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Abstract

We describe the spin-dynamics of exciton–polaritons in semiconductor microcavities in the strong coupling regime. Using

the Liouville equation for the spin-density matrix in the Born–Markov approximation we obtain kinetic equations taking into

account polariton–acoustic phonon and polariton–polariton scattering. We describe both the ‘polariton laser’ regime (non-

resonant excitation) and ‘optical parametric oscillator’ regime (resonant excitation at the magic angle). We obtain a good

agreement with experimental data on the dynamics of polarization of light emitted by microcavities.
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1. Introduction

A remarkable peculiarity of exciton–polaritons in micro-

cavities consists in a possibility of final state stimulation of

their scattering that makes both their energy and spin

relaxation subject to non-trivial bosonic effects. Recent

experiments have shown picosecond-scale oscillations in

circular polarization degree of emission from microcavities

under resonant [1] or non-resonant polarized pumping [2].

Recently we have published a theoretical work [3] presenting

the spin-density matrix technique which allowed to describe

polariton spin relaxation under non-resonant excitation taking

into account polariton coupling with acoustic phonons. We

have shown that experimentally observed oscillations of the

polarization degree [2] are linked to the beats between linearly

polarized TE and TM polariton modes. Final state stimulation
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of polariton scattering has an important effect on the spin

dynamics as well allowing for conservation and even

amplification of the polarization degree.

In the present work we present a new, more general

formalism accounting for polariton–polariton scattering as

well and allowing to describe also the ‘optical parametric

oscillator’ regime [1] where resonant polariton–polariton

scattering dominates over other relaxation mechanisms.
2. Formalism

Our starting point is the Liouville equation for the

complete density matrix of the system which in the

interaction representation reads

iZ
dr

dt
Z ½ĤðtÞ; r� (1)

where the time-dependent Hamiltonian of the system

describing polariton–phonon and polariton–polariton inter-

action is as follows
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In (2) ak[ða
C
k[Þ and akYða

C
kYÞ are the annihilation (creation)

operators for the polaritons with wave-vector k having the spin

projection G1 on the structure growth axis, bq and bq
C are

operators for phonons with wave-vector q, Uk and uq are the

polariton and phonon dispersions, respectively. We do not

consider here the dark exciton states with spin projections equal

to G2. The first term in (2) proportional to Vkk0 corresponds to

the scattering of polaritons with acoustic phonons, the second

and third ones describe the polariton–polariton scattering

which is characterized by two matrix elements: V ð1Þ
k;k0;k00;k000 and

V ð2Þ
k;k0;k00;k000 for the scattering of the polaritons with the same and

opposite spin projections, respectively. In the case of dominant

exchange [4], V ð1Þ
k;k0;k00;k000[V ð2Þ

k;k0;k00;k000 , however, if scattering

goes also via bipolariton resonance one can have these matrix

elements being of the same order of magnitude. This may be the

case near the ‘magic’ angle where polariton and bipolariton

dispersion curves cross each other [5]. Note, that ifV ð1Þ
k;k0;k00;k000 s

2V ð2Þ
k;k0;k00;k000 the polariton–polariton scattering is anisotropic, i.e.

its intensity depends on the absolute orientation of the spins.

Integrating the Liouville equation and substituting the

obtained expression for the density matrix into the right

hand side of it, one can rewrite (1) using Markov

approximation [8] in the following form:

_rðtÞZK
1

Z2

ðt
KN

½ĤðtÞ; ½ĤðtÞ; rðtÞ��dt (3)

The complete density matrix is treated in the Born

approximation and is factorized into the product of the

phonon density matrix and polariton density matrices

corresponding to the different states in the reciprocal space

rZ rph5
Y
k

rk (4)

where rk is the spin-density matrix for the polaritons with the

wave-vector k. The diagonal elements of this density matrix

give the populations of the spin-up and spin-down states:

Nk;[ZTrðaCk[ak[rkÞ;Nk;YZTrðaCk;Yak;YrkÞ, while off-diagonal

components are connected with the in-plane projection of the

polariton pseudospin [3] St;kZSx;kexCSy;key, in the follow-

ing way Sx;kK iSy;kZTrðaCk[akYrkÞ. Here ex and ey are the unit

vectors in the cavity plane.

These two approximations allow to perform of the time-

integration in (3), which yields the energy conservation rule
for the scattering acts and allows to ‘trace out’ the phonon part

of the density matrix. Finally, a Lindblad-type equation [9] for

the polariton density matrix can be obtained, which allows the

derivation of the kinetic equations for the polariton occupation

numbers and in-plane projections of their pseudospins.

Simple, but rather tiresome algebraic calculations give

dNk[
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Z
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(5)
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(6)

where the transition rates for polariton–phonon scattering are
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as follows

Wk/k0 ¼
2

Zg
ðnph;kKk0 þ 1ÞjVkk0 j2; Wk0/k

¼
2p

Zg
nph;kKk0 jVkk0 j2

where g is a radiative broadening of the states k and k0, nph,q is

the number of phonons in the state q, and polariton–polariton

transition rates are

W ðiÞ
k;k0 ;k00 ;k000 ¼

2

Zg
jV ðiÞ

k;k0 ;k00 ;k000 j
2;

W ð12Þ
k;k0 ;k00 ;k000 ¼

2

Zg
ReðV ð1Þ

k;k0 ;k00 ;k000V
�ð2Þ
k;k0 ;k00 ;k000 Þ

The equation for spin-down occupation numbers can be

obtained from (5) by changing the spin indices.

If only polariton–acoustic phonon interaction is present,

Eqs. (5) and (6) coincide with those obtained using the

method of the linear transformation of spin density matrix

[3]. The system (5) and (6) describes the population and spin

dynamics of exciton–polaritons at any ratio of singlet and

triplet scattering elements and generalizes previous works

[3,6].
Fig. 1. Calculated intensity of signal in different polarizations versus

angle between pump pseudopsin and x-axis. Pump polarization

changes from sK to sC passing through elliptical and horizontal

linear polarization (parallel to x-axis at zero angle). The initial pump

population is 105. The probe is linearly polarized along x-axis, its

initial population is 200. (a) Intensities of sC (solid) and sK

(dashed) circular components. (b) Intensities of horizontal (solid)

and vertical (dashed) linear polarizations. (c) Intensities of diagonal

linear polarization components.
3. Results and discussion

The system of the kinetic Eqs. (5) and (6) is rather

complicated and its numerical treatment for the general case

of non-resonant excitation represents an extremely difficult

computational task. Here we apply the general formalism

developed above to the resonant excitation case, when a

microcavity is pumped at the so-called magic angle [1]. In

this configuration the resonant scattering the polariton pairs

excited by the pump pulse toward the signal and the idler

state is the dominant relaxation process. The intensity and

polarization of the emission could be governed by the

additional weak probe pulse, sent to the kZ0 (signal) state.

The polarization dynamics of such an optical parametric

oscillator (OPO) was studied experimentally in the case of

circularly polarized probe by Lagoudakis et al. [1] and

theoretically in [6]. Here we consider the case of linearly

polarized probe.

In the regime of parametric amplification, only three

states (pump, signal and idler) govern the polariton

relaxation dynamics. Therefore, the system of kinetic Eqs.

(5) and (6) can be reduced to 9 equations describing the

dynamics of occupation numbers and in-plane components

of the pseudospins of these three states. The intensities of

the circularly polarized components of the signal emission

are proportional to the number of polaritons in the spin-up

and spin-down states, IsC;KfN[;Y, the intensities of the

horizontally and vertically polarized components are I4;hf
1=2ðN[CNYÞGSx and the intensities of the diagonal

components are I h; hf1=2ðN[þ NYÞGSy. The polariton–
acoustic phonon interactions can be completely excluded

from our consideration, since they are dominated by

polariton–polariton scattering in the OPO regime. We

have taken into account the effective magnetic field which

arises from the polariton–polariton interactions if N[sNY

[6,7].

The results of numerical simulation are shown at Fig. 1.

One can see that if the pump and probe are co-linearly

polarized the signal emission in the same polarization is

strongly enhanced as compared to the cases of elliptical and
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circular pump. In the case of elliptically polarized pump

pulse, the signal also becomes elliptical while the direction

of the main axis of the ellipse rotates as a function of the

circular polarization degree of the pump like in [1].

In conclusion, we have developed a general formalism

allowing to obtain the kinetic equations for the cavity

exciton–polaritons fully taking into account their polariz-

ation and anisotropy of polariton–polariton interactions.

This method allows to describe polariton dynamics in under

resonant or non-resonant excitation.
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