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dc Josephson effect in metallic single-walled carbon nanotubes
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Abstract

The dc Josephson effect is investigated in a single-walled metallic carbon nanotube connected to two superconducting leads. In particular, by
using the Luttinger liquid theory, we analyze the effects of the electron–electron interaction on the supercurrent. We find that in the long junction
limit the strong electronic correlations of the nanotube, together with its peculiar band structure, induce oscillations in the critical current as a
function of the junction length and/or the nanotube electron filling. These oscillations represent a signature of the Luttinger liquid physics of the
nanotube, for they are absent if the interaction is vanishing. We show that this effect can be exploited to reverse the sign of the supercurrent,
realizing a tunable π -junction.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the discovery by Iijima in 1991 [1], carbon nanotubes
have attracted much interest in the community of Mesoscopic
Physics. Due to their peculiar electronic and mechanical prop-
erties, they are regarded as optimal candidates for nanotech-
nological implementations, and have been successfully applied
to the realization of quantum transistors [2,3], electron waveg-
uides [4], interferometric devices [4,5] as well as nanoelec-
tromechanical systems [6]. Recent experiments have spurred
the interest in superconducting properties of these materials:
it has been observed indeed that proximity-induced supercon-
ductivity can arise in nanotube bundles in contact with super-
conductors (S); in ropes, intrinsic superconductivity has also
been measured [7,8] and explained in terms of combination
of electron coupling to the breathing phonon modes and inter-
tube Cooper-pair tunneling [9]. Individual multiwall nanotubes
have recently been utilized in the fabrication of superconductor-
nanotube-superconductor hybrid structures, allowing to reveal
the dynamics of multiple Andreev reflections [10] and to real-
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ize a controllable supercurrent transistor [3]. In contrast, the in-
vestigation of superconducting properties of single-walled nan-
otubes in hybrid structures has been only partly explored so far.

Metallic Single-walled carbon nanotubes (SWNT) are
known to behave as 1D conductors with four conduction
channels exhibiting ballistic transport up to several µm [11,
12]. Different from other 1D metals, SWNT preserve their
conduction properties even at very low temperature, since
the cylindrical lattice geometry prevents the arising of
Peierls distorsion. They thus offer promising features for
interconnecting components of nanodevices. Due to their 1D
character, electronic correlations have dramatic effects on the
behavior of SWNT: experimental evidences of a power law
behavior for the conductance as a function of temperature [13]
indicate that SWNT exhibit a Luttinger liquid (LL) behavior,
and that their elementary excitations are not fermionic quasi-
particles like that in normal 3D metals [14,15]. It is thus
expected that, when an SWNT is in contact with S leads at
equilibrium, electronic correlations might significantly modify
the behavior of the supercurrent with respect to junctions
realized with a normal metal. This issue has been addressed in
the literature [16–21] and it has been shown that the effect of
interaction is particularly enhanced when the coupling between
the LL and the S leads is realized through tunnel junctions.
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Fig. 1. Schematic set-up of the S-I-SWNT-I-S junction under investigation.

However, most of these investigations focused on the case
of a two-channel (i.e. one spinful mode) LL, and cannot be
straightforwardly applied to the case of a four-channel SWNT.
In this paper we discuss this problem by investigating the
dc Josephson effect in an S-I-SWNT-I-S junction, and show
that new features arise due to the peculiar band structure of
SWNT. The paper is organized as follows: In Section 2 we
briefly review the model used to describe SWNT, accounting
for the electron–electron interaction within the Luttinger Liquid
theory. In Section 3 we present our results about the Josephson
current. We find that the interaction yields a two-fold effect on
the critical current jc: on the one hand it modifies the scaling
law of jc as a function of the junction length d; on the other
hand, it introduces oscillations of jc as a function of either the
electron filling or the junction length d . The latter oscillations
are absent for a non-interacting system, and therefore represent
a signature of Luttinger liquid behavior on the supercurrent.
Finally, in Section 4 we discuss the results and propose possible
implementations to observe this effect.

2. Modeling the system

The set-up of the system is depicted in Fig. 1: a
metallic SWNT is coupled through tunnel contacts to two
superconducting leads to realize an S-I-SWNT-I-S junction. For
simplicity, here we limit our treatment to the case of armchair
nanotubes; we also assume that the S leads have the same
gap |∆|; the two superconducting order parameters thus read
∆1,2 = |∆|eiχ1,2 , where χi is the superconducting phase of
the i th lead. We are interested in the dependence of the critical
current on the junction length d; we thus analyze the regime

λc, ξ � d � L (1)

where λc represents the width of the contacts, ξ the coherence
length of the S electrodes, d the electrode distance, and L the
length of the nanotube. The regime (1) is quite realistic in view
of customary fabrication of µm long ballistic nanotubes [12],
and the recent realization of superconducting tips for Scanning
Tunneling Microscope (STM) [22–24] or of 10–20 nm
short superconducting finger leads. In order to simplify the
mathematical treatment without altering the essential physical
features of the regime (1), we shall henceforth assume that
the tunnel contacts are point-like, the coherence length ξ is
vanishing, and the length of the nanotube is infinite, L → ∞.

In a metallic nanotube the lowest band consists of four
electron branches located around two Fermi points αkF , with
α = ±1; the energy separation to the second band is of the
order of eV, so that the latter can be in practice neglected up
to a broad range of thermal excitations. Within this energy
Fig. 2. The electron band dispersion relation of an SWNT originates from the
two-sublattices honeycomb carbon structure, and is characterized by four Fermi
points. The latter can be identified through two Fermi momenta: kF denotes the
band crossing points, whereas qF accounts for the deviation from kF , i.e. the
electron filling of the SWNT.

scale, the energy dispersion of the lower band is linear under
quite good approximation, as shown in Fig. 2. SWNT can
thus be regarded as four-channel 1D metals. As discussed
in the introduction, their 1D character implies that a careful
treatment of the electron–electron interaction is needed. It is
indeed well-known that transport properties of SWNT cannot
be explained in terms of the customary Fermi liquid theory,
since their elementary excitations are bosonic plasmon modes,
rather than fermionic quasi-particles. A model for SWNT based
on the Luttinger liquid theory has been formulated a decade
ago [25,26], and applied in a number of problems [27–33].
Here we briefly remind the main aspects that are relevant to our
discussion: An SWNT can be ideally obtained by wrapping into
a cylinder shape a graphene sheet, whose honeycomb carbon
lattice consists of two sublattices p = ±. A nearest-neighbor
tight-binding calculation of the π -electrons in the graphite,
together with appropriate wrapping boundary conditions, leads
to express the electron field in the nanotube as

Ψσ (x) =

∑
α=±,r=R/L

∑
p=±

Upr ei(αkF +rqF )xψαrσ (x) (2)

where σ =↑,↓ denotes the spin component and x the
longitudinal coordinate in the nanotube. In Eq. (2), Upr are the
entries of the matrix

U = −
e−iπ/4
√

2

(
1 1
i −i

)
(3)

describing the unitary transformation from the sublattice
electron fields into the right (left) moving fields description.
The exponential terms in Eq. (2) represent the fast oscillating
contribution to the electron wave function, where the wave
vector qF is related to the electron filling exceeding the Fermi
points ±kF , as illustrated in Fig. 2. Finally the field ψαrσ (x)
varies slowly over the scale of Fermi wavelength.

In order to account for the electron–electron interaction,
it is useful to represent the electron fields ψαrσ through the
bosonization identity

ψαrσ (x) =
ηαrσ

√
2πa

exp{iϕαrσ (x)} (4)

where ϕαrσ (x) is the plasmonic field describing the long
wavelength fluctuations. The operators ηαrσ are Klein
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factors obeying a Clifford algebra and ensuring the correct
anticommutation between different fermionic species. Finally
a is a cut-off length regularizing the theory, and is of the order
of the lattice spacing. The effective hamiltonian for the SWNT
reads

HSWNT =

∑
jδ

vF

2

∫
+∞

−∞

dx

[
(∂xφ jδ)

2
+
(∂xθ jδ)

2

K 2
jδ

]
(5)

with vF ' 8 × 105 ms−1. Here θ jδ(x) are four independent
bosonic fields, with j labeling charge (c) and spin (s) degrees
of freedom, and δ = ± denoting two independent linear
combinations of the α = ± branches. The fields φ jδ(x) are
related to θ jδ(x) by the duality relation [θ jδ(x), ∂yφ jδ(y)] =

iδ(x − y), and K jδ are interaction parameters, with K jδ < 1
(K jδ > 1) for repulsive (attractive) interaction and K jδ = 1
for vanishing interaction. It can be shown [34] that the mode
( j = c, δ = +) is strongly interacting (K

.
= Kc+ ' 0.3),

while the three other modes are neutral K jδ 6=c+ = 1. The
fields ϕαrσ appearing in the bosonization identity (4) are linear
combinations of the decoupled modes

ϕαrσ =

√
π

2
{φc+ + rθc+ + αφc− + rαθc−

+ σφs+ + rσθs+ + ασφs− + rασθs−} . (6)

The Hamiltonian modeling the S-I-SWNT-I-S junction thus
reads

H = HSWNT +HSC1 +HSC2 +HT (7)

where HSWNT is given by (5), HSC1,2 are the usual BCS
hamiltonians for the electrodes, and HT describes the
nanotube-electrodes electron tunneling. Denoting by xi the
nanotube coordinate of the injection point to the i th electrode,
one can write

HT =

∑
i=1,2

∑
σ=↑,↓

Ti

(
Ξ Ď

i (xi )Ψσ (xi )+ ΨĎ
σ (xi )Ξi (xi )

)
(8)

where Ξ Ď
i is the electron field operator in the i th lead, and T1,2

are tunneling amplitudes. The Josephson current is computed
perturbatively in the tunneling amplitudes.

3. dc Josephson current

Denoting by F the free energy of the S-I-SWNT-I-S
junction, and by χ = χ1 − χ2 the phase difference between
the two superconductors, the dc Josephson current is obtained
as

IJ =
2e

h̄

∂F

∂χ
. (9)

Evaluating IJ to the fourth order in the tunneling amplitudes Ti ,
one obtains (up to χ -independent terms)

F = −2
(T1T2)

2

β
R

[
4∏

i=1

∫ β

0
dτi

× F1(τ1 − τ2)G(τ1, τ2, τ3, τ4; d)F∗

2 (τ3 − τ4)

]
. (10)
In Eq. (10) β denotes the inverse temperature and

Fi (τ − τ ′) =

〈
T

{
Ξ Ď

i,↑(x, τ )Ξ
Ď
i,↓(x, τ

′)
}〉

=
πN (0)
β

e−iχi
∑
n∈Z

e−iωn(τ−τ
′) |∆|√

ω2
n + |∆|2

(11)

the anomalous BCS T -ordered correlator in the i th S lead, with
a density of states of the normal state N (0) at the Fermi energy,
and Matsubara frequencies ωn = (2n + 1)π/β. Finally

G(τ1, τ2, τ3, τ4; d)

=

〈
T

{
Ψ↑(0, τ1)Ψ↓(0, τ2)Ψ

Ď
↓
(d, τ3)Ψ

Ď
↑
(d, τ4)

}〉
(12)

is the two-electron T -ordered correlator in the SWNT. Under
the condition (1), one has ∆ � h̄vF/d, implying that the lead-
nanotube tunneling time is much shorter than the traversal time
vF/d along the junction. Eq. (11) is then well approximated by
a δ(τ − τ ′), and tunneling effectively involves electron pairs. In
this regime the Josephson current can be written as

IJ = I0(χ) jc(d; T ). (13)

Here the first term I0 = (2e/h̄)(h̄vF/d)T sinχ accounts
for the dependence on the superconducting phase difference
χ , and corresponds to the Josephson current of a long
ballistic junction with bare transmission coefficient T =

(4/2π)|T1T2|
2π2(N (0)/h̄vF )

2 at zero temperature. The second
term represents the (dimensionless) critical current and encodes
the details of the junction: it depends on the length, on the
temperature, and on the interaction effects, as we shall see
below. Explicitly, it reads

jc(d; T ) =
1

2π

(
d

a

)2 ∫ 1/Θ

−1/Θ
dξ (1 − Θ |ξ |)

×

∑
r=±,αα′

e−i(α+α′)kF d

2
[C A

rαα′ (kF d, ξ)

+ e2irqF dC P
rαα′ (kF d, ξ)] (14)

with Θ = kB T d/h̄vF . Two types of processes, denoted by P
and A, contribute to jc: the former (latter) describes tunneling
of Cooper pairs formed by electrons with parallel (antiparallel)
momenta. The related pair operators

O A
r,αα′(x, τ ) = ψαr↑(x, τ )ψα′−r↓(x, τ )

O P
r,αα′(x, τ ) = ψαr↑(x, τ )ψα′r↓(x, τ )

(15)

yield the two correlators

C P/A
rαα′ (kF d, ξ3 − ξ1) = (2πa)2

〈
T

{
O P/A

r,αα′

(
0,

d

h̄vF
ξ1

)
× OĎP/A

r,αα′

(
d,

d

h̄vF
ξ3

)}〉
(16)

appearing in Eq. (14). Importantly, these two terms correspond
to different dependences on the momenta defining the four
Fermi points of the SWNT: while A processes only involve
kF , P processes are also characterized by the electron filling



554 S. Pugnetti et al. / Solid State Communications 144 (2007) 551–556
momentum qF , as can be seen from the phase factors
multiplying C P/A

rαα′ . Since typically qF � kF , two periods are
expected to arise in the dependence of the Josephson current on
the junction length d . However, this is not necessarily the case.
In the first instance, indeed, the dependence on kF amounts
to a prefactor 1 + cos(2kF d), and is extremely difficult to be
observed in a realistic system where the approximation of point-
like contacts is not valid, for the period of these oscillations is
usually smaller than the typical contact width λc. Even in the
regime (1), the observed current is in fact an average 〈. . .〉λc

over lengths d + x , where x ranges over λc. This averaging
effectively yields

〈1 + cos(2kF d)〉λc = 1 (17)

so that the dependence on kF disappears. The results for the
current presented henceforth are thus meant upon performing
this averaging procedure.

Secondly, the electron–electron interaction strongly affects
the behavior of the correlators C P/A

rαα′ . Although the full
expression for the latter is quite lengthy (see the Appendix for
details), important insights can be gained from the analysis of
the scaling dimensions of the two operators; one obtains that
for kF d � 1

|C P/A
rαα′ (kF d, ξ)| ∼

∣∣∣a

d

∣∣∣2·δP/A
(18)

with δP = (K + 1/K + 2)/4 and δA = (1/K + 3)/4. While
for vanishing interaction (K = 1) the scaling dimensions of
the two processes coincide, the electron interaction modifies
the power laws of these two processes in a different way: the
contribution of A processes decays faster than the one of P
processes (δP < δA). Remarkably, this does not imply that
for a sufficiently long junction the Josephson current is mainly
due to P processes. Indeed, an electron pair traveling along
the junction also acquires a phase, which results in oscillating
factors in the correlators. Since the Josephson current (14)
depends on the integral over the imaginary time variable ξ , not
only the decay rate but also the phase of C P/A

rαα′ matters. Since
the dynamics of the electrons is coupled by the interaction,
these phase factors are also affected by the value of K .

In the case that electron interaction is neglected (K =

1), the effect of alternating phases is so strong that the total
contribution of P processes vanishes. Indeed, when integrating
over all possible pair momenta, the phase acquired by the
electron pair traveling along the junction oscillates, yielding
a cancellation of the different contributions, except for those
processes in which the total pair momentum is vanishing.
While this condition can be fulfilled by A processes, simple
phase space considerations show that the total contribution of
P processes is suppressed. As a consequence, the Josephson
current through an SWNT is predicted to be independent of the
filling momentum qF , and one obtains

jc =
2πΘ

sinh(2πΘ)
. (19)
Fig. 3. (Solid curve): The oscillations of the dimensionless Josephson current
as a function of junction length d for an S-I-SWNT-I-S junction, at zero
temperature. The SWNT filling factor is qF/kF = 10−3π/8 and its interaction
parameter is K = 0.3. The oscillations have a period 2qF d and decay with a
power law with an interaction-dependent exponent δP . (Dashed curve): The
contribution of A processes to the critical current is monotonous and positive,
indicating that the oscillations originate from P processes (see text).

At zero temperature, jc = 1, and the Josephson current scales
as 1/d due to the I0 term (see Eq. (13)), whereas at finite
temperature it is exponentially suppressed.

In contrast, when electron–electron interaction is taken
into account (K ' 0.3), the dynamics of the two electrons
forming any pair is coupled, and the mechanism leading to
the cancellation occurring in the non-interacting case is not
valid. Electronic correlations both affect the contribution of
A processes and make an oscillating contribution in 2qF d
arise from P processes. These oscillations are characterized
by a much longer period than the one discussed above, and
may become observable if qFλc � 1, a condition which is
definitely realistic: The value of the filling factor qF/kF can
indeed be adjusted by an external gate bias, and the recent
developments in contact technology allow to realize extremely
thin contacts, such as finger-shaped electrodes of about 10 nm
or superconducting STM tips. Here we show that in this case
the Josephson current exhibits interesting novel features.

Fig. 3 displays the dimensionless Josephson critical
current jc, Eq. (14), as a function of the junction length d for an
SWNT with interaction strength K = 0.3 at zero temperature.
We recall that the approximation of non-interacting electrons
would predict a constant value for jc. In contrast, in an
SWNT the strong electron interaction leads jc to decay with
an oscillatory behavior as a function of d. While the power law
decay has been also predicted for the usual two-channel LL,
the oscillatory behavior is purely due to the four-channel band
structure of nanotube. Importantly, this implies that the sign of
the Josephson current depends on the length of the junction, and
that SWNT can be used to realize a π -state. We emphasize that
this effect originates from P processes; the contribution to jc
due to the A processes, described by the dashed curve in Fig. 3,
is indeed monotonous and always positive.
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Fig. 4. (Solid): The dimensionless critical current jc as a function of the filling
factor qF/kF at zero temperature for an S-I-SWNT-I-S junction with length
d = 6 × 103k−1

F . The interaction parameter is K = 0.3. By tuning the electron
filling, e.g. with a gate voltage, the sign of the critical current can be reversed,
tuning the junction from a 0 into a π -state. (Dashed): The contribution of
A processes to the critical current, independent of the filling factor.

Fig. 5. (Solid): The dimensionless critical current jc as a function of the
reduced temperature Θ for a junction with length d = 6×103k−1

F , realized with

an SWNT with filling factor qF/kF = 10−3π/12 and interaction parameter
K = 0.3. (Dashed): The contribution of A processes to the critical current.
Different from the case of a non-interacting wire, in an SWNT the contribution
due to the tunneling of pairs with antiparallel momenta (A processes) is
dominated by the one originating from pairs with parallel momenta (P
processes).

Fig. 4 shows jc for an S-I-SWNT-I-S junction with length
d = 6 × 103k−1

F ∼ 360 nm: the Josephson current oscillates
with a period π/kF d as a function of the filling factor qF/kF ,
around a value (dashed line) which represents the contribution
of A processes, independent of qF . By tuning qF with a gate
voltage, the switching from a 0 to a π -junction behavior can be
induced.

Finally, Fig. 5 shows the behavior of jc as a function of the
dimensionless temperature Θ = kB T d/h̄vF . As expected from
Eq. (14), thermal fluctuations suppress the Josephson effect at
a temperature of the order of kB T ∼ h̄vF/d (for a 100 nm long
junction this corresponds to T = 60 K); the figure elucidates the
crucial role played by the interaction in determining the relative
magnitude of P processes with respect to A processes: while for
a non-interacting wire (K = 1) the P processes contribution
vanishes, for an SWNT (K ' 0.3) the latter dominate for a
sufficiently long junction.

4. Conclusions

In this paper we have investigated the dc Josephson effect in
an S-I-SWNT-I-S junction. The effects of the electron–electron
interaction on the critical current jc have been particularly
analyzed by using the Luttinger Liquid theory. We have found
that jc oscillates with a factor 2qF d, where d is the junction
length and qF the Fermi momentum characterizing the electron
filling with respect to the band crossing point kF . These
oscillations are a signature of the peculiar band structure and
of the strong electronic correlations present in SWNT. We
emphasize that they would indeed not appear in non-interacting
systems. Remarkably, this effect implies that ballistic SWNT
can be used to realize tunable π -junctions, for the sign of the
critical current can be controlled by varying either the filling
factor or the junction length (see Figs. 3 and 4). The former
can be tuned through an external gate voltage. The latter can be
changed for instance by moving the superconducting tip of an
STM [22–24] along the nanotube. The typical value of kF is of
the order of 20 nm−1, so that the predicted oscillations should
become observable at temperatures up to 1 K in junctions with
length d & 100 nm; the SWNT should have an electron filling
momentum qF ranging from 0 up to a small fraction of λ−1

c .
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Appendix. O i
r correlation functions

In this appendix we provide the expressions for the
T -ordered correlation functions appearing in the computation
of the Josephson current equation (14). The correlation
functions can be written as the product of their ground state
value and a thermal fluctuation’s contribution, which equals 1
at zero temperature. Explicitly:

C A
r P(kF d, ξ) =

[
gA (GS)

r (kF d, ξ)gA(T F)
r (kF d, ξ)

]2

C P
r P(kF d, ξ) =

∣∣∣gP(GS)
r (kF d, ξ)gP(T F)

r (kF d, ξ)
∣∣∣2

(A.1)

where:

gA(GS)
r (kF d, ξ) =

∣∣∣∣ ã

ã + zr
K

∣∣∣∣δA−1/2 (
ã

ã + z∗

1

) 1
2

·

(
ã + zr

K

ã + zr
1
∗

) 1
4

(A.2)

gP(GS)
r (kF d, ξ) =

∣∣∣∣ ã

ã + zr
K

∣∣∣∣δP
(

ã + zr
K

ã + zr
1
∗

) 1
2

, (A.3)
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with zr
K = kF d(irsign(ξ) + |ξ |/K ) and ã = kF a. The

contribution due to thermal fluctuations reads

gA(T F)
r (kF d, ξ) =

∣∣∣∣ KπΘzr
K

sin(KπΘzr
K )

∣∣∣∣δA−1/2

×

(
KπΘzr

K

sin(KπΘzr
K )

)−
1
4

·

(
πΘzr

1
∗

sin(πΘzr
1
∗)

) 3
4

(A.4)

gP(T F)
r (kF d, ξ) =

∣∣∣∣ KπΘzr
K

sin(KπΘzr
K )

∣∣∣∣δP
(

KπΘzr
K

sin(KπΘzr
K )

)−
1
2

·

(
πΘzr

1
∗

sin(πΘzr
1
∗)

) 1
2

. (A.5)

The cut-off ã renormalizes the bare tunneling amplitude T in
different ways for P and A processes. In particular, one has
T → Ti = T (kF a)2(δi −1), with i = A, P . Typically ã . 1
(here we have chosen ã = 0.5).
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