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Abstract

We derive a kinetic equation for relaxation of polaritons in a microcavity in the strong coupling regime. We show that, not

making the usual Born approximation between ground and excited states, second order coherence builds up in the ground state

once enough polaritons accumulate here. This comes from particles conservation, without polariton–polariton interactions.
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1. Introduction

After the Nobel prize winning observation of Bose–

Einstein condensation (BEC) in cold atoms, the interest for

this phase transition has spread to the condensed matter

community where it is actively looked for in as many shapes

and variations as could possibly be conceived. BEC in

excitonic systems appear particularly promising and we take

concern in one such candidate—namely microcavity

polaritons [1]—with such appealing properties as, among

others, a very small mass (which varies inversely to critical

temperature), well defined and accessible minimum of

energy (as opposed to bulk polaritons) or delocalisation

(making them robust to dephasing by impurities or

disorder). Not least, experimental evidence supports polar-

itons as efficient bosons [2]. Polaritons, however, have very

short lifetime which brings the field in the out-of-

equilibrium regime. Whereas the growth of condensate

was previously considered from an equilibrium point of

view [3,4], lifetime becomes for such short-lived particles
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an unavoidable issue. At best, one can resort to a steady state

where lifetime is balanced by external pumping, a view we

shall take here.

The dynamical description of the formation of a

condensate in a bosonic system was first investigated with

Boltzmann equation (BE) [5], with negative results in the

sense that BE is unable to gather by itself a macroscopic

amount of particles in the ground state. It nevertheless

remains valid in absence of the condensate or once it has

been externally introduced (as a seed) [10]. Thus, BE breaks

in a so-called coherent stage [6] where the condensate

ignites. In a finite size or etched system where the ground

state is separated in energy from its closest excited states,

this difficulty can be relaxed by linking condensation not to

the stringent condition of a singularity in the distribution

function, but merely to a population number greater than

one in a single state. Motivation for this criterion comes

from bosonic stimulation then becoming dominant over the

spontaneous part.

In this paper, we derive a kinetic equation which extends

to open systems considerations developed for condensation

of stable bosons [3,4]. In the framework of this formalism,

we are able to report spontaneous (without seed) coherence

build-up in a finite size microcavity [7], as observed

experimentally [8].
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2. Derivation of kinetic equation

We aim to write a kinetic equation describing the

dynamics of polaritons which embeds both pumping and

finite lifetime together with relaxation along the dispersion

relation by diffusion with phonons. Since all these processes

are dissipative (they all feature external fields like photons

or phonons which are traced over), we seek a master

equation of the Lindblad type for the density matrix r of

polariton states in the reciprocal space:

_rZ ðLpol–ph CLt CLpumpÞr (1)

Here L are Liouville super-operators which describe

respectively scattering (through phonons), lifetime and

pumping. We do not consider polariton–polariton scattering

which would add a unitary (non-dissipative) contribution

Lpol–polZKi=Z½Hpol–pol; r� (see [9] for this term). In the

following we undertake the derivation of Lpol–ph from the

microscopic hamiltonian Hpol–ph for polariton–phonon

scattering. Similar procedure can be carried for Lt and

Lpump to yield:

Ltr ¼K
X

k

1

2tk
ða†

kakrþ ra†
kak K2akra

†
kÞ (2a)

Lpumpr ¼K
X

k

Pk

2
ðaka

†
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†
k K2a†

krakÞ (2b)

with tk the lifetime, Pk the pump intensity in the state with

momentum k and ak the Bose annihilation operator for a

polariton in this state. For instance, expression for lifetime

comes from the quasi-mode coupling of polaritons with the

photon field outside the cavity in the vacuum state (thereby

linking spontaneous emission with the perturbation from

vacuum fluctuations). We later neglect finite lifetime

elsewhere than in ground state, where it is typically several

orders of magnitude shorter because of dominant photon

fraction. In our simulations, pumping injects excitons

10 meV above the bottom of the bare exciton band which

we model by non-zero value of Pk for a collection of k-

states normally distributed about a high momentum mean

value. Expression (2b) describes an incoherent pumping

provided by a reservoir which pours particles in the system

but does not allow their coming back. Its effect is thus

merely to populate the system with incoherent polaritons,

which will relax towards the ground state where they might

join in a coherent phase before escaping the cavity by

spontaneous emission (the light thus emitted retaining this

coherence).

We pay special attention to Lpol–ph which contains the

key-ingredients of our results. In interaction picture,

polariton–phonon diffusion Hamiltonian reads:

HpolKph ¼
X

k;qs0

Vqe
i
ZðEpolðkþqÞKEpolðkÞKZuqÞtakþqa

†
kb

†
q þ h:c:

(3)
with Vq the interaction strength, Epol the lower polariton-

branch dispersion, Zuq the phonons dispersion and aq,

respectively, bq, the Bose annihilation operator for a

polariton, respectively, a phonon, in state q. We compute

Lpol–ph starting with Liouville–Von Neumann equation for

polariton–phonon diffusion, _9ZKi=Z½HpolKph; 9�, where 9 is

the density matrix for polaritons and phonons. Its useful

part, namely the polariton density matrix, is obtained by

tracing over phonons, rhTrph9. Density matrix for phonons

is granted as a reservoir in equilibrium with no phase

coherence nor correlations with r. To dispense from

this reservoir we write the equation for 9 to order

two in the commutator and trace over phonons,

_rðtÞZK1=Z2
Ð t
KNTrph½HpolKphðtÞ; ½Hpol–phðtÞ; 9��dt. We

define Ek;qðtÞhVqe
i
ZðEpolðkþqÞKEpolðkÞKZuqÞt and for conven-

ience we write HðtÞh
P

k;q Ek;qðtÞakCqa
†
kb

†
q so that

Hpol–phZHCH†. Note that operators are time inde-

pendent. Because the phonons density matrix is

diagonal, [Hpol–ph(t), [Hpol–ph(t), 9]] reduces to

½HðtÞ; ½H†ðtÞ; 9ðtÞ��Ch:c:, which halves the algebra. Also

the conjugate Hermitian follows straightforwardly, so we

are left only with explicit computation of two terms, of

which the first reads:

½HðtÞ;H†ðtÞ9�

¼
X

k;qs0

X

1;rs0

½Ek;qðtÞakþqa
†
kb

†
q;E

*
1;rðtÞa1a1þrbr9ðtÞ� (4)

which, taking the trace over phonons and calling

qqrhTrph 9b†
qbq

� �
), becomes:

Trph½HðtÞ;H†ðtÞ9ðtÞ�

¼
X

k;1;qs0

Ek;qðtÞE
*
1;qðtÞqqðakþqa

†
ka1a

†
1þqrðtÞ

Ka1a
†
1þqrðtÞakþqa

†
kÞ (5)

Solving numerically this equation is a considerable task,

though it has already been done recoursing to Monte-Carlo

simulations [3]. Instead, we here make further approxi-

mations to reduce its simulation to a level of complexity of

the same order as for Boltzmann equations: we take into

account correlations between ground state and excited states

only, neglecting all correlations between excited states. This

is motivated by the fast particle redistribution between

excited states and their rapid loss of phase correlations.

Physically this means that if one particle reaches the ground

state, its absence is felt to some extent in the collection of

excited states in a way which ensures particle number

conservation. On the opposite, redistribution of particles

between excited states will be seen to obey usual Boltzmann

equations which pertain to averages only. Formally, we thus

neglect terms like hak1
a†
k2
ak3

a†
k4
i if ki involve nondiagonal

elements in the excited state. For nonvanishing terms, we

further allow hak1
a†
k2
ak2

a†
k2
iZ hak1

a†
k2
ihak2

a†
k2
i if neither k1

nor k2 equal 0, for otherwise we retain the unfactored
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expression. Terms from (5) featuring the ground state are:

X

ks0

Ek;KkðtÞEk;KkðtÞ
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Recall this expression (6a) is one part of the term inside the

time integral which _rðtÞ evolution. Since

Ek;qðtÞEk;qðtÞ*Z jVqj
2eK

i
ZðEpolðkCqÞKEpolðkÞKZuqÞðtKtÞ, the time

integration would yield a delta function of energy (times

Ki/Z) if r in (6a) was t-independent. This delta would itself

provide selection rules for allowed scattering processes

through the sum over k. That r(t) time evolution is slow

enough as compared to this exponential to mandate this

(Markov) approximation can be checked through evaluation

of the phonon reservoir correlation time, which, when the

reservoir has a broad-band spectrum as in our case, is short

enough to allow the approximation of r(t) by r(t). In this

case, (6b) vanishes as a non-conserving energy term.

Gathering other terms similar to (5) eventually gives

(from now on we do not write r time dependence anymore,

which is t everywhere):

_r ¼K
1

2

X

ks0

W0/kða
†
0a0aka

†
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0a0aka
†
k

K2a0a
†
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where

W0/kh
2p

Z
jVkj

2qkdðEpolðkÞKEpolðoÞKZukÞ (8a)

Wk/0h
2p

Z
jVkj

2ð1 þ qkÞdðEpolðkÞKEpolðoÞKZukÞ (8b)

We call p({nk}) the diagonal of the polariton density

matrix, i.e. the dotting of r with jno; nk1
;.; nki ;.i the Fock

state with nki polaritons in state ki:

pðfnkgÞhh.; nki ;.; nki ; nojrjno; nk1
;.; nki ;.i (9)

This is the probability that the system be found in

configuration {nk} and thus the equation of motion for

p({nk}) is a master equation. It parallels closely Boltzmann

equation with which it shares the same transition rates (8), as

given by Fermi’s golden rule. It also features stimulated

scattering, like the Quantum (or semi-classical) Boltzmann

equation. For all these reasons, following Gardiner et al. [3],

we term this equation for p a Quantum Boltzmann Master

Equation (QBME). From (7) we get:
_pðfnkgÞ ¼K
X

k

ðW0/kn0ðnk þ 1Þ

þWk/0ðn0 þ 1ÞnkÞpðfnkgÞ

þ
X

k

ðW0/kðn0þ1Þþnkpðfn0 þ 1;.; nkK1;.gÞ

þ
X

k

ðWk/0n0ðnk þ 1Þþpðfn0K1;.; nkþ1;.gÞ

(10)

We include back (2) in (7) (note that we could have done

this at any moment) and, following our spirit, we do not

solve it for the entire joint probability p({nk}) but average

over all excited states to retain the statistical character for

the ground state only. Excited states will be described with a

Boltzmann equation, thus with thermal statistics. Calling

p0ðn0Þh
P

nk1
;nk2

;. pðfnkgÞ the ground state reduced prob-

ability (the sum is over all states but the ground state) and

hnkinopoðnoÞh
P

nk1 ;
nk2

;. nkpðfnkgÞ, we get the ground state

QBME equation:

_poðnoÞZ ðno C1ÞðW
noC1
out C1=toÞpoðno C1Þ

K ðnoðW
no
out C1=toÞC ðno C1ÞW

no
in ÞpoðnoÞ

CnoW
n0K1
in poðno K1Þ (11)

with rate transitions now function of the ground state

population number no:

W
no
in ðtÞh

X

k

Wk/0hnkðtÞino (12a)

W
no
outðtÞh

X

k

W0/kð1 þ hnkðtÞino Þ (12b)

while for excited states, in Born–Markov approximation, we

indeed recover Boltzmann equations:

h _nki ¼ hnki
X

qs0

Wk/qðhnqi þ 1ÞK ðhnki þ 1Þ

!
X

qs0

Wq/khnqi; ks0 (13)

Inclusion of Lt and Lpump for the above adds Khnki/tkCPk

to this expression. Observe that in this case, transition rates

are constants.

Cast in this form, Eq. (11) has a transparent physical

meaning in terms of a rate equation for the probability of a

given configuration, much like usual rate equations for

occupation numbers in the framework of Boltzmann

equations. The difference is that transitions from one

configuration to a neighbouring one occur at rates which

depend on the configuration itself, through the population of

the state. This is illustrated by the following schema

providing transition rates between ground state configur-

ations differing by one particle:



Fig. 1. Population and coherence buildup.
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Straight arrows refer to transition rates. Curved arrows

refer to their weighting factors: outgoing processes are

weighted by the initial population since those are rates per

particle, while ingoing processes are weighted by initial

population, as a result of bosonic stimulation, plus one for

spontaneous diffusion. This could almost discredit the

microscopic derivation since to write down the QBME

(11) one might start from arrows rather than from an

Hamiltonian. However, knowledge of (1) allows to get off-

diagonal elements of r, which are needed to compute, e.g.

the order parameter haoi. Although we shall not recourse to

such analysis in this paper, this nevertheless shows there is

some value beyond physical intuition carried by the schema.

hnkino is a function of no that we estimate through a first

order expansion about hnoi. This implies that fluctuations of

excited states are proportional (with opposite sign) to

fluctuations of ground state:

hnkino zhnkihno i C
vhnkino
vno

jhno iðno K hnoiÞ (14)

hnkihnoi is given by Boltzmann equation. Since the derivative

does not depend on no (it is evaluated at hnoi), we compute

it by evaluation of both sides at a known value, for

instance noZN with N the total particle number in the entire

system, ground and excited states together. This gives

vhnkino =vnojhno iZ hnki=ðhnoiKNÞ since hnkiNZ0 (no particles

are left in excited states when they are all in the ground

state). This is now only a matter of numerical simulations.
Fig. 2. Steady state population and coherence degree as a function of

pumping.
3. Results and conclusions

We compute numerically po(no) with (11) starting from

vacuum in ground state, po (no, tZ0)Zdno,o and computing

simultaneously and self-consistently Boltzmann Eq. (13) for

excited states. Here below are results for a model CdTe

microcavity of 10 mm lateral size with one quantum well

and a Rabi splitting of 7 meV at zero detuning. Highest

polariton density obtained in the simulation, about

1010 cmK2, remains below strong/weak-coupling transi-

tion density in CdTe. Phonon reservoir is at 6 K and

scattering is aided by a residual gas of electrons. From

the knowledge of po(no) one can obtain readily hnoiZP
no
nopðnoÞ and the second order coherence degree

g2ð0ÞZ
P

no
noðnoK1ÞpðnoÞ=hnoi

2. On Fig. 1 is plotted

as a function of time a normalised coherence degree
hh2Kg2(0) (solid line) which better compares to hn0i/N

(dashed line) than g2 which is the quantity measured by

experimentalist with Hanbury Brown–Twiss setup. h ranges

from 0 for a fully incoherent field to 1 for a coherent one.

Above threshold, we observe a spontaneous (no seed, the

ground state is initially empty) coherence buildup with same

time order as population buildup. On Fig. 2, steady states

values for coherence and (normalised) population are

plotted as a function of the pump, exhibiting a dynamical

threshold.

These results follow from particle number conservation:

polaritons relax in energy by diffusion towards lower energy

states, especially the ground state which, once it accommo-

dates more than one polariton, triggers stimulated scattering.

This is in sharp contrast with such bosons like photons or

phonons which are just annihilated (being non conserved).

This is the difference between a conventional laser and a

polariton laser which rests on Bose–Einstein condensation.

Although coherence buildup is possible thanks to any

particle-conserving relaxation mechanism efficiently gath-

ering them in a single state—as for instance the simplest

channel of diffusion by phonons—a proper description of

phase and order parameter requires polariton–polariton

interactions. This is the topic of future publication.
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