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Abstract

The few-particle state of carriers confined in a quantum dot is controlled by the balance between their kinetic energy and their
Coulomb correlation. In coupled quantum dots, both can be tuned by varying the inter-dot tunneling and interactions. Using a
theoretical approach based on the diagonalization of the exact Hamiltonian, we show that the transitions between different
quantum phases can be induced through the inter-dot coupling both for a system of few electrons (or holes) and for aggregates of
electrons and holes. We discuss their manifestations, in addition energy spectra (accessible through capacitance or transport

experiments) and optical spectra. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Semiconductor quantum dots (QDs) are formidable
laboratory materials for next-generation devices and for
the actual realization of some key Gedankenexperimente
in many-body physics [1-3]. Indeed, the number of elec-
trons and holes in the QD can be controlled very accurately,
and almost all relevant parameters influencing their strongly
correlated states, like confinement potential and coupling
with magnetic field and light, can be tailored in the experi-
ments. The additional possibility of tuning the coupling
between QDs enriches their physics and the possible appli-
cations.

From the point of view of fundamental physics, such
coupling extends the analogy between quantum dots (‘arti-
ficial atoms’ [4]) and natural atoms, to artificial and natural
molecules. The tunability of coupling among QDs allows to
explore all regimes between non-interacting dots and their
merging into a single QD; many of those regimes are
precluded to molecular physics.

One of the peculiarities of QDs with respect to other solid
state structures consists in the partial decoupling of a few
degrees of freedom from all the others, which is due to the
discrete nature of the spectrum [1-3]. The actual exploiting
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of such a feature largely depends on the capability of inte-
grating arrays of QDs, thus increasing the number of degrees
of freedom that one can address and coherently manipulate.
This is precisely the strategy pursued by the semiconductor-
based solid state implementations of quantum computation
[5].

In general and basic terms, the tuning of inter-dot tunnel-
ing allows to modify the relative position of the single-parti-
cle levels, thus inducing phase transitions in the many-body
ground states and different degrees of spatial correlation
among carriers. Manifestations of these phenomena in
systems formed by carriers of only one type, whose ground
and excited state properties are accessible through addition
energy spectra, have been predicted. Here we point out that
similar effects are expected to occur also for systems formed
by both electrons and holes. We also show that, in spite of
the obvious differences, strong similarities appear in the
analysis of electrons and electron—hole systems, and a
unified theoretical description is in order. Basically, a
competition emerges between two trends. On one side an
atomic Aufbau logic, where carriers tend to occupy the
lowest single-particle states available, thus minimizing the
kinetic energy and the total spin, at the (energetic) cost of
reducing spatial correlation among carriers. At the opposite
extreme, we find an enhanced degree of spatial correlation
among carriers, which occurs through the occupation of
orbitals other than the lowest. This implies an enhancement
of the kinetic energy and a reduction of the repulsive one,
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and results in electron distributions maximizing the total
spin (Hund’s rule). The balance between these two trends
depends on the spacings of the single-particle levels
involved, and these are precisely what can be settled by
controlling the inter-dot tunneling. When carriers of oppo-
site charge, different effective masses and tunneling para-
meters come into play, the competition between both trends
becomes even more delicate.

Predictions of the actual ground and excited states of the
many-body system thus require a careful theoretical treat-
ment including all carrier—carrier interactions. Since the
number of carriers in the dot can be controlled and kept
relatively small, we can proceed through direct diagonaliza-
tion of the exact many-body Hamiltonian, with no need to
make a priori assumptions on the interactions. On the
contrary, the results are a useful benchmark for the validity
of the most common approximations for these systems.

We find that different quantum phases correspond to
different regimes of inter-dot coupling both for a system
of few electrons (or holes) and for aggregates of electrons
and holes, with various possible spatial configurations and
the formation of different possible ‘subsystems’ of inter-
correlated particles. Besides, due to the negligible elec-
tron—hole exchange interaction in heterostructures such as
GaAs, the two kinds of carriers can be treated as distinguish-
able particles. Therefore, spatial correlation among elec-
trons and holes does not arise from the Fermi statistics: it
needs instead the entanglement between the orbital degrees
of freedom associated to holes and electrons, and turns out to
depend only indirectly on the spin quantum numbers S, and
Sh-

After a brief summary of the state of the art in theoretical
and experimental work on coupled dots (Section 2), in the
following we describe the general Hamiltonian and solution
scheme (Section 3). We then come to the results for elec-
tron- (Section 4) and electron—hole systems (Section 5). The
trends leading to different quantum phases are discussed in
detail, together with their nature in terms of spin and spatial
correlation functions.

2. Experimental and theoretical background

Early experimental and theoretical studies focused on
electrostatically coupled dots with negligible inter-dot
tunneling [6]. Here we consider artificial molecules [7],
where carriers tunnel at appreciable rates between dots,
and the wavefunction extends across the entire system.

The formation of a miniband structure in a one-dimen-
sional array of tunnel-coupled dots was demonstrated more
than a decade ago [8]. After that, the first studies considered
‘planar’ coupled dots defined by electrodes in a two-dimen-
sional electron gas. In these devices, the typical charging
energy was much larger than the average inter-level spacing,
hence linear [9-13] and non-linear [14] Single electron
tunneling spectroscopy (SETS), obtained by transport

measurements at different values of the inter-dot conduc-
tance, could be explained by model theories based on capa-
citance parameterizations [15-18]. Early studies also
considered simple model Hamiltonians (usually Hubbard-
like) with matrix elements treated as parameters [19-22].
Blick and coworkers clearly showed the occurrence of
coherent molecular states across the entire two-dot setup,
analyzing transport data [23,24] and the response to a coher-
ent wave interferometer [25]. The tuning of coherent states
was also probed by microwave excitations [26], and
coupling with environment acoustic phonons was studied
[27]. Planar coupled dots were also used to cool electron
degrees of freedom [28], to measure the magnetization as a
function of the magnetic field [29], and to study the phenom-
enon of ‘bunching’ of addition energies in large quantum
dots [30]. The so-called ‘vertical’ experimental geometry
was introduced later: it consists of a cylindrical mesa incor-
porating a triple barrier structure that defines two dots. So
far, evidence of single-particle coherent states in a AlAs/
GaAs heterostructure has been reported [31], while in
AlGaAs/InGaAs structures clear SETS spectra of few-parti-
cle states have been observed as a function of the magnetic
field B and of the inter-dot barrier thickness [32,33].

A relevant part of theoretical research has addressed the
study of few-particle states in vertical geometries, within the
framework of the envelope function approximation. The
two-electron problem was solved, by means of exact diag-
onalization, in different geometries by Bryant [34] and by
Oh et al. [35]. Systems with a number of electrons N > 2 at
B = 0 in cylindrical geometry have been studied by several
methods: Hartree—Fock [36], exact diagonalization for
N = 5 [37,38], numerical solution of a generalized Hubbard
Model for N =6 [39,40] and for N> 12 with a ‘core’
approximation suitable for the weak-coupling regime only
[41], density functional theory [42,43].

Palacios and Hawrylak [44] studied the energy spectrum
in strong magnetic field and negligible inter-dot tunneling
with various methods (N = 6), and established a connection
between the correlated ground states of the double-dot
system and those of Fractional Quantum Hall Effect systems
in double layers. In this perspective, Hu et al. [45] studied
collective modes in mean-field theory, Imamura et al. [46—
48] exactly diagonalized the full Hamiltonian at strong B
and different values of tunneling (N = 4), Martin-Moreno et
al. [49] considered the occurrence of canted ground states.
Also the far-infrared response of many-electron states was
analyzed with various techniques [50,51]. Another interest-
ing issue is the relation between quantum and ‘classical’
ground states [52] as the radius of the dot is enlarged,
when electrons arrange to minimize electrostatic repulsion
because the kinetic energy is quenched [53,54].

The electronic properties of planar dots have also been
studied theoretically, through a variety of techniques:
configuration interaction or analytical methods with various
approximations [55-57], or density functional theory for
larger values of N [58,59]. The infrared [60] and the
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Fig. 1. Dependence on the inter-dot distance d of: (a) the kinetic (E,)
and (b) Coulomb (V,.) energies of three prototypical two-electron
states ) =lo, 1,0, 1), 2 =(lo, oy 1) —|o, Loy 1 W2
(singlet states) and [3) = (lo, 1.0, 1) + |0, Loy T W~/2 (triplet
state); the symbol @ refers to the real ground state [s). In panel
(c), we plot the spatially averaged pair-correlation function p(z) =
[ [ P(x,y,2;%0,¥0,20) dx dy corresponding to these states. The
coordinates of the fixed particle (represented by the black circle)
are xo = 0, yo = 0 and zy5 = —7.5 nm (z = 0 is in the middle of the
inter-dot barrier). The continuous grey line gives the profile of the z
component of the confinement potential (barrier height V, =
400 meV, in-plane confinement energy fiwy, = 20 meV). Other
parameters adopted are those typical of GaAs: m; =
0.067 m, k. = 12.9.

thermoelectric [61] response were considered. Systems of
coupled QDs are also among the most promising candidates
for the implementation of semiconductor-based quantum
information processing devices: some of the current propo-
sals identify the qubits with either the spin [62,63] or the
orbital degrees of freedom associated to the conduction band
electrons in QDs.

Research on few-electron systems in double dots is thus a
new field in very rapid growth, with increasing focus on the
possible quantum phases and how they can be driven by
artificially controllable parameters such as inter-dot
coupling, magnetic field, dot dimension. The study of such
phases is expected to add insight into the physics of double

layers, e.g. the conditions for Wigner crystallization, and of
strongly correlated systems in general. The amount of
experimental data on many-body states in artificial mole-
cules is still limited, but the whole bunch of spectroscopic
tools currently available (linear and non-linear transport,
Raman spectroscopy) is now beginning to be employed
(see e.g. SETS spectra in the B—N space, Ref. [64] in this
issue) and should allow the direct verification of theoretical
predictions and a more general understanding of the basic
phenomena and trends.

Also the optical properties of coupled QDs depend both on
the confinement of electrons and holes and on the effects of
correlation among these carriers. In spite of their importance,
however, such correlation effects are still largely unknown.
From the experimental point of view, cleaved-edge overgrown
samples have been used [65], but self-organized quantum dots
are most commonly employed for optics. Their stacking was
demonstrated [66], and the splitting of the excitonic ground
state in a single artificial molecule was studied as a function of
the inter-dot distance. The lines in the photoluminescence
spectra were explained in terms of transitions among excitonic
states obtained by single-particle filling of delocalized bond-
ing and anti-bonding electron and hole states [65,67]. When a
few photoexcited particles are present, however, the correla-
tions induced by the carrier—carrier Coulomb interactions play
a crucial role;' single-particle tunneling and kinetic energies
are also affected by the different energetic spacings of electron
and hole single-particle states. The correlated ground and
excited states will thus be governed by the competition of
these effects, not included in previous theoretical descriptions
of photoexcited artificial molecules [70]. A detailed under-
standing of exciton and multiexciton states in coupled semi-
conductor QDs, however, is of great interest for the
development of the optical implementations of quantum-
information processing schemes, starting from the identifica-
tion of well characterized qubits [71]. The possibility of
complete optical control over the computational space formed
by interacting excitons in quantum dots has recently been
demonstrated in Refs. [72,73]. We therefore expect that a
systematic investigation of trends in the many-body phases
of coupled dots will be actively pursued for systems of few
electrons, and extended to systems of photoexcited electrons
and holes in the near future.

3. Few-particle states of N electrons and holes

In the following, we focus on the motion of few electrons
and holes confined in two coupled quantum dots. Our
primary interest is in the correlated nature of ground and
excited states of the interacting system.

! For single quantum dots it is now known from previous theore-
tical and experimental work that few-particle Coulomb correlations
dominate the optical spectra in the non-linear regime. See, e.g. Refs.
[68,69], and references therein.
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Hereafter, we consider a simplified model where, within the
envelope function and effective mass approximations, two
coupled identical vertical dots are described by a separable
confining potential V(p,z) = V(p) + V(z), with V(p) =
1/2(m* w3 p*) an in-plane parabolic potential (B = (x, y), m"
is the effective electron (hole) mass, w the characteristic
frequency) and V(z) is a double square quantum well along
the z direction (see Fig. 1). Each well (of width L and barrier
potential height V,)) corresponds to a dot; the coupling between
the two dots is controlled either by varying the inter-dot
distance d (width of the inter-dot barrier) or the height of the
inter-dot potential barrier. To vary d implies to consider differ-
ently grown devices. The full many-body Hamiltonian # (in
zero magnetic field) is the sum of the single-particle terms
HO® = —#*V*2m") + V(p,z) and of the two-body
Coulomb interaction terms

N, 2

r= 3 3|6 s

e
=@ _ 20
E=eh i=1 i<i Kr‘rgl g ‘

e
2 2 o
Here k, is the dielectric constant of the semiconductor
medium, and the subscript e (h) refers to electrons (holes).
Effective masses, characteristic frequencies, and details of
the double well entering H” differ for electrons and holes.

We chose this geometry for two reasons: firstly, experi-
mental devices whose behavior can be described by this
model are currently studied by several groups, allowing for
precise tailoring of the dot geometry, strong spatial confine-
ment, and hence observation of spectral features beyond the
simple Coulomb Blockade behavior (e.g. in SETS spectra).
Secondly, the cylindrical vertical geometry, contrary to in-
plane devices, has the richest degree of symmetry, which is
particularly helpful to theoretical work both in reducing the
size of Hilbert space sectors and in analyzing electronic
configurations. Specifically,  is invariant under any
rotation in the spin space (the total spin S and its projection
S are therefore conserved), rotation around the z-axis in real
space (conservation of the z-component of the orbital angular
momentum M), inversion with respect to the geometrical
center of the system (parity conservation). In complete
analogy with Molecular Physics [74] and for each species
of carriers we introduce a spectroscopic notation to classify
electronic terms, namely eigenstates of J#: zs+lMg,u. Here g
(u) stands for even (odd) parity and M takes the labels
3. ILA,... standing for M = 0,1,2,... Actually, a 3 term is
also invariant under reflection with respect to a plane passing
through the symmetry axis: in this case the notation takes the
form 7'y ; u» Where = labels the sign change under
reflection.’

2 The notation slightly differs from that used in Refs. [39,40],
where * refers to the reflection with respect to the xy plane. Ref.
[49] defines this plane reflection as parity.

We are interested here in the evolution of the ground and
excited states as the inter-dot distance d is varied. This
feature shows a remarkable difference between artificial
and natural molecules: in the latter the inter-nuclear distance
is almost fixed, controlled by the nature of bonding, while in
the former it can be tuned by adjusting electrodes or by
growing different sample devices. Ground and excited states
can be probed by several kinds of spectroscopies. Theoreti-
cally, once the energy spectrum is known after numerical
diagonalization of J7, it is quite easy to compute the rele-
vant observable quantities.

A considerable achievement has been obtained by
transport spectroscopies, like single-electron capacitance
tunneling spectroscopy [75] or SETS [76] for the
ground state, or non-linear tunneling spectroscopy [77]
for the excited states. In a transport experiment, the
chemical potential w(N) of the double-dot is measured
as the number of electrons N is varied, charging the
system one electron by one. In fact, from the experi-
mental value w(N) one can infer information about the
ground state, being w(N)= Ey(N) — Eq(N — 1), with
Ey(N) the ground-state energy of the N-body system
[78]. Our theoretical strategy is straightforward: we
compute the ground state energies Ey(N) at different
values of N, and from these the chemical potential w
to be compared with the spectra. Single-dot far-infrared
spectroscopies [1-3] are unsuitable to probe the relative
motion of electrons and hence their correlation, because
light only couples to the center-of-mass motion (gener-
alized Kohn theorem) [79]. This is also true for a
system of coupled identical quantum dots with cylind-
rical symmetry, as long as the in-plane confinement
potential (orthogonal to the symmetry axis, e.g. the
growth direction) is parabolic and the polarization of
light is in the same plane. However, this limitation
does not hold for two-photon processes like Raman
scattering, where density fluctuations can excite collec-
tive modes of the interacting system [80,81].

Finally, optical spectroscopy allows the study of few-
particle states including electrons and holes. In the lowest
order, the light—semiconductor coupling is associated either
to the absorption of a photon and to the promotion of an
electron from the valence to the conduction band or to the
reversed process, which is accounted for by a Hamiltonian
of the form —E-P, where E is the electric field and P the
material polarization [82]. Within the rotating-wave and
dipole approximations the luminescence spectrum for a
QD initially prepared in state |\) can be computed according
to Fermi’s golden rule

Lo(@) o< 3 [(Po)ya 8By + hoo — Ey), (@)

N

here (P,), ./ are the dipole matrix elements corresponding
to the transition between states \ and A’ (through removal of
one electron—hole pair) and the creation of a photon with
helicity o = *.
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4. Few-electron system

In this section, we study the system of interacting carriers
of the same species, e.g. electrons. Let us start from the
simplest case, that is the two-electron molecule. A theorem
due to Wigner [83] guarantees that the ground state is
always a singlet if time-reversal symmetry is preserved:*
however, dramatic alterations of the energy spectrum and
wavefunction are driven by the inter-dot distance d and the
characteristic dot radius £, = (fi/m" wo)” 2,

This is shown in Fig. 1: in panels (a) and (b) we plot the
total ground state kinetic (Ey) and Coulomb (V,.) energy,*
respectively, vs d. Coulomb interaction mixes up different
configurations (i.e. Slater determinants) which contribute
with different weight to the ground state. Besides (E;) and
(Vi) for the true few-particle groundstate [{s) (symbol #), in
Fig. 1 we also show the corresponding data of three proto-
typical states:’ |1) = log 1,04 1) (singlet), [2) = (o, 1,0y |
)= log Loy 1)N2 (singlet), [3)=(ogTo,l)+ oL,
o, 1 W2 (triplet). Note that the difference between the
(identical) kinetic energies of states |2) and |3) and that of
|1) amounts exactly to the energy splitting A, between the
single-particle states o, and o, (Fig. la). This quantity
decreases exponentially as d increases and as the probability
of the tunneling through the potential barrier goes to zero.
While singlet and triplet states [2) and |3) have identical
kinetic energy, the latter state is energetically favored as
the interaction energy is concerned. The splitting in (V,.)
between |2) and |3) appearing in Fig. 1b is an exchange
energy, namely the consequence of the antisymmetry of
the total wavefunction for particle permutations. The beha-
vior of the ground state |{s) partly resembles that of the state
[1), but shows significant deviations due to the mixing of
configurations.

The arrangement of electrons is naturally visualized by
computing density functions in real space. However, both
the single-particle density and the usual radial pair correla-
tion function g(p) plotted in the xy plane depend only on the
relative distance, due to the cylindrical symmetry of the
system. Hence, we follow Ref. [85] and calculate the ‘angu-

* The magnetic field breaks time-reversal symmetry and induces
singlet—triplet transitions. In the artificial Helium this proceeds with
increments of the quantum of angular momentum 7 (see Ref. [84]).

* Here by kinetic energy we mean the sum of the single-particle
contributions to the total energy, thus including the effect of the
external confinement potential.

5 We describe a configuration listing the occupied single-particle
levels, labeled as nm;u : nis the radial quantum number, m assumes
the symbols o,m,9,... corresponding to the azimuthal quantum
number m =0, 1,2,..., the superscript + (—) stands for positive
(negative) values of m, and the subscript g (u) refers to even
(odd) parity. Cf. Ref. [74].

lar’ spin-resolved pair correlation function

P, (p.2:P0.20) = A5,50< Z 8(p” — )" — 2)

i#j
X 8,0 85" — )" — zo>8xw,sl,>, 3)

where (---) denotes the expectation value on a given state,
the subscript s refers to spin, and A, is a normalization
factor, such that [ dp dz dpg dzoPy, (.2 Pos29) = 1. One
electron with spin sy is fixed at the position (py, z9), while
the other at (p, z) with spin s is varied: thus P (5, z; po. 2o)
is proportional to the conditional probability of finding the
second electron given that the first one is fixed. This allows
for observation of the relative spatial arrangement of elec-
trons and of the angular correlation. The spin-independent
quantity is the total pair correlation function P(p, z; By, o)
normalized as

Z NS(NS - l)Ps,so + Z NSNSUPS,SU

S=50 S780
NN - 1) ’
“

P(.Bv z; ﬁO’ ZO) =

N; being the number of spin-s electrons.

In Fig. 1c, we plot the function p(z)=
[ [ dx dyP(x, y, z; X0, Y0, 20), showing how the fixed position
of one electron (represented by the black circle) affects the
spatial distribution of the other one along the symmetry axis
z, for an inter-dot distance of 1 nm. The state |1) clearly
exhibits no spatial correlation among the two carriers: the
placing of one electron in one quantum dot (QD) does not
change the probability of finding the other one in any of the
dots. In the case of the singlet state |[2) the spatial distribu-
tion of one electron is peaked around the other (fixed) one:
the two particles tend to occupy the same QD. Opposite
trends apply to the triplet state |3). Again, the true ground
state shows a mixed character: p(z) has its biggest peak in
the ‘unoccupied’ QD, but there is a finite probability for the
double occupancy on the same QD. The average values of
the Coulomb energy (V..) (Fig. 1b) clearly reflect such beha-
viors. The curve referring to |1) slowly decreases, because
the value of (V,.) corresponding to two particles in different
QDs diminishes as d increases. A fortiori, (V,.) decreases for
the triplet state: the electrons are always in different QDs.
The Coulomb energy is less affected by the inter-dot
distance in the case of the state |2), because (V) is mainly
due to intra-dot interaction (both carriers in the same QD):
the slight increase of (V,,.) depends on the growing localiza-
tion of the particles within a QD.

The terms contributing to the Hamiltonian # of Eq. (1)
scale differently with the characteristic length of the
confinement potential £, : the kinetic one goes like
~ £y, while the interaction one like ~ £;,"'. For small
dots, the kinetic term dominates and the system is Fermi-
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Fig. 2. Angular pair correlation function P(p, ¢, Z; py, ®g, Z9) Vs the
azimuthal angle ¢ for N = 2 : all other parameters p, p,z, 2, are
fixed, with p = py. Here py, 2y, z correspond to the average value of
the in-plane radius and the maxima along z of the single-particle
density, respectively. We use m' = 0.067m,, k, = 12.9, L =
10 nm, Vy =400 meV, d = 1 nm. The inset is a contour plot of
P(p,z; Po» 2) in the xy plane (in units of £,), for the triplet excited
state with iwy = 20 meV.

liquid like: here the ground state is determined by the
successive filling of the empty lowest-energy single-particle
levels, according to Aufbau atomic theory. As £, increases,
the electrons become more and more correlated and arrange
to minimize Coulomb repulsion, up to the limit of complete
spatial localization (reminiscent of Wigner crystallization in
2D). Even if for N = 2 the ground state is always a 'Eg term
as £ is varied, nevertheless we can gain further insight into
the correlation dynamics by analyzing the two-body wave-
function.

In the inset of Fig. 2, we plot the total pair correlation
function P(p, z; P, 29) for the N = 2 triplet state. Here, p,
and z are set equal to the average value of the in-plane
radius and the maximum along z of the single-particle
density, respectively. In addition, z is fixed at the position
of the second, symmetric maximum of density in the
symmetry-axis direction: the resulting contour plot is the
value of P in the xy plane (in units of £,). This represents
the probability of finding one electron in the plane of one
dot, given that the second electron is fixed on the other dot.
The other plots in Fig. 2 show P(p,¢,z;p0,¢0,20) Vs the
azimuthal angle ¢: all other parameters p,pg,2,zo are
fixed, with p = p,. When ¢ = ¢, the position coincides

with that of the fixed electron, and the probability P has a
minimum (zero in the triplet case with z = z;) due to the
Pauli exclusion principle. As ¢ is varied, the position
follows a trajectory like the thick circle in the inset, starting
from the bullet locating the other fixed electron in the xy
plane. After a 2mw-rotation, we are back in the starting point.
These plots are a kind of ‘snapshot’ of the angular correla-
tion, as we freeze the motion of one electron. Fig. 2 is
organized into two columns, corresponding to the singlet
ground state and to the triplet excited state, respectively,
for different values of Zwy(d = 1 nm). Solid lines refers to
the case z = 73, namely electrons on the same dot, while
dashed lines to z # zj, i.e. electrons on different dots.
When #fiw, is very large (40 meV, top row), the curves
P(p, z; Py, 20) are almost flat. This flatness implies that the
motion of the two electrons is substantially uncorrelated,
except the effect of Fermi statistics. In fact, in the triplet
case, the probability of measuring two electrons on the same
dot is negligible, and this holds at any value of Ziwy. On the
contrary, in the singlet state there is a finite probability of
measuring two electrons on the same dot in the ground state.
As fiwy is reduced (20 meV, middle row), angular correla-
tion is turned on. This can be seen by the increase of the
peak—valley ratio in the angular correlation function. The
position of the maximum corresponds to m, i.e. the two
electrons repelling each other tend to be separated as
much as possible. This trend is even clearer at small values
of fiwy (3.5 meV, bottom row). Plots of the second row
(hwy = 20 meV) should be compared with the correspond-
ing plot of Fig. 1(c): the first ones illustrate how electrons
correlate in the xy plane, the second one how they arrange
along z.

Note that in the first column of Fig. 2 as fiw, is decreased
the probability of measuring two electrons on the same dot
increases up to the limit when it equals the probability of
measuring electrons on different dots (Awy = 3.5 meV).
This is due to the different ratios between two fundamental
energy scales: the harmonic oscillator inter-level separation
fiwy and the energy difference Ag,, between antisymmetric
and symmetric double-well wavefunctions: if hwy > A,
the inter-dot tunneling is negligible with respect to the
kinetic energy of the intra-dot motion, and the dots are
almost quantum mechanically decoupled. In the opposite
limit, the system is coherent, and it makes no difference
between measuring one electron on one dot or on the
other one, since the system behaves as a unique dot, doubled
in size.

Let us now turn to discuss the case N > 2. We choose a
particular set of parameters, namely m" = 0.067m,, k, =
124, L =12 nm, V, = 250 meV, hw, = 5.78N 4,
corresponding to a set of experimental devices currently
under study [32,33]. The parameterization of fwy(N) is
meant to mimic the effect of the gate voltage on the electro-
static confinement potential V(p) [42]. We exactly diagona-
lize the Hamiltonian # of Eq. (1) for N = 6, using up to 32
single-particle orbitals. The convergence is checked
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Fig. 3. Ground state energy vs d for different number of electrons.
Some excited states are also depicted, together with their term in the
Molecular Spectroscopy notation. The bottom panel pictorially
shows the single-particle configurations that have the largest weight
in the three different many-body ground states for N = 4.

controlling a cutoff on the average energy of the Slater
determinants entering the computation. Our code uses the
ARPACK package [86] and isolates Hilbert space sectors
with § and S, fixed, contrary to usual Lanczos approaches.

Fig. 3 shows the calculated ground state energy vs d for
3 =< N = 6. As d is varied, one or two transitions between
ground states of different symmetries occur. Specifically,
while there is only one transition between two different
electronic terms for N = 3, two transitions take place for
N =4 and N = 5. The intermediate phase for N = 4 exists
only in a very narrow range of d (~0.01 nm) in the neigh-
borhood of d = 3.45 nm. For N = 6, again only two phases
exist. However, at the intersection point of the 'S and 3,
terms, the excited state * IL, is almost degenerate in energy.

These transitions can be understood analyzing the many-
body wavefunction of the different ground states [39,40]. In

the bottom panel of Fig. 3 we focus on the N = 4 case and
we schematically depict the major-weight Slater determi-
nant corresponding to each phase. The key point is that, as
d is decreased from the value of 4.5 nm, the ‘energy-gap’
Ags between ‘bonding’ and ‘anti-bonding’ orbitals (i.e.
symmetric and antisymmetric solutions of the double well
along z) changes, from the limit of decoupled dots (labeled
as (c) in figure) to the strong-coupling limit (labeled as (a)).
In the (c) case, the first-shell molecular orbitals 0o, and Oc,
are almost degenerate and well separated in energy with
respect to the second shell, hence they are filled with four
electrons giving the configuration Oc g200§ , 1.e. two isolated
dots with the first orbital shell completely filled. In the
opposite limit, at small values of d ((a) case), the bonding
mini-band made of 0o, Om.}, 0w, single-particle orbitals
is much lower in energy that the anti-bonding one. The
ambiguity of how to fill the lowest-energy orbitals, due to
the degeneracy of Om, and Om, levels, is solved consis-
tently with Hund’s first rule [76], i.e. the two open-shell
electrons occupy each orbital with parallel spin (the config-
uration being OtrgZOTrLT O, ), in such a way that exchange
interaction prohibits electrons from getting close, minimiz-
ing Coulomb repulsion. This configuration is characteristic
of a single dot, doubled in size [76]. In the intermediate
phase (b), the antibonding Oc, level is almost degenerate
with the bonding O, and O, levels: while the first two
electrons occupy the lowest-energy orbital Oc,, the remain-
ing two arrange again to maximize spin, consistently to a
‘generalized” Hund’s first rule. However, now there are
three levels almost degenerate, and we find that the ground
state configuration is OO’;OO’HO’TF: : according to Hund’s
second rule, also the total orbital angular momentum M is
maximized, to minimize the interaction energy (the higher
m, the smaller the Coulomb matrix element between single-
particle levels). A similar reasoning applies to the transitions
at N # 4.

Let us now focus on the N =5 case in Fig. 3. As d
increases, the ground state sequence is M, -3, —
2l'Iu, that is the 2l'[u term appears twice, corresponding to
a continuous energy curve that crosses twice the 43, term.
However, if we examine which Slater determinants mainly
contribute to 2l'[u, we find that the relevant configuration at
small d (= O(IéOTrI 2017{ ) differs from that at large
ddl = OoéOofOﬂJ ). Moreover, the slope of the curve in
the two regions is different, mainly due to the change in the
balance between bonding and anti-bonding levels occupied:
5:0 for I, 3:2 for II, which controls the dependence of the
overall kinetic energy on d (see the previous discussion).
This change in the ‘character’ of the 1, term (i.e. the
ratio between the weights of configurations I and II) is
found to be continuous with d. We plot also the first excited
state for the IT, symmetry (dashed line in the N = 5 panel):
clearly this curve anti-crosses the “IT, ground state. Analyz-
ing the slope and character of this excited state in the small-
and large-d regions, we find an inverted behavior with
respect to the ground state: now the relevant configuration
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Fig. 4. Spin-resolved pair correlation function P;;(p, z; P, Zo) for N = 4 for three different values of d (columns). The position of a spin-up
electron (py, z9) is fixed in one dot as in Fig. 2 (black bullet), and the contour plots of the top (bottom) row, with z =z, (z # zy) fixed,
correspond to the probability of measuring another spin-up electron on the same (other) dot in the xy plane (£, units).

at small d is II while that at large d is I. The overall behavior
can be understood as a consequence of the Wigner-von
Neumann theorem, i.e. that intersection of terms of identical
symmetry is forbidden [87]. Therefore, the two 2l_[u terms
anti-cross, while “II, and *S, terms can freely cross and
bring about ground state transitions, belonging to different
irreducible representations of the symmetry group of 5. An
analogous anti-crossing between ground and excited state
for the IEg symmetry is depicted in the N = 4 panel (solid
and dashed line, respectively).

Results of Fig. 3 should be compared with those obtained
by means of exact diagonalization of a generalized Hubbard
model [39,40], by density functional theory [42,43], and by
Hartree—Fock method [36]. In all these works, the window
in d-space at which the ground state 3Hg at N = 4 occurs is
much larger and a ghost additional intermediate phase at
N = 6 (corresponding to the excited state *IT ¢ in our calcu-
lation) appears. Therefore our results, that agree well with
data obtained up to N = 5 by exact diagonalization in Refs.
[37,38], clearly demonstrate the importance of correlation
beyond mean-field approaches. The interacting electronic
system is so correlated in regimes of realistic parameters
of the devices that it is very difficult to obtain quantitatively
reliable results with any approach but configuration interac-
tion. This point was already stressed, for single quantum
dots, in Refs. [88,89].

To further characterize different ground states vs d, in Fig.
4 we plot the spin-resolved pair correlation function
P11(P, z; Pos 29) for N = 4 for values of d corresponding to
the three phases previously discussed. The position of a
spin-up electron (py,zg) is fixed in one dot as in Fig. 2,
and the contour plots of the top (bottom) row, with z =
zo (z # zp) fixed, correspond to the probability of measuring
another spin-up electron on the same (other) dot in the xy

plane. The right column refers to the lEg term at d =
3.9 nm : there is only one ‘free’ spin-up electron, and we
can see that the probability of measuring it on the same dot
as the fixed electron is negligible, while the probability
distribution on the other dot depends only slightly on the
position of the first fixed electron. Therefore, the two dots
are quantum mechanically decoupled, each one filled with
two electrons in the lowest shell. The motion of electrons in
the two dots is almost uncorrelated in the xy plane. In the
opposite limit of small d (left column, d = 3.1 nm, three
spin-up electrons), the coupling is so strong that it makes
no difference either measuring the electron on one dot or on
the other, i.e. the contour plots are identical, and the system
forms a coherent, strongly bound molecule. The fixed elec-
tron is ‘dressed’ by its exchange and correlation hole, i.e. it
repels other electrons that are at small distances. The middle
column (d = 3.5 nm, three spin-up electrons) shows that in
the intermediate phase 3Hg the dots are coupled with a weak
degree of coherence, namely the probabilities of measuring
the electron on the two dots are sensitively different. Planar
correlation in the same dot is important, while it is negligi-
ble for motion on different dots. The above classification of
phases is also suitable to N # 4.

In this section, we have shown results for the electron energy
spectrum up to N = 6. It is straightforward now to compute
the SETS linear spectrum, and comparison with very recent
experimental data [64] shows remarkable agreement in many
respects. Results for B > 0 will be presented elsewhere [90].

5. Few electron—hole pairs

We next consider systems of interacting carriers
composed of an equal number of electrons and holes. Let
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Fig. 5. Plot of the functions p(z.) (continuous line) and p(z;,) (dashed
line), computed for the excitonic ground states at d = 1 nm (a) and
d = 3 nm (b). The definition of p(z) and the positions of the fixed
particles (either electron or hole) are as in Fig. 1. The columns in the
insets represent the square moduli of the coefficients associated with
the states |1) = |og T,O’g 1) (grey column) and [2) = oS 1,0l 1)
(white column): the excitonic ground states are given, to a good
degree of approximation, by the superposition of these two states.
At d=1nmmle;? =0871 and |c,/* =0.066, while at d =
3nm |¢,|* = 0.577 and |c,|* = 0.344; minor contributions arise
from occupations of higher-energetic single-particle states.

us start by considering a single electron—hole pair (exciton)
and the way in which its ground state depends on the width
of the barrier. As the inter-dot distance d increases, the
splitting between the energies of the bonding (o,) and
anti-bonding (o,) states decreases both for electrons and
for holes. The energetic cost associated to the promotion
of the two particles from the bonding to the anti-bonding
states becomes smaller and comparable to the gain in
Coulomb energy arising from the correlation of their spatial
distributions along z. In Fig. 5 we plot the functions p(z) of
electrons and holes, associated to given positions of the
other carrier, at inter-dot distances of d = 1 nm (a) and d =
3 nm (b); the two insets represent the contributions to the
electron—hole ground states of [1) = |og 1, Ug 1)and [2) =
log 1, 1) The decreasing tunneling goes with an increas-
ing correlation (electron more localized around the hole and

vice versa) and an increasing contribution from the [2) state.
The slight difference between the plots associated to elec-
trons and holes at each inter-dot distance are due to the
differences in the barrier heights (400 meV for electrons
and 215 meV for holes) and in the effective masses (m, =
0.067mq and m;, = 0.38my) of the two carriers: as a conse-
quence electrons tunnel more than holes and tend to be less
localized within one QD. It is worth noticing that at
d=3nm, the electronic tunneling still induces a
pronounced splitting between the two delocalized bonding
and anti-bonding single-particle states (6, =
35.11 meV and €, = 37.52 meV). In spite of this, due to
Coulomb correlation and to the reduced tunneling of
holes, the energetic value and the spatial distribution of
the excitonic ground state closely resembles that of an exci-
ton in a single QD; besides, the splitting between the ground
and the first excited states is negligible.® In other words the
‘excitonic tunneling’ is suppressed at smaller inter-dot
distances than the electronic one.

If the double dot is occupied by two electrons and two
holes, both attractive and repulsive interactions are present.
Intuitively, one would expect carriers with identical charge
to avoid each other and carriers of opposite charge to look
for each other: the interplay between such trends is directed
by the values of d and by those of S, and Sj. In Fig. 6, we
compare such correlations for two different values of the
electron and hole spin quantum numbers and for d =
1 nm. The singlet—singlet lowest state (S, = 0, S, = 0) is
characterized by a small correlation between the electrons,
(a), and by a more pronounced one between holes, (c).
Analyzing the eigenfunction associated to this state, one
observes that approximately only the electron single-parti-
cle state crg is (twice) occupied, while for holes strong
contributions arise from both bonding and anti-bonding
states. As already mentioned, this difference between the
behaviors of the two carriers depends on the fact that a
gain in Coulomb energy has a greater kinetic cost for elec-
trons than for holes. Besides, the spatial distribution of
holes, (e), is not affected by the position of the electrons.’
Let us now compare these correlation functions with the
corresponding ones associated to the triplet—singlet config-
uration (S, = 1, S, = 0). Again the correlation among elec-
trons and holes is negligible, (f): the two electrons and the
two holes subsystems can thus be understood to a good
extent independently from each other. As in the case of
the prototypical state |3), that the state of the two electrons
here resembles, the probability of finding two electrons in

® The main contributions to the excitonic first excited state come
from the states [3) = |og ol 1) and |4) = |o¢ T,Ug 1). Atd=
1 nm |cs* = 0.852 and |c,|* = 0.0836, while at d = 3 nm |c;* =
0.348, and \c4|2 = 0.348; in the latter case the correlation function
looks very much like that of the ground state.

7 Formally this means that the four-particle wavefunction can be
written to a good degree of approximation in a factorized form:
U(rer s Teas Tl i) = be(rel s 7e2) bu (it Tia)-
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Fig. 6. The two spin configurations (S, =0, S, = 0) and (S, =
1, S, = 0) are considered at d = 1 nm. The plots represent the
spatial distribution of a carrier of spin orientation as specified by
the subscript of the z-coordinate, given the position of another
carrier is fixed (whose type and spin orientation are drawn close
to the corresponding black circle). The position of the fixed particles
is the one adopted in Fig. 1.

the same QD is negligible, (b). Such spatial separation of the
electrons induces a more pronounced separation for the
holes too, as shown by the flattening of the smallest peak
in the left well (see Fig. 6b,d). The differences between the
two spin configurations are even more dramatic at bigger
inter-dot distances. In Fig. 7, we show the same correlation
functions at d = 3 nm. The triplet—singlet configuration
(Fig. 6b,d,f) shows the same features already observed at
d = 1 nm; here the two electrons (holes) are perfectly loca-
lized in different QDs, due to the suppressed tunneling. The
singlet—singlet configuration (Fig. 6a,c,e) instead has under-
gone a transition to a phase in which all carriers are loca-
lized in either QD (due to symmetry). If the position of one
of the four particles is fixed in one QD, all the others are
localized in the same one. This somehow surprising effect
can be explained in the following way: in a mean field
picture, due to the substantial similarity of the electron

5=0,8=0

(b)

p(z,) [a.u]

| et
L1 @ 1

@

p(z,) [a u]

h|
e

®

p(2,) [a.u]

1 | I
-1 -10 -5 0 5 10 -15

z [nm] z [nm]

Fig. 7. Same functions as in Fig. 6, but for an inter-dot distance of
3 nm.

and hole wavefunctions, the localization of the two excitons
in two different QDs or in the same one makes no difference
with respect to the Coulomb energy because there is cancel-
lation of terms of opposite sign. If correlation comes into
play, however, the localization of all particles in the same
QD gives rise to the so-called ‘biexcitonic binding energy’
AE (which is defined as the difference between twice the
energy of the excitonic ground state and that of the biexci-
tonic one). Specifically, the binding energy AE is due to the
correlations among the x and y directions: as in the case of
the two electrons in Fig. 2, such correlations become
strongly effective and lower the Coulomb energy when
particles are localized in the same QD.

The comparison between the correlation functions corre-
sponding to equal spin configurations at different inter-dot
distances shows a trend similar to that of the two electrons
alone. The population of the anti-bonding states increases
with decreasing bonding—antibonding splitting, thus allow-
ing a more pronounced spatial correlation between identical
carriers. Such dependence is particularly clear for the singlet
states, while for the triplet ones a high degree of correlation
is already guaranteed by the permutational symmetry of the
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Fig. 8. Plots (a), (b) and (c) represent the d-dependence of the average values of the different contributions to the Coulomb energy for the
eigenstates of lowest total energy associated to each of the four spin configurations (S, S,). The curves associated to the (1,0) and (1,1) spin
arrangements are identical in (a), and, together with (0,1), in (c). In (d) we plot the total energies.

few-particle wavefunction (i.e. by the fermionic nature of
electrons and holes).

The described behaviors are reflected in the values of the
different contributions to the mean Coulomb energies of
each spin configuration (Fig. 8). Let us start by considering
the three spin arrangements (S.,Sp) = (1,1),(0,1),(1,0).
The contributions to the Coulomb energy associated to the
electron—electron interaction (a) all monotonically decrease
with increasing d: the two electrons, each in a different QD,
get more and more far apart. If S, = 1 the spatial separation
of the two electrons is a direct consequence of the permuta-
tional symmetry of the wavefunction; if S, = 0 the same
effect arises from a proper linear combination of different
Slater determinants and from the corresponding occupation
of the electronic o orbitals (which in turn depends on the
tunneling: from which the different slopes of the S, = 0 and
Se = 1 curves). Analogous behaviors are seen to occur with
respect to the hole—hole interaction (c). The main difference
as compared to the previous case is the higher degree of
correlation among such carriers in the S, = 0 case, already
at small inter-dot distances. The trends of the electron—hole
Coulomb (b) interactions are hardly distinguishable one
from the other. The monotonic decrease (in modulus) of
(Vg reflects that of the interaction energy among carriers
localized in different QDs when they get far apart. The plots
associated to the singlet—singlet configuration (continuous
lines), however, show a transition towards a phase in which
all carriers are localized in a same QD, already put in
evidence in Fig. 7. The absolute values of all Coulomb
terms correspondingly go through an abrupt increase for
values of d in the range between 2 and 2.5 nm. Let us finally
consider the total energies (d). The lowest singlet—singlet

state turns out to be the system’s ground state at any inter-
dot distance. For d =2nm S, =0 and S, = 1 configura-
tions are degenerate with respect to the value of Sy; the
difference between the total energies follows that between
the two-electrons triplet and singlet states. As d increases,
the energies of all spin configurations but S, =S, =0
asymptotically tend to a value which is twice the energy
of the excitonic ground state in a single QD. The energy
of the singlet—singlet state instead tends to that of the biex-
citonic ground state in a single QD: the difference between
these two asymptotic values is the aforementioned biex-
citonic binding energy AE.

6. Summary

We have presented a unified theoretical description of the
correlated states of a few electrons (holes) or few excitons
confined in coupled quantum dots. In these systems, interdot
coupling controls the competition between kinetic energy
and Coulomb interactions, and can reach regimes far out
of those accessible in natural molecules. The resulting
ground state is therefore very different for different values
of the coupling: We have shown that a system of few elec-
trons is characterized by different spin configurations
depending on the inter-dot coupling, and we have exten-
sively discussed the marked variations arising in the elec-
tron—electron correlation functions. In the case of two
electrons and two holes we have identified the ground
state corresponding to both pairs localized in one of the
dots (weak coupling) or distributed in both dots (strong
coupling). Tuning such phases by external fields is possible,
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and is found to induce novel quantum effects that will be
described elesewhere [90].

Manifestations of transitions between such phases in
addition or optical spectra are expected to lead to a direct
experimental verification of many-body-theory predictions,
and to the experimental control of the few-particle states in
nanoscale devices.
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