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Abstract

A theoretical investigation has been made of the fast-particle energy-loss to a quasi-one-dimensional electron gas (Q1DEG)
within the framework of the random-phase-approximation (RPA). For this purpose, we use an exact expression for the inverse
dielectric function and the parabolic potential to characterize well the lateral confinement. Three geometries are considered: the
fast-particle moving parallel to, being specularly reflected from, and shooting through the Q1DEG. The illustrative numerical
examples lead us to infer that the dominant contribution to the loss peaks comes from the intra- and intersubband collective
excitations. We argue that high resolution electron energy loss spectroscopy (HREELS) could prove to be a potential alternative
of the existing optical techniques.q 1999 Elsevier Science Ltd. All rights reserved.
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Progress in nanofabrication technology and the ability to
tailor potentials and interactions is stimulated by the world-
wide drive to develop exotic high-speed, low-power devices
that are small enough, sharp enough, or uniform enough to
behave the way theory says they should. These are quantum
structures-nonoscale layers, channels, and boxes known as
quantum wells, quantum wires, and quantum dots—in
which the broad energy bands of conventional semiconduc-
tors squeeze into more sharply defined energy levels. More-
over, that is a transformation that promises greater speed
and efficiency for the resulting optical and electronic
devices.

Past research on quantum structures has focused on
layered structures, quantum wells and superlattices, for
example, that confine conduction electrons to two dimen-
sions. Now, systems in which the electrons are confined to
one dimension of free motion (quantum wires) are providing
materials with remarkable new phenomena. An early moti-
vation behind the proposal of quantum-wire structures was
the suggestion [1,2] that one-dimensionalk-space restric-
tions would severely reduce the impurity scattering, thereby

substantially enhancing the low-temperature electron mobi-
lities. As a result, the technological promise that emerges,
are the routes to faster transistors and optoelectronic devices
fabricated out of quantum wire structures.

Research interest burgeoned in quantum wires not only
because of their potential device applications but also
because of the fundamental physics involved. For instance,
they have offered us an excellent opportunity to study the
real one-dimensional Fermi gases in a relatively controlled
manner. Such (isolated and multiple) quantum wires, with
active widths (along the plane of confinement) less than
30 nm and of negligible (less than 10 nm) thickness, have
already been fabricated [3,4] and continued advancements
in the growth and fabrication techniques are expected to
provide even sharper wires in the near future. Apart from
the fact that the question of whether the one-dimensional
(1D) electron system is better described as a Luttinger liquid
or as a Fermi liquid is still open [5,6], all experimental
results [7,8] hitherto seem to be explicable on the basis of
a normal Fermi-liquid model [9,10].

The purpose of this letter is to report the first theoretical
investigation on the fast-particle energy loss to a quasi-one-
dimensional electron gas (Q1DEG). This has been carried
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out in the framework of a dielectric response theory (DRT)
[11–13], which is still the best available description of elec-
tron-energy-loss spectroscopy (EELS). The DRT has been
successfully used to study the multisubband superlattice
systems [14,15] and provided an excellent interpretation
of the high resolution electron-energy-loss spectroscopy
(HREES) experiments [16,17] on GaAs–AlGaAs superlat-
tices for all the electron impact energies (from 4 to 35 eV).
DRT proceeds in two steps. The first step consists in eval-
uating the work done by the polarization field of the sample
on the electron (responsible for the polarization) along its
semiclassical trajectory in which the electron is regarded as
an external time-dependent potential that causes transitions
in the target. This first, classical step is complemented by a
suitable quantal description of the multiple excitations
emitted or absorbed by the electron. The essential result of
the second step is accomplished by confining ourselves
within the random-phase approximation (RPA), so that the
exchange–correlation effects are neglected.

In order to define the quantum wire, we start with an
electron gas in a narrow quantum well with interfaces paral-
lel to the x̂ 2 ŷ plane and the well-width smaller than any
other length scale in the problem. This corresponds to a
realistic experimental situation in which only the lowest
subband in the quantum well is occupied, so the motion of
the electrons along thêz-direction is ignored. We consider
an effective confining potential, (which is a sum of bare and
Hartree potential) along thêy-direction to be parabolic one
(which is quite a reasonable approximation for low density

in GaAs quantum wires [18,19]). Thus, a fabricated quan-
tum wire represents a Q1DEG with free electron motion
along the x̂-axis, and the subband structure along theŷ-
axis. For this parabolic confinement [V�y� � mpv2

0y2
=2;

with mp as the electron effective mass andv0 as the
frequency of harmonic potential], the single-particle eigen-
states and eigenenergies are given bycnk�x; y; z� �
L21=2

x eikxfn�y��d�z��1=2 and Enk � �n 1 1=2�"v0 1
"2k2

=�2mp�; wheren is the subband index andfn�y� is the
Hermite function.Lx refers to the finite length (along thêx-
axis) of the quantum wire and the transverse confinement
length of the electron isl0 � �"=mpv0�1=2: While the details
of the analytical results are deferred to a long publica-
tion, we would like to specify the strategy of the
present numerical work. We are interested in this
paper to explore a simple situation of a two subband
model with only the lowest one occupied. We do so by
calculating self-consistently the Fermi energy (1 f) for a
given particle density�N1D

e � and confining potential
strength�"v0� through

N1D
e � 2

p"

X
n

�2mp�1f 2 1n��1=2u�1f 2 1n� �1�

where 1n � �n 1 1=2�"v0: For "v0 � 4:6 meV and
N1D

e � 5:72× 105cm21
; Eq. (2) yields 1f � 4:59 meV;

which corresponds to the Fermi level lying just around
the bottom of the first excited subband. The effective
confinement width of the parabolic potential well, esti-
mated by the extent of the Hermite function�weff �
2
���������
2n 1 1
p

l0�; comes out to be 31.45 nm. The actual
weff which we estimated from a fit to the hard wall
potential is weff � 29:56 nm: The difference indicates
that the actual confinement potential is somewhere
between square and parabolic [18,19].

The EELS refers, in a broad sense, to every kind of elec-
tron spectroscopy wherein inelastic electron scattering is
used to study excitations of surfaces or thin solid films.
We have studied the fast-particle energy loss phenomenon
in three different geometries with respect to the motion of a
coherent electron beam: the fast-particle moving parallel to,
being specularly reflected from, and shooting through the
Q1DEG. It should be pointed out that the inverse dielectric
function 121�q;v; y; y0� of the Q1DEG is central to the
description of energy loss phenomena. The exact inverse
dielectric functions (IDF) for quasi-n-dimensional (with
n� 2; 1; 0) electron systems were derived in Ref. [20] for
multiple subband occupancy within the RPA. The IDF for a
Q1DEG is given by [20]

121�y; y0� � d�y 2 y0�1
X
m;n

Lp
m�y�PmLmnSn�y0�; �2�

suppressing the (q,v)-dependence for the sake of brevity.
The composite index m�; �n; n0�� � ms; ma; with
subscripts s(a) referring to the symmetric (antisymmetric)
wave-function depending upon whethern 1 n0 �
even �odd�: This is quite a general scheme and singles out
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Fig. 1. Excitation spectrum of a Q1DEG within a two-subband
model. The horizontally (vertically) hatched region refers to the
intrasubband (intersubband) single-particle excitations associated
with the lowest occupied (first excited) subband at absolute zero,
where ImP11�Im�x12 � P12 1 P21� ± 0: The bold lower (upper)
curve represents the intrasubband (intersubband) collective excita-
tions.



only the symmetric structures from the asymmetric ones.
The symbolLmn is an inverse of�dmn 2 Pmbmn� such thatP

n �dmn 2 Pmbmn�Lng � dmg; wherebmn �
R

dyLp
m�y�Sn�y�:

Clearly,Lm�Sm� stands for the long-range (short-range) part
of the response function [20].pm stands for the polarizabil-
ity function. The elementary electronic excitations are deter-
mined by the poles of121�y; y0�:

In Fig. 1, we summarize the wave-vector dependence of
the excitation spectrum of a Q1DEG for a two subband
model. Note that the sole purpose of including Fig. 1 here
was to understand the correspondence between the loss-
peaks predicted in this work and the excitation spectrum.
Although illustrated together, the intra- and intersubband,
both single-particle and collective, excitations are
decoupled modes. This is because, for a symmetric potential
well (as is the case here),Vmm0nn0 (the matrix elements of the
Fourier transformed Coulombic interactionVee�q; y 2 y0� �
�2e2

=10�K0�quy 2 y0u�; where K0�x� is the modified Bessel
function of the second kind and10 (� 12.8 for GaAs) is
the background dielectric constant)is strictly zerofor arbi-
trary momentum transfer (q) if m1 m0 1 n 1 n0 is an odd
number. It is noteworthy that the intersubband collective
excitation frequency (v p) at q� 0 is almost twice the
respective single-particle excitation. This shift of the inter-
subband resonance"vp to energies significantly above the

subband spacing�"v0� is attributed to the many-body
effects, just as in 2D systems [21]. We assume that the
depolarization effects are dominant and thus have"vp �
"�v2

0 1 v2
d�1=2; wherevd is the depolarization frequency.

In the lack of a desired model an upper bound on depolar-
ization shift can be put classically [22] to yieldv2

d �
8pe2N1D

e =� ~1mpw2
eff�: With our input parameters, this

requires a constant~1 � 3:5510; which signals the impor-
tance of the screening effects in a quantum wire. Knowing
the fact that in an experimental situation the quantization is
dominant, this classical idea gives only a physical feel and is
expected to grossly overestimate the depolarization effects.

Now we first discuss the rate of energy loss (W0) due to a
fast particle moving parallel to the Q1DEG at a distancey0

determined through [23]

W0 � e2

p
Im

"Z
dq
Z

dy0·�qvx�·K0�quy0 2 y0u�

·121�q;v � qvx; y0y0�
#

�3�

wherevx is the particle velocity along the axis of the quan-
tum wire.

We have performed the numerical computation for the
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Fig. 2. The rate of energy loss per unit energy for a fast-particle moving parallel to the Q1DEG. The fast-particle velocity and its distance from
the wire are as given in the figure. Note that the odd appearance of the top of the first two peaks is an artifact of constraining they-axis to this
value (a bad graphic software!); otherwise both of these peaks are extremely high.



rate of energy loss per unit energy. Doing so leads us to get
rid of the integral overq and hence a very substantial saving
in computational time is achieved, without loss of the rele-
vant information about the loss peaks. The numerical results
for a given particle velocity are illustrated for three values of
y0 in Fig. 2. One can immediately notice that the positions of
the loss peaks (in energy) do not vary as a function of the
distancey0. However, it has been seen that the larger the
distance between the fast-particle and Q1DEG, the smaller
the rate of energy loss, just as it is expected intuitively. The
first, second, and third loss peaks occurring at 7.16, 14.05,
and 16.35 meV, corresponding, respectively, toq=qf �
0:5; 0:98; and 1.14, explain exactly the intrasubband collec-
tive mode in the excitation spectrum (see Fig. 1). Similarly,
by repeating the computation forvx � 2:05vf ; we have
observed three loss peaks below 25 meV—the lowest
peak explains the intrasubband collective mode, whereas
the two higher ones interpret the intersubband collective
mode. However, forvx � 2:30vf ; we observed only one
broad (at 8.37 meV) and the otherd -like (at 11.62 meV)
peak below 25 meV—the lower peak was seen to explain
the upper edge of the intersubband single-particle excita-
tions whereas the upper (d -like) peak interprets the inter-
subband collective mode. The analogous extensive
computation performed for other values of the particle
velocity leads us to infer that the dominant contribution
to the loss peaks comes from the collective modes (i.e.
the plasmons). In this geometry, it is exclusively note-
worthy that only the fast-particle velocities greater than
or equal to the Fermi velocity make any sense.

Next we study the case where the fast particle is assumed
to move along a prescribed path~x ; ~x�t� � vxtx̂ 1
vytsgn�t�~y: This refers to the situation where the perpendi-
cular component of velocity�vy� changes the sign after (at
t � 0) the particle impinges (aty� 2y0) and is specularly
reflected from the surface of the Q1DEG. After rigorous
algebra, we deduce the expression for probability [23]

P�q;v� � e2a

2p2"v
Im

"Z
dy0

Z
dt·e2iat

·F�q;v; vx; vy; y
0 1 y0�·121�q;v; �2y0 1 vyt�; y0�

#
�4�

where the FunctionF is defined by

F�q;v; vx; vy; y� �
��
p
p
2qvy

Z∞

0
djj23=2 e2�11c2

=q2�=j

× e2�q2y2
=2�j
"

e2icyerfc

 
q2yj 1 2ic

2q
��
j
p

!
1 c:c:

#
�5�

Here c� a=vy � �v 2 qvx�=vy; and the second term in
square brackets is the complex conjugate (c.c.) of the first
term. The function P�q;v� has the interpretation that
P�q;v� dq dv is the probability that the probe particle is
inelastically scattered into the range of energy losses

between"v and"�v 1 dv� and into the range of momen-
tum losses between"q and "�q 1 dq�: P�q;v� com-
pletely specifies the actual kinematics of an electron
at the detector.

The numerical results for a given propagation vector
�q=qf � 0:5� and a finite Y0(� 10 nm) are depicted for
three values of the normal velocity�vy� in Fig. 3. The
sharp (d -like) peaks at 7.11 and 11.14 meV explain exactly
the intrasubband and intersubband collective modes in the
excitation spectrum (see Fig. 1), whereas the broad peaks
describe approximately the boundaries of the single-particle
excitations. We repeated our computation forq=qf � 0:2 and
1.0 to observe similar behavior. It should be pointed out,
that, for any value of the particle-velocity, the number of
loss peaks observed in the EELS is less than or equal to six,
just as it is expected within a two-subband model at hand.
The twod -like peaks in the EELS spectrum occur due to the
nonvanishing Dirac-delta functions associated with the
imaginary parts of the polarizability functions which in
turn correspond to the existence of the collective modes in
the excitation spectrum. This remark is valid for all the three
geometries considered in this work. It is noteworthy that the
positions of thed -like peaks (in energy) do not vary with the
variation in the fast-particle velocity. This abides by the fact
that the propagation vectorq is kept constant for all the
particle velocities. The earlier remark made with respect
to plasmons as the main energy loss mechanism still remains
valid.

Finally, we turn to an illustrative example of a fast parti-
cle shooting through a Q1DEG. In this case, we treat the
particle velocity~v� constant (fast particle shoots through)
and derive the expression for probability function given by
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Fig. 3. The probability functionP�q;v� for a fast-particle specularly
reflected from the Q1DEG. The input fast-particle velocities, the
propagation vector, and the finite value ofY0 used in the computa-
tion are given in the figure.



[23] (with vx ! 0)

P�q;v� � e2

2p"vy

1���������������
v2 1 �qvy�2

q
× Im

"Z
dy0

Z
dy00·eiv�y02y00�=vy·121�q;v; y00; y0�

#
�6�

where the symbols have their usual meanings.
The numerical results forq=qf � 0:5 and for three values

of the fast-particle velocity are shown in Fig. 4. Apart from
some broad peaks that describe approximately the bound-
aries of the single-particle excitations, we observe twod -
like peaks at 7.11 and 11.12 meV that explain exactly the
intrasubband and intersubband collective modes (see Fig.
1). Again, the positions of the sharp loss-peaks remain
intact, eventhough the fast-particle velocity varies. Perform-
ing the computation forq=qf � 0:1, 0.25, and 1.0 led us to
draw similar conclusions. Just like in the other two geome-
tries, we stress that the dominant contribution to the loss
peaks comes from the intra- and intersubband collective
excitations. The rest of the discussions related to previous
two geometries is still valid. In spite of the fact that the main
physics regarding the loss mechanism is consistent in all
three geometries considered here, we feel that this geometry
of fast-particle shooting through the Q1DEG yields, in

general, sharper structures in the spectrum of EELS that
allows sometimes better interpretation of even the single-
particle excitations in the long wavelength limit. An inter-
esting and well-defined (at long wavelengths) feature
observed in this geometry is that the widths of thed -like
loss-peaks are seen to decrease with the increasing particle-
velocity.

We have presented our theoretical results on the EELS in
an isolated model quantum wire. The predicted loss spectra
are expected to be confirmed by the so-far-unattempted
HREELS (see the following paragraph), irrespective of
whether such experiments are performed on an isolated
quantum wire or on arrays of wires. This is because the
Coulumb coupling between the neighboring wires (in the
state-of-the-art high quality multiwire systems) is very
weak and one is allowed to interpret the experiments
performed, for sensitivity reasons, on multiwires in terms
of excitations in an isolated wire.

A word on the capability of EELS for detection of these
low-energy excitations in quantum wires is in order. As far
as we know, no effort has so far been made to use EELS on
quantum wires. The first and foremost obstacle, or so it
looks like, is the thought of energy resolution of EELS
concerned with the low-energy excitations in quantum
wires that scares. This is true that the essential problem
with this technique, which has proved to be the most
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Fig. 4. The probability functionP�q;v� for a fast-particle shooting through the Q1DEG. The input fast-particle velocities and the propagation
vector are given in the figure.



versatile and sensitive tool in surface vibration spectro-
scopy, has always been the resolution, which was signifi-
cantly less than for the competing techniques, such as
infrared spectroscopy and Raman scattering. In the latter
techniques the resolution is typically about 0.25 meV,
whereas in EELS a resolution of 5 meV was considered to
be a good result until recently. With the increasing complex-
ity of the problems, it became desirable to have a sensitive
method with a better resolution. The technology of spectro-
meters is now based onscienceand excellent, easy to oper-
ate instruments capable of resolution down to 0.3 meV
(theoretical limit) and 0.5 meV (experimentally achieved
limit) have been built [24]. In view of this, we believe that
HREELS could prove to be a potential alternative of already
employed optical techniques.

We would like to draw attention to the fact that the first
two geometries represent practically realizable situations.
As regards the actual experiment, we believe that the
(nonzero) parametery0 (see the text above) implicitly
takes account of the expected multiple scattering and
absorption of the electron beam in the host material cladding
the wire. The third geometry seems to remain only of funda-
mental interest, unless some experimental arrangement is
suggested such that the fast-particle (a coherent electron
beam) can be made to shoot through the wire embedded
in the host material. This is because the substrate materials
lapping the Q1DEG would hardly allow the fast-particle to
shoot through the whole system. However, this difficulty
could possibly be surmounted in a system of quantum
wires micromachined from the freely suspended 2DEG [25].

In summary, this letter predicts the first theoretical fast-
particle energy loss spectra in a model quantum wire in the
framework of a DRT within the full RPA. For this purpose,
we made use of an exact analytical expression for the
inverse dielectric function, which knows no bounds with
respect to the subband occupancy. We designed the
Q1DEG with a parabolic potential well to characterize the
lateral confinement and worked within a two-subband
model. Our main conclusion is that the dominant contribu-
tion to energy loss peaks comes from the intra- and inter-
subbandcollective excitations. We hope this work will
stimulate more theoretical work and encourage the experi-
ments to evidence the capability of HREELS on the quan-
tum wire structures. The details of the theory (incorporating
explicitly the absorption in the substrate, considering larger
number of occupied and unoccupied subbands, acounting
for the coupling to the optical phonons, including the effects

of an applied magnetic field, etc.) and numerical results are
deferred to a forthcoming publication.
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