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b Laboratoire Pierre Aigrain, Département de Physique, 24 rue Lhomond, 75005 Paris, France

Received 30 January 2007; accepted 12 March 2007 by the Guest Editors
Available online 24 July 2007

Abstract

The Pfaffian model has been proposed for the fractional quantum Hall effect (FQHE) at ν =
5
2 . We examine it for the quasihole excitations

by comparison with exact diagonalization results. Specifically, we consider the structure of the low-energy spectrum, accuracy of the microscopic
wave functions, particle–hole symmetry, splitting of the degeneracies and off-diagonal long-range order. We also review how the 5/2 FQHE can
be understood without appealing to the Pfaffian model. Implications for nonabelian braiding statistics will be mentioned.
c© 2007 Elsevier Ltd. All rights reserved.
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Keywords: A. Composite fermions; D. Fractional quantum Hall effect; D. Pairing
1. Introduction

5/2 is the only even denominator fraction securely observed
in a single layer fractional quantum Hall effect (FQHE) [1–3].
(The fraction 7/2 is trivially related to it by particle hole
symmetry in the second Landau level.) The model of
noninteracting composite fermions predicts a compressible
Fermi sea at half-filled lowest Landau level, which provides
a good description of the compressible state here [4,5]. A
promising scenario for the incompressible state at the half-
filled second Landau level at ν = 5/2 is based on the idea
of pairing of composite fermions, described by a Pfaffian
wave function [6,7]. Several studies have supported this
interpretation [8–12].

The Pfaffian wave function is the exact ground state of
a singular three-body model interaction (cf. Eq. (2)). Exact
solutions for quasiholes are also available for this model
interaction. A case has been made, both from analytical
arguments [6,13,14] and numerical calculations [15], that these
Pfaffian quasiholes have the remarkable property of nonabelian
braiding statistics. Recently, the nonabelian statistics has
taken additional importance because of proposals to test
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it experimentally [16–18], and to exploit it for quantum
computation [16,19–21]. That makes it important to perform
an examination of the applicability of the Pfaffian model to
the real, Coulomb solution. The Coulomb ground state wave
function has been compared to the Pfaffian ground state wave
function in the past [8,12] and found to have overlaps in the
range 0.69–0.87 for 8–16 particles. Our recent comparisons of
the Pfaffian quasiholes and the real Coulomb quasiholes [22]
showed a worse agreement. Because the route to nonabelions
is via the Pfaffian model and the degeneracies it implies, these
studies have relevance to nonabelian braiding statistics as well.

This paper briefly reviews our previous work, at the same
time providing many new results relevant to this problem. In
Section 2 the Pfaffian model is defined and some relevant
results are reviewed. In Section 3 we comment on the
particle–hole symmetry violation by the Pfaffian family of
states. In Section 4 the absence of off-diagonal long-range order
in the Pfaffian state is pointed out. In Section 6 we check the
assertion, commonly made in the literature, that the energy
difference of the quasihole states, that are degenerate for the
three-body model interaction, remains exponentially small for
the Coulomb interaction. In Section 7 we attempt to separate
the postulated charge 1

4 quasiholes for the model interaction
as well as the Coulomb interaction. Finally, in Section 9 we
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elaborate an alternative approach for the explanation of the
5
2 FQHE. Short reports on parts of this paper have appeared
elsewhere [23,22].

2. The Pfaffian model

Throughout this article we will assume that the lowest
Landau level (LL) is full and inert, and the two-dimensional
electron gas in the second LL is fully polarized. All calculations
are performed in the spherical geometry. The objective is to
determine the ground state and the low-energy excitations for
the Coulomb interaction

V (C)
=

e2

ε

∑
i< j

1∣∣ri − r j
∣∣ , (1)

in second LL at filling factor ν = 1/2 (ε is the static dielectric
constant of the host semiconductor). This problem is equivalent
to electrons in the lowest Landau level interacting with an
effective interaction V eff. We will use the lowest LL to simulate
the second LL physics in what follows.

The “Pfaffian model” considers a three-body model
interaction [7,14], which in the spherical geometry takes the
form

V Pf
=

e2

εlB

∑
i< j<k

Pi jk(Lmax) (2)

where Pi jk(Lmax) is the projection operator onto an electron
triplet with orbital angular momentum Lmax = 3Q − 3. The
angular momentum Lmax corresponds to the closest possible
configuration of an electron triplet. Thus, V Pf does not penalize
the closest approach of two electrons, but there is an energy cost
when three electrons are in their closest configuration.

This model has a unique, zero energy ground state at ν =

1/2 (Moore and Read [6]):

ΨPf
0 = Pf

(
1

zi − z j

)
Φ2

1 , Φ1 =

∏
i< j

(zi − z j ), (3)

where “Pf” refers to “Pfaffian.” This wave function describes a
paired state of composite fermions. This model also produces
exact zero energy eigenfunctions for quasiholes, as the flux
through the sphere is increased. These zero energy eigenstates
are referred to as the “Pfaffian quasihole (PfQH) states.”
As [V Pf, L2

] = 0, the states spanning the PfQH sector
may be chosen to have definite orbital angular momenta L .
(See Ref. [14] for a thorough study of the PfQH sector on
the sphere.) Appropriate linear combinations of these states
produce spatially localized quasiholes. For two quasiholes at
η1 and η2, the wave function is given by [6]

ΨPf
2−qh = Pf

(
(zi − η1)(z j − η2)+ (i ↔ j)

(zi − z j )

)
Φ2

1 . (4)

For two coincident quasiholes, η1 = η2 ≡ η, this reduces to a
charge 1

2 vortex:

ΨV =

∏
i

(zi − η)ΨPf
0 . (5)
Separately, each quasihole has a charge deficiency of 1
4

associated with it. Unlike for the vortex, the density does not
vanish at the centre of a quasihole. Analogous wave functions
can be written for an even number (2m) of quasiholes. Exact
wave functions for quasiparticles are not available.

Several wave functions can be associated for a given
configuration of 2m quasiholes, which correspond, in the
appropriate generalization of Eq. (4) to 2m quasiholes, to
different ways of grouping half of the ηk’s with zi and the
other half with z j . It has been shown [13] that only 2m−1 of
these functions are linearly independent. Adiabatic braiding of
quasiholes (which is feasible for a gapped system) can take the
system from one linear combinations of PfQH states to another,
which lies at the origin of nonabelian statistics of quasiholes.

To study bulk properties, it is convenient to formulate the
problem of interacting electrons in the spherical geometry, in
which the electrons move on the surface of a sphere and a radial
magnetic field is produced by a magnetic monopole of strength
Q at the centre [24,25]. Here 2Qφ0 is the magnetic flux through
the surface of the sphere; φ0 = hc/e, and 2Q is an integer
by Dirac’s quantization condition. Then wave functions in Eqs.
(3)–(5), which are written for the disk geometry, can be mapped
to the sphere by the stereographic mapping [25], which amounts
to the substitution

(za − zb) → (uavb − vaub), (6)

for all coordinate differences, where ua = cos θa
2 e−iφa/2 and

va = sin θa
2 eiφa/2 are spinorial coordinates on the sphere. The

orbital angular momentum quantum number is denoted by L .

3. Particle–hole symmetry

The exact Coulomb eigenstates in any given Landau level
satisfy particle–hole symmetry, i.e. the exact eigenstates at
ν and 1 − ν are related by particle–hole transformation.
The wave functions in the CF theory [26] satisfy particle
hole symmetry to a very good approximation, even though
there is no symmetry principle that so requires. For example,
the wave functions at ν = n/(2n − 1), given by
Ψn/(2n−1) = PLLLΦ2

1 [Φn]
∗, are almost identical to the those

obtained by particle–hole transformation of the wave functions
Ψn′/(2n′+1) = PLLLΦ2

1Φn′ , with n = n′
+ 1.

The three body interaction does not satisfy particle–hole
(p–h) symmetry. To get a feel for the extent to which this
symmetry is broken, we have considered the system of N = 8
particles at 2Q = 15. In this case, particle hole transformation
gives eight holes (to be distinguished from quasiholes) at 2Q =

15. We obtain the exact spectrum of the V Pf model interaction,
which is given in the upper left panel of Fig. 1. This system
corresponds to four quasiholes, and has a number of zero energy
states, which form the Pfaffian quasihole sector. We obtain
the particle–hole conjugate of each eigenstate, called Ψ c, and
calculate its energy expectation value for the V Pf interaction.
When there are several degenerate Pfaffian quasihole states, we
diagonalize V Pf in the subspace of the p–h conjugate states
to obtain the energies. The resulting spectrum is shown in the
top right column of Fig. 1. (For the Coulomb interaction, this
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Fig. 1. Upper left panel shows the original spectrum of V Pf with N =

8, 2Q = 2N − 1 (four quasiholes); the Pfaffian quasihole states have zero
energy. Also shown are the spectra for the p–h conjugate states (top right), the
p–h symmetrized states (bottom left), and p–h antisymmetrized states (bottom
right). The diamonds show the states derived from the Pfaffian quasihole
branch.

exercise would produce a spectrum identical to the original one,
apart from an overall energy shift.) We construct symmetrized
states Ψ s

∝ (Ψ + Ψ c), which satisfy particle–hole symmetry
by construction; the resulting spectrum for these states is given
in the lower left panel of Fig. 1. The lower right spectrum is for
antisymmetrized states Ψa

∝ (Ψ − Ψ c).
Table 1 shows the squared overlaps between the original

Pfaffian quasihole states with the various states obtained with
the help of p–h conjugation. To handle the multiplicity of the
PfQH sector for L = 0, 2, 4, 6 (cf. Fig. 1), the overlap between
two subspaces has been defined in a basis-independent manner
(see caption of Table 1). The overlaps are not particularly high;
for example, in the L = 0 part of the quasihole branch, which
contains two states for N = 8, the overlap is 0.511, and
deteriorates for higher L’s. Similar numbers are obtained for
other states in the PfQH sector. The near orthogonality of Ψ
and Ψ c at L = 8 is accompanied by a very high energy of Ψ c.

These results demonstrate a substantial breakdown of the
p–h symmetry by the V Pf interaction. The Pfaffian quasihole
band is absent in all of the new spectra; the states derived from
the Pfaffian quasihole band are mixed up with other states.
It has been shown [11] that the particle–hole symmetrization
(Ψ → Ψ s) of the Pfaffian wave function improves the overlap
with the Coulomb ground state. Our results show, however,
that this also destroys the degeneracy of PfQH sector. One can
ask whether the nonabelian statistics of the Pfaffian quasiholes
is robust to p–h symmetrization; we are not able resolve this
question definitively by a direct calculation of the braiding
phases, which requires much larger systems.

4. Off-diagonal long-range order

We wish to stress that the Pfaffian wave function does
not represent a true superconductor; the pairing of composite
fermions opens a gap to produce FQHE but does not establish
long range phase coherence in the electronic state. For
this purpose, we calculate the off-diagonal long-range order
Table 1
Squared overlaps between the subspaces spanned by the zero-energy states
and the subspaces spanned by their particle–hole conjugate, particle–hole
symmetrized, and particle–hole antisymmetrized images, respectively

p–h conjugate Symmetrical
combination

Antisymmetrical
combination

O(L = 0) 0.511 0.425 0.575
O(L = 2) 0.431 0.542 0.458
O(L = 3) 0.357 0.798 0.201
O(L = 4) 0.255 0.641 0.359
O(L = 5) 0.001 0.511 0.489
O(L = 6) 0.233 0.443 0.557
O(L = 8) 4 × 10−7 0.500 0.500

Squared overlaps are defined as O =
∑N

i, j |〈Ψ4−qh,i |Ψ
′
4−qh, j 〉|

2/N , where

N is the number of degenerate multiplets [14] of V Pf at L , and i, j =

1, . . . ,N .

Table 2
Off-diagonal long-range order parameter G(r1, r2, r′

1, r′
2) with r1 and r2

separated by lB about the north pole, and r′
1 and r′

2 separated by lB about

the south pole for the paired CF wave function Pf(1/(zi − z j ))Φ
2
1

N G(r1, r2, r′
1, r′

2)

4 0.0005(9)
6 0.001(2)
8 0.0000(1)

10 0.0002(5)

parameter:

|G(r1, r2, r′

1, r′

2)| = 〈Ψ0|ψ̂
Ď(r′

1)ψ̂
Ď(r′

2)ψ̂(r2)ψ̂(r2)|Ψ0〉, (7)

where ψ̂(r) and ψ̂Ď(r) are the usual annihilation and creation
field operators. We place the primed coordinates near the north
pole, separated by a distance equal to the magnetic length,
and the unprimed coordinates at the south pole, also separated
by a distance equal to the magnetic length. The results in
Table 2, obtained by Monte Carlo calculation, demonstrate the
absence of off-diagonal long-range order in the Pfaffian wave
function.

5. Testing the Pfaffian quasihole wave function

We have recently carried out comparisons between the
Pfaffian and Coulomb quasiholes [22]. Figs. 2–4 show
the spectra for states with two and four quasiholes for
N = 10 and 12 electrons. For 10 electrons, the
Pfaffian model predicts zero energy states at L =

1, 3, 5 and L = 02, 10, 24, 31, 44, 52, 63, 71, 82, 90, 101,
respectively (the superscript denotes the degeneracy), for
two and four quasiholes. These states form the Pfaffian
quasihole band. For 12 electrons, the Pfaffian quasihole band
contains states at L = 0, 2, 4, 6 for two quasiholes and
L = 03, 10, 24, 32, 45, 52, 65, 72, 83, 91, 102, 110, 121 for four
quasiholes. For 14 electrons, the Pfaffian quasihole band for
two quasiholes has states at angular momenta L = 1, 3, 5, 7.

The Coulomb spectra in Figs. 2–4 do not show well
defined bands that have a one-to-one correspondence with the
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Fig. 2. Spectra at ν =
5
2 for the model interaction V Pf (left column), and the

Coulomb interaction (right column) for N = 10 particles at 2l = 18 (top row)
and 2l = 19 (bottom row). For the V Pf interaction, two (four) quasiholes are
expected for 2l = 18 (2l = 19). The spectra on the left were also given in
Ref. [14]. This figure is taken from Ref. [23].

Fig. 3. Spectra at ν =
5
2 for the model interaction V Pf (left column), and the

second Landau level Coulomb interaction (right column) for N = 12 particles
for two (upper row) and four (lower row) quasiholes.

Pfaffian quasihole bands. Ref. [22] gives overlaps between the
Pfaffian and Coulomb quasihole states, which are generally
worse than for the ground state. Fig. 5 depicts for the two
quasihole state (for 14 electrons) the “total overlap,” defined
as O =

∑
L=1,3,5,7 |〈Ψ L

2−qh|Ψ
L
coul〉|

2/4 where |Ψ L
2−qh〉 is the

two quasihole state with L z = L and |Ψ L
coul〉 is the Coulomb

ground state with L z = L . This figure shows the dependence
of the overlap on the form of the interaction; by increasing the
V1 pseudopotential of the Coulomb interaction by 0.03 units,
it is possible to increase the overlap from 0.3 to 0.6. For large
δV1, the exact solution is essentially the lowest-LL Coulomb
solution; Fig. 5 thus shows that the Pfaffian wave functions
Fig. 4. Spectra at ν =
5
2 for the model interaction V Pf (left column), and the

second Landau level Coulomb interaction (right column) for N = 14 particles
for two quasiholes.

Fig. 5. The overlap between the low-energy excitations of the second-
LL Coulomb and V Pf interactions for N = 14 particles as the leading
pseudopotential V1 is changed.

provide a comparable description of the state in the lowest two
Landau levels.

6. Energy splitting of the Pfaffian quasihole states

The Pfaffian model predicts a 2m−1 degenerate wave
functions for any given configuration of 2m quasiholes, which
is responsible for the emergence of nonabelian braiding
statistics. Any deviation from the model interaction V Pf lifts
this degeneracy. But a case can be made that if the energy
splitting of these states remains exponentially small as a
function of the distance between the quasiholes, the idea
of nonabelian statistics remains experimentally relevant. It
would be of interest to test how the splitting behaves in
a realistic calculation. Unfortunately, a good model for the
Coulomb quasiholes is not available, and it is not known how
separated quasiholes can be produced in exact diagonalization
studies [22] (Section 7). We study how the Coulomb interaction
splits the degeneracy while restricting to the PfQH sector.
In light of the above comparisons, such a restriction is
not necessarily a valid approximation, because the Coulomb
interaction causes a substantial mixing with states outside of the
PfQH sector. However, a more accurate calculation is currently
not feasible.

The calculation requires at least four quasiholes, which
we place on the sphere at maximal separation, i.e. at the
vertices of a regular tetrahedron. The Coulomb interaction in
the first and second LLs is diagonalized in the space spanned
by two Pfaffian quasihole wave functions. The overlap and
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Fig. 6. The energy splitting of the two four-quasihole wave functions for
Coulomb interaction.

Fig. 7. Same as Fig. 6, with both scales logarithmic. See line fitting on Fig. 8.

interaction matrices are calculated by Monte Carlo methods;
an orthonormal basis is found by the standard Gram–Schmidt
procedure; and the interaction is diagonalized in this basis. The
Coulomb interaction in the second LL is simulated in the lowest
LL by an effective interaction of the form

V eff(r) =
1
r

+

M∑
i=0

cir
i , (8)

where the coefficients ci are fixed so that the lowest LL
pseudopotentials [24] of V eff(r) reproduce all of the second LL
Coulomb pseudopotentials V (1)

m for odd integral values of m.
(For relevant formulas, see Ref. [23].)

As apparent in Fig. 6, the lowest LL Coulomb interaction
and the effective second LL interaction give different results
for small (N ≤ 30) systems. Because the energy splittings are
very close in the 30 < N ≤ 54 range, we study larger systems
(N > 54) with the lowest LL Coulomb interaction only. It is
likely that the long-distance behaviour of the splitting does not
depend on the Landau level index (given that the interaction at
long distances is independent of the LL index). Fig. 7 shows the
lowest LL splitting.

The energy splitting is a nonmonotonic function of N (or R).
Near the local minima the error in the logarithm of the energy
splitting is seen to become very large. We therefore ask how the
value of the ODLRO parameter at the local maxima decays with
distance. While inconclusive, our results are most consistent
with a power law decay of the splitting. A straight line fits at
all the four bumps in the log–log plot (Fig. 8), but not in the
semilog plot (not shown). A study of larger numbers of particles
will be required for further confirmation, which is impractical at
Fig. 8. Line fitting on the log–log graph of the energy splitting as a function of
the distance. A straight line fitted on the local maxima of the data is consistent
with a power law decay with exponent α = −2.37(6).

this stage, but assuming a power law, the energy splitting decays
with an exponent α = −2.37(6). We stress again that the fact
that the Coulomb interaction causes a substantial mixing with
the nonPfQH sector diminishes the value of the calculation
presented in this section.

7. Separating quasiholes

For the purpose of braiding statistics it is necessary to
consider spatially localized states of quasiholes. In Ref. [22]
we have studied states of two quasiholes in the presence of
delta function impurities that attract the quasiholes. We take
the impurities to be placed at one or both of the poles so
the eigenfunctions have a well defined L z (although they do
not have a well defined L quantum number). We also assume
sufficiently weak strengths for the impurity potential, so they do
not cause a mixing of the Pfaffian quasihole states with higher
energy states. Our principal results are as follows:

For the V Pf model a single delta function impurity in the
lowest LL localizes a vortex (which is a combination of two
quasiholes) rather than a single Pfaffian quasihole for the
following reason. The energy of a given wave function is equal
to a properly weighted average of the densities at the positions
of the delta functions (for weak impurity strengths). For a delta
function at (U, V ), the lowest energy state (which has zero
energy independent of the strength of the delta impurity) is the
one in which both quasiholes localize at (U, V ), producing a
vortex ΨV with vanishing density at (U, V ). Surprisingly, as
seen in Fig. 9(b), even two delta impurities fail to separate two
quasiholes, even though the systems are sufficiently large at
least for the charge-1/4 Pfaffian quasiholes to be well separated
(top panels)

For two Coulomb quasiholes, at first sight, one may expect
that even a single delta function should produce well-separated
quasiholes, because it can bind one of them, which then should
repel the other. As seen in Fig. 9(c), (d), neither one nor two
delta functions produce separated quasiholes. In fact, the charge
profile is practically identical for the two cases. The situation is
more restrictive for the Coulomb interaction because, instead of
many degenerate states, we have a single ground state multiplet
with a definite L . All that weak disorder can do is cause a
mixing between the different L z components of the ground state
multiplet. For the case of two delta functions at the two poles,
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Fig. 9. Left panel: Charge densities of two quasihole states for (a) the Pfaffian
wave function with two quasiholes at two poles; (b) the ground state of V Pf

with two delta function impurities; (c) the Coulomb ground state with one
delta function impurity; (d) the Coulomb ground state with two impurities.
The impurities are placed on the two poles (or one pole in case of a single
impurity), so the eigenstates have a well defined Lz . The results are for N = 12
(dashed lines), N = 14 (dotted lines) and N = 16 (solid lines) electrons at
2Q = 2N − 2. The density in (a) is calculated by Monte Carlo, and in other
panels from exact diagonalizaion. When the ground state has Lz 6= 0, there are
two degenerate states at ±Lz ; we have shown only one of them for simplicity.
The normalization is chosen to ensure that the integrated density equals N .
Right panel: the integrated excess charge for each density, normalized so that
the total charge excess is 1

2 . Two spatially separated quasiholes will exhibit a

step at charge 1
4 , as approximately seen in the top panel. This figure is taken

from Ref. [22].

L z is a good quantum number, so the delta functions only lift the
degeneracy of the L z states. The lack of quasihole separation
in space is attributable to the fact that the ground state now
has a more or less definite L . The absence of exact degeneracy
inhibits quasihole localization.

8. Implications for braiding statistics

The Pfaffian quasiholes are believed to obey nonabelian
braiding statistics. Our finite system studies of the Coulomb
solutions do not provide a clear confirmation of the Pfaffian
model, and therefore of the nonabelian statistics. We cannot rule
out the possibility that the Pfaffian physics will be recovered
in the thermodynamic limit. It is useful to recall, in this
context, how the fractional abelian braiding statistics [27–29]
of the quasiparticles of the ν = n/(2n + 1) states has
been confirmed theoretically. There, the CF theory provides a
qualitatively valid description the quasiparticle band, as well as
accurate wave functions. These wave functions are then used for
large systems to establish the abelian statistics [30,31]. These
calculations also demonstrate that the braiding statistics is not
well defined when quasiparticles are overlapping, which is why
its confirmation requires large systems. The nonavailability of
accurate wave functions for the 5/2 quasiparticles or quasiholes
prevents similar calculations of their braiding properties.

9. An alternative approach for 5/2 FQHE

It is not known how the Pfaffian wave functions can be
improved for the two body Coulomb interaction, due to lack
of variational parameters. Further, the pairing of composite
fermions is viewed as arising from an instability of the CF
Fermi sea [7,10,32], but the CF Fermi sea is not a limiting
case of the Pfaffian wave function. These observations have
motivated us to approach the 5/2 FQHE from the CF Fermi
sea end, without assuming any pairing at the outset [23]. The
idea is straightforward. We know that noninteracting composite
fermions do not show FQHE at 5/2; our approach is to
include the residual interactions between them by constructing
a basis of “noninteracting,” or the “unperturbed,” CF ground
and excited states and rediagonalizing the Coulomb interaction
in that subspace to obtain the spectrum for “interacting”
composite fermions. This is known as the CF diagonalization,
and the relevant techniques are described in the literature [33,
34]. As usual, we simulate the second LL physics in the lowest
LL by working with an appropriate effective interaction. We
work at the same flux value as the Pfaffian wave function, but
because of a technical reason [23], we work with holes, rather
than electrons. (Holes are not to be confused with quasiholes.)
By particle hole symmetry, the number of holes is given by
Nh = (2Q + 1) − N = N − 2 at 2Q = 2N − 3. In what
follows, composite fermions are made by attaching vortices to
holes rather than electrons. We show results at “zeroth order”
CF diagonalization (when only the lowest energy unperturbed
states are considered) and “first order” CF diagonalization
(which also includes states with one higher unit of “kinetic
energy”). The composite fermion kinetic energy levels are
called Λ levels.

Fig. 10 shows the excitation spectra at the half filled second
LL for Nh = 12, 14, 16 and 20 obtained by CF diagonalization
at the zeroth and the first orders. (Nh = 18 is not considered as
it aliases with ν =

3
7 of holes.) The residual interaction between

composite fermions lifts the degeneracy between various states
to produce an incompressible state already at the lowest (zeroth)
order, which neglects Λ-level mixing. Although the energy gaps
change by up to 50% in going from the the zeroth to the first
order, the incompressibility is preserved, indicating that while
Λ-level mixing renormalizes composite fermions, it does not
cause any phase transition. The overestimation of gaps at the
zeroth order may be attributed to the very small dimensions
of the CF basis. All CF basis states are perturbations of
the noninteracting CF Fermi sea, making it explicit that a
rearrangement of composite fermions near the CF Fermi level is
responsible for the 5

2 FQHE. Although there is some ambiguity
as to which excitation is to be identified with the transport gap
(corresponding to a far separated quasiparticle–quasihole pair),
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Fig. 10. Zeroth-order (top) and first-order (bottom) CF diagonalization excitation spectra for Nh = 12, 14, 16, 20 holes in the second Landau level.

Fig. 11. Zeroth-order (top) and first-order (bottom) CF diagonalization excitation spectra for Nh = 12, 14, 16, 20 holes in the lowest Landau level.
an inspection indicates a gap of ∼0.02, which is consistent with
the earlier results from exact diagonalization [8,35].

Fig. 11 shows analogous results for the half-filled lowest LL.
The zeroth order CF diagonalization generates the lowest band,
and the first order generates the next band. The energies of
states in the lowest band do not change appreciably from zeroth
to the first order. The energy gap between the two lowest bands
can be understood as the energy cost of exciting one more CF
particle–hole pair. No such bands are seen for half-filled second
LL.

It is not known how this description of the 5/2 FQHE relates
to the Pfaffian model. In particular, a natural description of
the quasiparticles is as excited composite fermions (which are
heavily renormalized by the residual interaction). From this
perspective, there is no reason to suspect that they would obey
nonabelian statistics, although that cannot be ruled out as the
residual interaction causes nonperturbative change.
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