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Abstract

In rare-earth manganites the itinerant e,-electrons interact via exchange coupling with localized t,,-electrons which constitute
the spin background. This fact is taken into account in the double exchange model DEM. The limit realistic to manganites is the
strong coupling limit where the Hund’s rule coupling constant between e,- and #,,-electrons is large compared to the e,-hopping
integral. The spectral density approach, a reliable scheme in the strong coupling limit, has been adopted to obtain the density of
states DOS for the e -band. In this limit, the e,-band splits into two bands with different weights for spin-up and spin-down
states. In the ferromagnetic state, the effective band width of the split band depends on the spin state of the e,-electron. Within
the framework of the model and the approximation, it is observed that the temperature drives the half-metal to metal transition.
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1. Introduction

Rare-earth manganites have shot into prominence due to
the discovery of the phenomenon of colossal magneto-
resistance CMR [1] and its potential technological applica-
tions. In addition to CMR, these materials, both doped and
undoped, display a fascinating variety of magnetic, charge
and orbital ordered phases and also unusual transport
properties [2,3]. The chemical formula of doped rare-earth
manganites is, Re;,D,MnO; where Re is the rare-earth
Re =La, Pr or Nd, and D is the divalent ion D = Ca, Sr or
Ba. In the undoped situation, the Mn is in the Mn®" state and
has four electrons in the d-shell. When doped, there are 1-x
Mn ions in Mn®* state with four d-electrons and x ions in the
Mn** state with three d-electrons. The unusual properties of
these systems are ascribed to the electrons in the d-shell of
the Mn ion. It is well known that strong Hund’s rule
coupling is operative for the d-states which are five-fold
degenerate. Due to crystal field splitting, the states are
split into a lower-lying localized three-fold degenerate 7,,-
level and a higher lying extended doubly degenerate e,-
state. In undoped systems, the t,,-state is occupied by
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three electrons with their spins aligned parallel due to the
strong Hund’s rule coupling and this provides the spin back-
ground with § = 3/2 in which the e,-band electrons move.
The electrons in the band states, which are 1 — x per Mn
where x is the concentration of the divalent dopant, are also
strongly Hund’s rule coupled to the localized spins with a
coupling constant j. Since in the manganites, all the
interesting phenomena track with either the dopant concen-
tration or temperature, it is conceivable that the band
occupation and temperature have a profound influence on
the electronic structure of the e,-band. It is the purpose of
the present work to study this particular aspect.

The magnetic ordering in undoped systems, a representa-
tive example of which is LaMnQO;, was studied long ago [4]
by using what is known as the double exchange model
DEM. It seems reasonable that the same model would be a
good starting point for studying the resistivity anomalies
which are the focus of attention in the CMR materials.
The same model, in infinite dimension D = 00 and in the
limit of large j was used [5,6] to study the transport
properties. It is, however, becoming clear that, in order to
understand CMR, just the DEM is not sufficient but has to be
supplemented with other interactions such as the electron-
phonon interaction, [7] Hubbard correlation etc. Still, the
minimal DEM is not yet completely understood even though
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there are some exactly known limiting cases. The DEM is
nothing but the ferromagnetic Kondo lattice model in the
strong coupling limit. This model has two important non-
trivial limiting cases, namely, the zero band width limit [8]
and the ferromagnetically saturated semiconductors [9,10],
where it is exactly solvable. For finite band width and vary-
ing band occupation and for finite temperature, it is still
interesting and necessary to develop reliable approximation
schemes. Since the motivation is to study the manganites
where the Hund’s rule coupling is the dominant interaction,
the DEM has to be treated in the strong coupling limit. In the
case of the Hubbard model, a reliable approximation scheme
known as the spectral density approach SDA [11,12] was
developed for the strong coupling limit. We propose to
employ the same approach to solve the DEM. In this
approach a physically motivated ansatz is made for the
one-electron spectral density which involves some
unknown parameters. These parameters are evaluated self-
consistently by using a moment method. Once the one-
electron spectral density is known, it is but a short step to
determine the quasi-particle density of states QDOS. The so
obtained QDOS when studied for different temperatures and
band occupations, yield interesting features of the model. In
the present work, as in most theoretical works on CMR (e.g.,
[13]), the local spin of the f-electrons is treated as a
classical object. The justification for this is that the most
important energy scale is JS and we are working in the
limit of large JS. However, recently, there have been some
efforts to treat the f,,-spin quantum mechanically [14].
Further, the magnetic ordering of the localized spins is
assumed to originate outside the model and is introduced
into the calculation by hand by using a Langevin type of
function for the magnetization. Obtaining magnetization as
a self-consistent result of the calculation will be attempted
in future. Thus, the temperature dependence of the QDOS of
the e,-band stems from the temperature dependence of
the magnetization. The concentration of the dopant fixes
the e,-band occupation, which in turn fixes the chemical
potential.

2. Model and approximation

The Hamiltonian of the double exchange model is given
by [4]

— i —
H= ztijci(rcjzr
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where c,-;(c,«(,) is the creation (annihilation) operator for an
e ~electron with spin o, S; is the total spin of the localized
ty,-electrons, j is the Hund’s rule coupling constant for the
intra-site interaction between the e,- and 1,,-electrons, #; is
the hopping integral for the e -electrons from the lattice site

i to j and is related to Bloch energy €, by
1 —ik.(R;—R
=g e @
k

The Greens functions and the spectral function to be
calculated respectively are
1 (a3
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In the atomic limit and for classical spin, this Greens func-

tion has two poles at £J5/2. Therefore it is realistic to make
a two pole ansatz in the finite band width case also:
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Here the spectral weights o;,(K) and the poles E;,(k) are
unknown and are to be determined. For this, we use two
definitions of spectral moments:
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The ansatz for the spectral density involves only four
unknowns. Therefore it is sufficient to calculate only four
moments. Calculating the commutators in Eq. 6 and using
Eq. 4 in Eq. 5 we get the set of equations to determine the
spectral weights ;,(K) and the poles E;,(k) as follows:
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Where M = (§°). Solving the above set of equations we
obtain:
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Here z;) = =1. This way of determining the spectral
function and therefore the Green’s function is known as
the spectral density approach SDA [8]. In this method the



G. Gangadhar Reddy et al. / Solid State Communications 120 (2001) 325-329 327

only approximation is making an ansatz for Sy (E). The rest
of the calculation is exact. Therefore, the method is non-
perturbative and is known to be more reliable in the strong
coupling limit for the Hubbard model and Anderson model.
In manganites, it is the strong coupling limit since j is larger
than the bandwidth. Having determined Sy,(E), the self-
energy is obtained from the equation for the the Green’s
function Gy, (E):

Gu(E) = a;,(K) k) 1
KT E-Ek)  E-Eyk)  E- e~ 3,(E)
(10)
Then we get the self-energy 3,(E) as
J($*)
___IM = oy
S(E)= e M (1)
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In the present calculation, M = (S°) does not come as a
consequence of the interaction included. Therefore it has
been treated as a parameter. From the knowledge of
Gy, (E) it is straightforward to obtain the spin dependent
density of states p,(E):

1 ~ Nt
polE) = = — ;SG.M(E +i0") (12)

The spin dependent average occupation number is

given by

00
Ny =
—o0

where f (E — p) is the Fermi function.

dEf (E — wpy(E) 13)

3. Results and discussion

Before presenting the numerical results, it is instructive to
examine the limiting case of large J. As is to be expected,
the e,-band splits into two sub-bands for each spin direction
centred at £JS/2. In the limit of large J, for the two sub-
bands we get

- JS € M
Btk = (~1) 2 + 7“[1 - (—lmﬂ (14)
(k) = 1[1—< wng]
iy & _y, M
x[1+( 1)/JS(1+( IYZUS)] (15)

For o =1, ek)¥ = ek)1(1 = %) or z“ff =1 (1= Y
which means that the width of the lower sub band increases
with magnetization (either with the decrease of temperature
or increase of magnetic field) and the width of the upper sub-
band decreases. Similarly as the magnetization increases,
the spectral weight is transferred from the upper sub-band
to lower sub-band. For down spin, on the other hand, exactly
the opposite takes place. This result is similar to the one that
follows from the D = co model [5,6].

The magnetization M is to be obtained from a selfconsis-
tent equation which can be derived from the free energy in
the SDA. It is known from the D = oo limit of DEM that the
thermal behaviour of M is mean field like with an effective
exchange ~ W?2/J (W is the band width of the free Bloch
band) between the neighbouring spins [15]. In the present
work, we study the QDOS with M as a parameter and
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Fig. 1. Quasi particle density of states for various temperatures and band filling n = (n; + ny) = 0.8. In each picture, the upper half is p; and the
lower half is p;. Thin dotted vertical lines show the position of chemical potential u.
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assume that its 7-dependence is governed by classical
Langevin function with a finite 7.

The numerical results are obtained for different band
occupations with J/W =4, § = 3/2. The free Bloch band
is taken to be semielliptical and centered at zero. The
temperature dependence of the results is given in terms of
the reduced temperature 7/7.,.

Numerical results have been obtained for different
temperatures 7" and for different band occupations. In
Fig. 1, the QDOS of the e,-band is plotted for different
values of 7 from T=0 (M/S=1)to T=T, (M/S =0).
The chemical potential w is fixed by the value of n. In
Fig. 1, the position of  is indicated for n = 0.8. As is to
be expected, QDOS is strongly 7-dependent. At T = 0, for
the lower sub-band, p| has zero width and p; has twice the
width of the free Bloch-band. For n = 0.8,  lies in the
lower sub-band. Therefore p(u) has contribution only
from spin-1 electrons. This is the situation described in
literature as half metal [16—18]. In manganites, the
existence of half-metal phase has been established by
spin-resolved photoemission studies [19]. As T is increased,
p, acquires a finite width in the lower sub-band, but p(y) still
has contribution only from spin- 1 electrons. After a certain
T, the width of p; becomes sufficiently large so that p(u) is
contributed by spin- | electrons also. Thus one sees a transi-
tion from half-metal to metal at a particular temperature.
This temperature should depend on n. Instead of changing
the temperature, one can also change the external magnetic
field and thereby manipulate the value of M. This also brings
about analogous changes in QDOS. Therefore one can also
achieve half-metal to metal transition by tuning the
magnetic field. Since the change in QDOS and the shift in

Magnetization
Magnetization

/T, T,

Fig. 2. Local magnetization M/S (solid lines) and band magnetiza-
tion m = (n; — n))/(n; + n}) (dotted lines) as a function of tempera-
ture for various bandfilling n = (n; + n)).

1= NS — T/T=0.0
\ R S T/T =038
r \\ \\ —— T/T=0.50
R T =
=075 | Y \ - TIT=0.75
= SN P -- T/T=0.85
- A N -— T/T =095
S [ N ¢
z Lo " - T/IT =0.99
=] 4 \ RN . ¢
& o051 LN S :
g \ \ R
m \ AN
0251 S’
0 1 | L | 1 | -;..‘ o
0 0.5 1 1.5 2
Band filling n

Fig. 3. Band magnetization m = (n; — ny)/(n; + n) as a function of
band filling n = (n; + ny) for different temperatures.

the position of w are continuous, the transition half-metal to
metal is continuous.

In Fig. 2, the band magnetization m = (n; — n)/(n; + ny)
and M/S are plotted as functions of 7. As already seen, M has
a strong influence on QDOS. On the other hand, m depends
on n. Therefore it is quite possible that they have different
T-dependence. However, in the present approximation, m
follows M as a function of 7. The only thing is, since m is
normalized, its magnitude could be different for different
values of n.

In Fig. 3 m is plotted as a function of n for different
temperatures. The dependence is clearly nonmonotonous.
In order to understand this behaviour, one has to plot
QDOS for a particular T and locate p. for different values
of n. This is done in Fig. 4 for T/T, = 0.75. For
0<n<05, wu lies in the lower sub-band and only
spin-1 electrons contribute to m and so m=1. As n
increases, p shifts higher and the spin-| electrons also
contribute and so m decreases up to a certain value of n.
Beyond that particular n, u lies above the spin-down band
and with further increase of n the magnetization increases as
the extra electrons populate the spin-up band. As a result m
again increases with n. For n > 1, w moves into the upper
sub-band and again spin- | electrons contribute resulting in
the decrease of m. Finally for n = 2, m vanishes.

4. Conclusion

The DEM has been approximately solved using the SDA
which is expected to be reliable in the strong coupling limit.
A calculation has been performed that it is applicable to
manganites. The QDOS of the band states is studied as a
function of temperature and for different band-filling. In the
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Fig. 4. Quasi particle density of states for various band fillings n = n; + nj with T/T, = 0.75. In each picture, the upper half is p; and the lower
half is p;. Thin dotted vertical lines show the position of chemical potential .

limit of large j, the band splits into two bands with spin-
dependent spectral weights. The spontaneous magnetization
favours higher spectral weight for the spin-up electrons as
compared to that for the spin-down electrons for the lower
band. The situation is reversed for the upper band.
The model in this approximation shows the possibility of
half-metal to metal transition as a function of dopant
concentration. The self-energy obtained here is real, which
is an artifact of the ansatz made for the spectral density.
Therefore, the effect of finite life time of quasiparticles is
beyond the scope of the present approximation. The detailed
results of the self-consistent solution of magnetization will
be reported elsewhere.
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