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Abstract

The mean-square displacement of thermal vibrations and melting for the Al and Al–Cu alloy system are studied using our
previous treatment based on microscopic electronic theory. The temperature- and concentration-dependent mean-square
displacement for Al12xCux system decreases under pressure. The Debye temperature obtained at low temperatures for Al12xCux

solid solution decreases as a function of the Cu atomic fractionx, but increases at higher temperatures. The effect of pressure on
the solidus curve is discussed by applying Lindeman’s melting law to the alloy system, and the phase diagram of Al–Cu alloy
system under pressure is predicted theoretically.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the increase of Si and Ge solubility in Al was found
[1,2] under pressure by rapid quenching from the liquid
state, the physical properties of Al-rich alloy systems have
been an interesting field experimentally and theoretically.
Previously, we have studied the solid solubility of Si, Ge [3]
and Cu [4] in Al under pressure and the mechanical proper-
ties. Then, considering the volume and electron density
effect on the lattice dynamics of the pure constituent atom,
we have studied quantitatively the lattice dynamics [5] and
thermal properties [6] of Al–Cu alloy system.

The intensity of the scattered wave from a crystal lattice is
observed to be temperature-dependent and varies exponen-
tially from its value at absolute zero. This temperature
dependent exponential factor is known as the Debye–Waller
factor and is related to the mean-square displacements of
the constituent atoms in the crystal. As the temperature rises,
the root-mean-square displacement becomes large, and the
contributions to the free energy from the anharmonic term
produce the thermal expansion. The increase of the root-
mean-square displacement at higher temperatures brings
about fusion of the solid lattice by Lindeman’s melting
law [7]. Therefore, the mean-square displacement is an
important measure related to the anharmonic and melting
properties. Previously some experimental studies [8–10]
about the mean-square displacements of pure Al from the

X-ray Debye–Waller factor have been reported. Then, the
pressure effect on the melting temperature of Al at low
pressure regions has also been obtained experimentally
[11,12]. On the other hand, theoretical studies (for example,
see [13,14]) about the Debye–Waller factor and the melting
of Al have been reported, but their obtained results were not
conclusive, especially in the phenomenological treatment
and in the quantitative stage. In the present work, we calcu-
late the temperature dependence of the mean-square displa-
cement for pure Al and Al–Cu solid solution using our
previous treatment [5,6]. Then, using the pressure-depen-
dent mean-square displacement and Lindeman’s melting
law [7], we study the compression effect on the melting
point of Al and the solidus curve of Al–Cu alloy system.

2. Formulations

When the substitutional Al12xCux solid solution is
formed, Al or Cu atoms in the solid solution are in a state
of volume and electron density change in comparison with
those in pure Al or Cu. Therefore, we consider apparently
the lattice vibration of Al or Cu atoms in the solid solution as
that in pure Al or Cu crystal at the equilibrium atomic
volumeV0 [4] and electron densityn� Z=V0 of the solid
solution with f.c.c. phase. The normal vibrational frequency
ni

j�q; x� for the band (Al) and local (Cu) mode with atomic
fraction x, branchj and wave vectorq are determined by
solving the secular equation with dynamical matrix [5].

Solid State Communications 115 (2000) 483–487

0038-1098/00/$ - see front matterq 2000 Elsevier Science Ltd. All rights reserved.
PII: S0038-1098(00)00225-8

PERGAMON
www.elsevier.com/locate/ssc

* Corresponding author.



The mean-square displacementku2l is temperature-
dependent and is expressed in terms of thejth phonon
mode with wave vectorq and frequencyn j(q) for a mono-
atomic cubic crystals as

ku2l � h
NM

X
j;q

1
nj�q� n�nj�q��1

1
2

� �
�1�

wheren�nj�q�� is the Bose–Einsteinoccupationnumber. Then,
the summation in Eq. (1) is over all theN(q)-points in the
Brillouin zone and threej-branches of the phonon curves
nj�q�: In Debye’s model, the mean-square displacementku2l
is expressed with the use of Debye temperatureu as (for
example, see [15])

ku2l � 9É2

4Mku
for T p u �2�

or

ku2l � 9É2T

Mku2 for T . u: �3�

Lindeman [7] proposed that the melting process occurs
when the root-mean-square displacement of the lattice
vibration

�����
ku2l

p
reaches a critical fraction of the nearest-

neighbour distance. He assumed that this critical fraction
was the same for all crystals, but it was later shown (for
example, see [16,17]) that in various cubic metals and alkali
halides this fraction was actually not constant. We define
Lindeman’s criterion for meltingxm as the ratio of two times
the root-mean-square displacement at the melting point to
the nearest-neighbour distanceR1��

��
2
p

a=2� given by

xm � 2
�����
ku2l

p
R1

: �4�

Considering the compression-dependence of the mean-
square displacementku2l and the nearest-neighbour distance
at a constant criterion for meltingxm, we can calculate the
compression effect on the melting point by satisfying

xm � 2
�����������
ku2lTm�P�

q
=R1�P� �5�

and

R1�P� � V

V0

� �1=3

R1�V0� �6�

whereV0 andV are the atomic crystal volume under atmo-
spheric pressure�P . 0� and pressureP, respectively.

The extension from pure Al to the Al–Cu alloy are done
as follows. Using the band and local mode frequencies
n i

j �q; x� [5] in the Al12xCux solid solution, the mean-square
displacementku2lx for this alloy system is given by

ku2lx � �1 2 x� h

NMAl

X
j;q

1

nAl
j �q; x�

n�nAl
j �q; x��1

1
2

� �

1 x
1
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X
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1
nCu
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1
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� �
: �7�

Using the concentration-dependent mean-square displa-
cementku2lx in Eq. (7), we define Lindeman’s criterion for
melting xm(x) of this alloy as the ratio of two times the
root-mean-square

������
ku2lx

p
at the corresponding temperature

on the solidus curve [1] under atmospheric pressure to the
nearest-neighbour distanceR1�x���

��
2
p

a�x�=2� given by

xm�x� � 2
������
ku2lx

p
R1�x� : �8�

where a(x) is the equilibrium lattice constant and related
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Fig. 1. The temperature-dependent mean-square displacementku2l under atmospheric pressure�P . 0� and 10 GPa for pure Al. The points are
experimental data such asO [8], W [9] andX [10].



to the equilibrium crystal volumeV(x) [4] by a�x� �
{4V�x�} 1=3

: Using the compression-dependence of the
mean-square displacementku2lx and the nearest-neighbour
distanceR1(x) at a constant criterion for meltingxm(x) in
Eq. (8), we can calculate the compression effect on the

solidus curve for the Al12xCux solid solution by satisfying

xm � 2
��������������
ku2lx;Tm�x;P�

q
=R1�x;P� �9�

and

R1�x;P� � V�x�
V0�x�

� �1=3

R1�x;V0� �10�

where the conversion from the pressureP(x) to the
compressed volumeV(x) is performed using the equation
of state [4] for this alloy system.

3. Numerical results and discussion

In numerical calculations of Eqs. (1) and (7), the wave
vector q in the reciprocal space has been divided into 16
equal parts to give a grid of 4096 equally spaced points
inside the first Brillouin zone. Considering the symmetry
of the Brillouin zone, it is sufficient to determine the phonon
frequencies in the range

q� 2p
a

1
16
�qx; qy; qz� �11�

whereqx, qy, qz are positive integers and satisfy the follow-
ing inequalities such as 0# qx # qy # qz # 16 andqx 1
qy 1 qz # 24: There are 149 points in the irreducible 1/48
th part of the Brillouin zone. A divergence occurs for the
q . 0 acoustical mode phonons in the sum over the wave
vector mesh of Eqs. (1) and (7). Therefore, the contribution
to the mean-square displacement owing toq . 0 acoustical
mode frequencies is calculated by converting the summation
to an integral and assuming a Debye distribution over the
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Fig. 2. The pressure-dependence of melting pointTm of pure Al. The
points are experimental data:K [11] andA [12].

Fig. 3. The temperature-dependent mean-square displacementku2lx underP� 0 and 10 GPa for Al0.95Cu0.05 solid solution.



volume of integration which is assumed to be 1/4096 th of
the total Brillouin zone volume (for example, see [18,19]).

First, the temperature dependence ofku2l under atmo-
spheric pressure�P . 0� and 10 GPa for pure Al using Eq.
(1) are shown in Fig. 1, where points are experimental data
[8–10] andTm the melting point at atmospheric pressure. In
Fig. 1 and what follows, the results with Vashishta–Singwi
dielectric function [3] are given, and the variation width of
the obtained results using different forms of exchange and
correlation [3] are within 1.0% at the absolute zero and 2.1%
at Tm. The obtained data of the critical fraction for melting
xm in Eq. (4) is 0:2216^ 0:0005 for pure Al. Then, the
obtained results for the pressure dependence of the melting
point for Al satisfying Eq. (5) are shown in Fig. 2, where the
maximum deviation of the melting point obtained due to
other screening functions [3] is within 0.5% and the points
the experimental data [11,12]. From Fig. 2, we see that the
melting point of pure Al increases under compression
consistent with the experimental data [11,12].

Secondly, using the band and local mode frequencies
ni

j�q; x� [5] in the Al12xCux alloy system, the temperature
dependence of the mean-square displacementku2lx for the
Al0.95Cu0.05 solid solution obtained using Eq. (7) is shown in
Fig. 3. From Fig. 3, we see that the pressure effect on the
mean-square displacement for this alloy system is similar to

that for pure Al in Fig. 1. Then, we calculate the Debye
temperatureu l.t. andu h.t. at lower and higher temperatures
using Eqs. (2) and (3). The obtained concentrationx-depen-
dence of the Debye temperatureu l.t. at the absolute zero and
u h.t. at the representative temperature such as 820 K for
Al12xCux system are shown in Figs. 4 and 5, where the
maximum deviation of the Debye temperature obtained
due to other screening functions [3] is within 1% and the
obtained data ofu l.t. for pure Al is in good agreement with
the experimental data [20] from elastic velocity. The
relative difference of the Debye temperatureDu�x� ;
u�x�2 u�x� 0� from that for pure Al have a reduced accu-
racy uDu�x�=u�x�u # 0:5% due to other screening functions
[3]. From Figs. 4 and 5, we see that the Debye temperature
decreases with the solubility of Cu at low temperatures,
but increases at high temperatures. The concentration-
dependence of the Debye temperatureu l.t.(x) at absolute
zero for Al12xCux alloy system in Fig. 4 is consistent with
those [6] from the mean elastic velocity and from the
specific heat.

Finally, we study the compression effect on the phase
diagrams of the Al12xCux alloy system. The obtained solidus
curves under pressure by satisfying Eq. (9) for the Al12xCux

alloy system are shown in Fig. 6. Our obtained solidus
curves in Fig. 6 have a calculated accuracy corresponding
to uDxu # 0:01 anduDTu # 5 K: From Fig. 6, we predict that
the solid solubility of Cu in Al is increased under pressure,
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Fig. 4. The concentration-dependence of Debye temperatureu l.t.

T � 0 K for Al12xCux solid solution (Full line). Broken and chain
curves are those [6] estimated from the specific heat and from the
mean elastic velocity. The point for pure Al is the observed data [20]
from elastic velocity.

Fig. 5. The concentration-dependence of Debye temperatureu h.t. at
820 K for Al12xCux solid solution.



and we hope that there will be further experimental research
in this field. The numerical calculations were carried out

with the ACOS 3900 operating system in the Computer
Center of Tohoku University.
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Fig. 6. The obtained phase diagram (absolute temperatureT versus
Cu atomic fractionx) under pressureP� 0; 3, 5, 10 GPa for Al-rich
Al12xCux alloy system. The phase boundary between the liquid (L)
and the solid solution (SS) or the phase mixture (PM) are obtained
from the present study. The phase boundaries between SS and PM
are from our previous study [4].


