relatively little computational power and has the implicit
assumption that only synapomorphies are used in determi-
ning the topology of the tree. Likelihood methods are com-
putationally intensive and impractical for tree searching 
in large datasets. However likelihood programs are very
useful for testing alternative tree topology hypotheses [27]
and operate with reasonable speed under these conditions.
Statistical support for branches in the tree are most com-
monly calculated using the bootstrap method and can also
be assessed with Bayesian analysis [21].

Choice of locus

The advent of PCR gene amplification made more
choices available than just the rRNA. ITS and IGS regions
of the rRNA repeat unit have been used to address species
level questions in fungi. ß-tubulin [18] is readily amplified
and sequenced in many fungi. The portion of ß-tubulin
identified as the BT2 amplicon includes amino acid coding
exons whose sequences tend to be conserved and non-
coding intron segments that seemingly are free from selec-
tive pressure and thus approximate the expected random
changes of genetic drift. Calmodulin has been widely used
in phylogenetic studies of fungi [11,37] and the primers
used by Peterson et al. [46] amplify nearly the entire 
calmodulin gene. Translation elongation factor 1-alpha
(ef1-α) has been amplified and sequenced in Penicillium
species, but interpretation of sequence data from ef1-α is
complicated by the variable number and location of in-
trons in the 5’ half of the molecule. RNA polymerase [28]
is being used in the all fungal tree of life (AFTOL) pro-
ject [31] and appears to be a useful locus for species level
studies in Penicillium (unpublished). A number of mito-
chondrial loci have also been used including mitochondrial
small subunit rDNA [29]. As whole fungal genomes are
completed it will become even easier to select additional
loci and design suitable primers for amplification and
sequencing.

Taxon sampling

In addition to choosing DNA loci that have appro-
priate levels of variation for the questions being asked,
incomplete taxon sampling of the ingroup species can con-
found analysis. As an example, Peterson [39] published a
phylogenetic tree containing ca. 120 Penicillium and
Eupenicillium species. Lineages supported at the 95%
bootstrap level have subsequently proved to be stable; 
species from less strongly supported groups display insta-
bility, appearing on different branches of the tree as taxa
are added or removed. Penicillium charlesii was portra-
yed in the tree [39] as having an undetermined basal po-
sition among the Penicillium species. Peterson et al. [41] 
could not firmly place this species in the larger tree, but
subsequently [46] were able to satisfactorily establish its
placement in the tree along with Penicillium coffeae, 
Penicillium indicum, Penicillium phoeniceum, Penicillium
chermesinum and Penicillium fellutanum. Finding the true
position of P. charlesii among Penicillium spp. depended
on the addition to the dataset of sequences from newly
described species and species previously believed to be
synonyms. As some of the species from the dataset that
resolves the position of P. charlesii are removed, this spe-
cies once again becomes unstable in the larger Penicillium
tree moving from branch to branch.

Some lineages in the Eupenicillium clade are poorly
sampled. Based on the large genetic distance between
some species in the tree, it is reasonable to predict that
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there are many undescribed species of Penicillium. Sam-
son [53] listed 25 species of Penicillium and Eupenicillium
newly described between 1992 and 1999. The current lite-
rature suggests that the rate of new species descriptions
has not slowed since 1999. Because we are still disco-
vering and describing the diversity in Penicillium and
because some species are extinct, complete taxon sampling
in each clade is not possible and the position of some spe-
cies in the tree will not be fully resolved.

In addition to complete taxon sampling, it is highly
desirable to sample multiple isolates of each species. When
investigating intraspecific questions instead of generic
phylogeny, populations must be sampled intensively.
Twenty or more isolates from each population provide the
basis for strong statistical inference. While gene sequencing
is the most generally useful DNA technique, more rapid
techniques such as microsatellite analysis [8,12,13,20],
inter-simple sequence repeats (ISSR) [67], multilocus
AFLP [61] and other techniques can provide less costly
ways to detect polymorphisms at additional loci and ans-
wer specific questions quickly.

Species concepts

For many years the morphological species concept
was the only species concept available. Each generation of
mycologist made the best possible interpretation of the data
available, but even so, experts came to different conclu-
sions about where species boundaries occurred [47,49,50]
and which taxa to include in the various genera. Other spe-
cies concepts used in mycology include the biological spe-
cies concepts (BSC) based on potential or real gene flow
between populations, the phylogenetic species concept
(PSC) with a primary requirement of monophyly [3,33],
and chemical taxonomy based on detailed knowledge of
the secondary metabolites produced [14,16].

The literature on Penicillium systematics includes
many studies that used single locus trees for phylogenetic
inference [24,39,42,44,54,57,59,69]. These studies reveal
the relationships of species in Penicillium and genetic dis-
tance arguments are invoked to support separation of the
isolates into species. This interpretation relies on a mole-
cular clock and the very regular accumulation of sequence
variation. It also relies on the idea that sequence variation
at some definable level is representative of species distinc-
tions. However, sufficient questions have arisen about uni-
formity of the molecular clock that defining species on the
basis of genetic distance must be viewed as a hypothesis
that needs to be tested.

Avise and Ball [1] advocated the use of genealogi-
cal concordance in phylogenetic studies in order to pre-
clude the possibility of incorrect phylogenies caused by
the use of genes that for one reason or another might not
be representative of the evolutionary history of the orga-
nism [e.g., 22]. Koufopanou et al. [26] reasoned that in
clonally reproducing organisms (e.g., Hyphomycetes) data
sets from unlinked loci should generate trees that are fully
concordant or at least non-contradictory. Instead of fully
concordant trees from the different loci, the patterns of
polymorphisms they found in the putative Hyphomycete
Coccidioides immitis genes studied were within expecta-
tions for recombining species. Other studies [6] proved
that C. immitis is undergoing genetic recombination, even
though a teleomorph has never been observed. Of course,
this may relate to parasexuality.

Geiser et al. [17] showed that Aspergillus flavus
contained two distinct and genetically recombining cryptic
species through analysis of polymorphisms at multiple
unlinked genes. Peterson et al. [43] demonstrated the gene-

tic isolation of Aspergillus bombycis through the applica-
tion of multilocus DNA sequence analysis. Studies using
multilocus data to define species limits in Penicillium are
being published [40,41,46,67]. From examining the results
of the studies mentioned, it is clear that the molecular
clock is not perfectly regular in the time frame of sibling
species. Species defined phylogenetically using multi-
locus sequence data may have perfectly uniform DNA
sequences in the ITS, or other loci, or they may have small
levels of variation. Unless the differences in ITS sequence
are large it is not clear from genetic distance arguments
that isolates represent different species.

Taylor et al. [65] argued that the evolutionary spe-
cies concept (ESC) [60, 72] is an adequate species defini-
tion for use in fungi. The ESC describes what a species is
without reference to any of the mechanisms [25] by which
species arose. They argue that the problem facing taxono-
mists is not in species concepts, but in how we recognize
the limits of species. Most Hyphomycetes species display
patterns of polymorphisms indicative of current or recent
genetic recombination. For these species the Genealogical
Concordance Phylogenetic Species Recognition (GCPSR)
[65] system recognizes genetic isolation as the species
boundary. GCPSR was tested against biological species
recognition (mating tests) in Neurospora [9]. The multi-
locus phylogenetic analysis recognized each of the species
that could be diagnosed using mating tests, and also recog-
nized three additional species. Although there have been
suggestions that some Neurospora species hybridize, the
multi-locus DNA sequence data did not find any support
for that hypothesis.
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Figure 1. Phylogenetic tree composed of data [40] from the ID locus (in red),
the calmodulin locus (in green) and the translation elongation factor 1-alpha
(in blue) from isolates in the P. brevicompactum clade. The concordant lines
from the species to the most recent common ancestor signify that the data
from the three loci are not discordant. The differing patterns of descent at
the tips of the branches (discordance), signified by the crossing of tree
branches based on different loci, suggest strongly that genetic
recombination is or recently has been occurring among the isolates.
Species boundaries are drawn at the point where concordance among the
different genes is lost.



GCPSR was also applied to Penicillium brevicom-
pactum and some closely related species [40]. When data
from the three loci are plotted as layers (Figure 1) on a sin-
gle diagram, one can quickly recognize the species boun-
daries. Branches are concordant, or in this case, not dis-
cordant, from the most recent common ancestor up to the
tip area of the tree. The branching order of the three spe-
cies is not specified in this tree because the data lack sta-
tistical support for which two of the three species are
siblings. In the tree tip areas, the patterns of descent based
on each of the three loci are discordant (Figure 1). This
very strongly implies that genetic rearrangements are
occurring, or have occurred in the recent past. When iso-
lates are sharing the same gene pool, as the isolates in each
of these three species appear to be doing, the GCPSR
interpretation of the data is that they are isolates of a sin-
gle species.

Examining increasingly polymorphic genes will
lead to the description of more and more species when
using a single locus to define species. This possibility is
seen in C. immitis microsatellite loci where there is sub
specific structure [12]. When the multilocus approach is
followed, even with highly polymorphic loci, the limits of
species, as defined by gene flow, remain the same. GCPSR
could be confounded by balancing selection of the loci
used. The discipline of population genetics has devised an
array of statistical tests to recognize selection [35,36] and
the use of such tests is necessary to insure that the data are
appropriate for the analytical model. Some of the limita-

tions of particular tests used in phylogenetic analysis are
summarized by Sanderson and Shaffer [55] and the testing
of new analytical techniques is ongoing and reported regu-
larly [7,27,62].

Once the phylogeny of Penicillium is resolved by
the use of multilocus concordance species recognition and
the species are known, it will be possible to distinguish
synapomorphies from plesiomorphies and apply the prin-
cipals of phylogenetic systematics to any of the data sets
we have. Morphological, chemical, physiological or DNA
sequence data [37,58] can be used to identify species in
the different research environments where those techni-
ques are most practical.
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