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Abstract

Nitrogen-containing functional groups were introduced onto the surface of activated carbon fibers (ACF) by activating an
ethylene tar pitch-based carbon fiber with ammonia water. The activity of the ACF for the conversion of SO to aq. H SO2 2 4

in the presence of H O and O is significantly higher than that of other commercial ACF studied before. Both the SO2 2 2

adsorption capacity and oxidation activity of ACF are enhanced very much by the nitrogen-containing functional groups.
 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction The introduction of nitrogen-containing functional
groups could be implemented in many ways [16–20], such

SO is one of the major pollutants in the atmosphere. as by carbonizing and activating the mixtures of the carbon2

Several methods have been established for the removal of precursor and ammonia or its derivatives [16,17], by heat-
SO from flue gas, e.g., wet desulfurization (with CaO, treating the carbonaceous materials with NH or HCN2 3

H O) and dry desulfurization (with active coke) etc. [18,19], or by depositing the nitrogen-containing agent into2

However, much effort is still needed to improve the cost / the activated carbon [20]. In the present paper, nitrogen-
performance ratio for the SO removal. containing functional groups were directly introduced onto2

Recently, a series of papers have reported that activated the surface of ACF by using NH ?H O as the activation3 2

carbon fibers may be a good candidate to remove SO into agent. Based on the present results, the types and role of2

aq. H SO in the presence of H O and O without any nitrogen-containing functional groups can be discussed,2 4 2 2

carbon loss [1–10]. Much better efficiency can be obtained and optimum modification of the ACF surface to obtain
after heat treatment of ACF at optimum temperatures even higher activity for SO removal can be expected.2

[1–14].
In a previous paper, we found that cellulose-based

activated carbon fiber had the highest activity among the
ACFs so far examined, although the ACFs had similar 2. Experimental
surface areas [1]. This was attributed to its largest amount
of oxygen-containing functional groups. Thus, this should 2.1. Preparation of ACFs
indicate that the surface chemistry does play an important
role in the catalytic removal of SO . Activated carbon with A pitch-based carbon fiber which was derived from2

nitrogen-containing functional groups was reported also to ethylene tar was activated by steam (H-series) and am-
benefit the oxidation of SO . However, the role of such monia water (N-series) at 800|9158C. The designed2

groups was not very clear [11,15–17]. concentration of ammonia water (NH ?H O) was intro-3 2

duced into the snake-like stainless steel tube furnace. The
temperature of the furnace was above 2008C, thus the*Corresponding author.

E-mail address: likx99@yahoo.com (K. Li). vaporization of ammonia water was achieved. The prepara-
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Table 1
Conditions of preparation and properties of samples

Sample Conditions of preparation Properties

Activation Activation Activating agent Activation Elemental analysis (wt%) S V DBET
2 ˚Temp. (8C) time (h) yield (%) m /g ml /g A

C H S O* N

H-1 800 5 steam 70 92.13 1.03 0.32 6.51 0.01 717 0.34 5.4
H-2 890 1.5 steam 31 95.79 0.77 0.45 2.99 0.00 1748 0.83 6.1
H-3 890 1 steam 39 95.82 0.73 0.43 3.01 0.01 1469 0.59 5.8

N-1 915 1 NH (g) 95 – – – – – – – –3

N-2 915 1 10.5 M ammonia water 73 96.26 0.70 0.35 2.24 0.45 671 0.30 5.1
N-3 915 1 7 M ammonia water 63 94.24 0.71 0.35 3.73 0.97 918 0.37 5.4
N-4 915 1 3.5 M ammonia water 41 94.62 0.70 0.31 3.25 1.12 1480 0.61 5.9
N-5 915 1 2.3 M ammonia water 39 94.72 0.63 0.44 3.83 0.38 1592 – –

N-4 (HT1000) N-4 was heat-treated in N at 10008C for 1 h 97.71 0.69 0.17 1.16 0.27 1470 0.59 5.82

* By difference; S , specific surface area; V, total pore volume; D, average pore width; –, not measured.BET

tion conditions and some properties of resultant ACFs are titrating with NaOH solution. The amount of H SO was2 4

summarized in Table 1. used to calculate the total sulfur amount on ACF after
Heat treatment of N-4 was carried out at 10008C for 1 h SO 1O adsorption.2 2

in N to obtain N-4 (HT1000) The ACF after SO 1O adsorption was extracted twice2 2 2

with 10 ml H O. The sulfur in the form of SO , and thus2 2

2.2. SO removal transformed into H SO by extraction, was detected by2 2 3

titration with solution of iodine. With the same portion of
SO removal was carried out in a fixed bed flow reactor solution, the dissolved SO (in the form of H SO ) was2 3 2 4

as described elsewhere [21–23]. ACF was packed in a determined by titration with NaOH solution.
tubular glass reactor of 8 mm diameter and the packing
height was about 0.1 g /10 mm. The concentrations of 2.5. Characterization of ACF
SO , O and H O in model flue gas were 1000 ppm,2 2 2

5vol% and 10vol%, respectively, under the balance of N . XPS was performed using a VG Scientific ZSCALAB-2

The weight of ACF, the total flow rate and reaction 220I-XL apparatus. The C1s and N1s spectra were ob-
temperature were 0.05|0.25 g, 100 ml /min and 308C, tained using MgK X-ray at 15 kV and 15 mA. Thea

respectively. The SO concentration was detected with a pressure inside the vacuum system was maintained at2
28flame photometric detector. 1.25310 Torr. The carbon C1s line (284.6 eV) was used

as calibration. A software package, Eclipse V2.1, was used
2.3. Adsorption of SO for peak fitting and quantification.2

The specific surface area and pore structure of ACFs
The adsorption capacity of ACF for SO of 2000 ppm were determined by using an ASAP-2000 instrument. The2

with or without 5vol% O was calculated separately by the former was measured by the isotherm of N (77 K), and2 2

difference of weight of ACF before and after adsorption. the latter was calculated by the H–K method.
The adsorption temperature, adsorption time, and gas flow
rate were 308C, 1 h, and 100 ml /min, respectively. The
adsorption capacity of ACFs for H O of 4vol% in N flow 3. Results2 2

was measured at 308C by weighing the sample after 4 h
adsorption. 3.1. Introduction of N-containing functional groups

2.4. Analysis of SO and SO on the surface of ACF Table 1 summarizes the properties of ACFs activated2 3

after SO 1O adsorption with steam and ammonia water. The reaction between2 2

carbon fiber and NH does takes place (Sample N-1),3

The ACF after SO 1O adsorption was heated from although the gasification rate is rather low even at 9158C.2 2

room temperature to 4508C by temperature-programmed The N-containing groups appear on the surface probably
desorption, the evolved gas bubbled through a solution of due to the reaction of carbon with NH ? or NH? radicals2

H O (5vol%), and formed H SO was determined by [18], which are formed by NH decomposition at high2 2 2 4 3
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Fig. 1. Nitrogen adsorption isotherms for ACFs. Fig. 2. Activity of ACFs for SO removal at 308C.2

temperature. The specific surface area and burn-off of Some data derived from the N1s spectrum of N-4 are
resultant ACFs increase with lower NH concentration given in Table 2. When compared with elemental analysis3

(Samples N-2–N-5). In other words, the gasification (1.18%) and surface N/C atomic ratio (1.09%), it can be
appears to be inhibited to some extent when ammonia is concluded that most of the nitrogen exists on the surface of
added to the water vapor. A possible explanation for this ACF.
phenomenon may be as follows [18]: the reaction of H O2

and carbon matrix creates active sites, the latter react with 3.2. Activities of ACFs for SO removal2

NH ? and NH? radicals to form more stable nitrogen2

groups, thus the active sites become ‘deactivated’. So the The activities of ACFs for SO removal in the presence2

higher the concentration of NH in the activating agent, the of O and H O are shown in Fig. 2. The N-series ACFs3 2 2

more serious is the ‘deactivation’ of active sites. show higher activity than the H-series, even though the
The elemental analysis indicated that nitrogen is suc- N-series ACFs have lower surface areas. The N-series

cessfully introduced onto the N-series ACF. While almost ACFs has even higher activity than the PAN-based ACFs
no nitrogen is detected in the H-series ACF (H-1–H-3). A reported before [2], although the latter also has a high
higher oxygen content in ACF of lower surface area nitrogen content (4.5% and 5.8%).
activated by steam is observed (H-1). Both H-series and Fig. 3 shows the activity of heat-treated N-4 and H-3
N-series ACF of higher surface areas show similar oxygen samples at their optimum heat treatment temperature for
contents. SO removal. Although they have similar surfaces, the2

The nitrogen adsorption isotherms of ACFs activated activity of N-4 ACF is still higher than that of H-3.
with steam and the solution of ammonia is shown in Fig. 1.
Both ACFs contain mainly micropores. The average pore 3.3. Adsorption of SO and H O2 2

diameters of ACFs are also similar when they have similar
surface area, as shown in Table 1 (H-3 and N-4). From Table 3 it can be seen that the SO adsorption2

Table 2
XPS curve-fit data for C1s peaks of N-4 and H-3 and for N1s peaks of N-4

Groups N-4 H-3

Binding energy (eV) Relative intensity (%) binding energy (eV) relative intensity (%)

C–C 284.5 69 284.7 66
C–O 286.2 10 286.4 13
C5O 287.7 7 287.4 8
COOH 289.1 5 289.1 7
p→p* 291.2 9 291.2 6

N-4 before desulfurization N-4 after desulfurization
Nitrogen-containing 401.7 10 401.6 26
functional groups 400.1 58 400.1 64

398.6 32 398.3 10



1806 K. Li et al. / Carbon 39 (2001) 1803 –1808

specific area, after heat treatment in N at their respective2

optimum temperature. These results suggest the important
role of surface functional groups in the ACFs.

Table 2 presents C1s XPS deconvolution results of
samples N-4 and H-3. They both have the same types and
similar amounts of oxygen-containing groups. Thus, the
remarkably high activity of N-4 for SO removal can be2

attributed to the nitrogen-containing functional groups.
It is necessary to know the types of nitrogen-containing

groups in ACFs before the study of the influence of
nitrogen-containing groups on the activities of ACFs for
SO removal is performed. The N1s spectra and deconvo-2

lution results for sample N-4 before and after desulfuriza-
tion are shown in Fig. 4 and Table 2. Both N1s regionsFig. 3. The desulfurization activity of H-3 and N-4 at optimum

heat treatment temperature. indicate the presence of three different species. The peak
with binding energy at 398.5 eV can be ascribed to
pyridine-like structures [25–29], the other two peaks atTable 3

The adsorption capacities of ACFs for SO , SO 1O and H O at 400.1 eV and 401.6 eV correspond to pyrrolic-like nitrogen2 2 2 2
21308C/mg.g or pyridone [25,27–33] and quaternary nitrogen which

includes protonated pyridinic nitrogen [25,28,36,37], re-N-4 H-3
spectively. The changes of the relative intensity of these

SO 36 182 nitrogen-containing species before and after desulfurization
SO 1O 60 252 2 are observed, especially the peaks at 398.5 eV and 401.6H O 398 3322 eV, where the relative intensity of the peak at 398.5 eV

evidently decreases after desulfurization, whereas the
intensity of the peak at 401.6 eV increases after desulfuri-capacity of N-4 is larger than that of H-3, regardless of the
zation. This may be due to the following reasons: (a) a lonepresence of O . In addition, a higher adsorption capacity of2

electron pair in the plane of pyridine-like ring may easilyH O is also observed for sample N-4.2

Table 4 summarizes the total sulfur uptakes (SO 1SO )2 3

and the relative contents of SO and SO which are2 3

washed out by water. The remaining sulfur is considered to
be in the form of SO since it has a strong affinity for the3

ACF surface [15–24]. The amount of sulfur present in the
form of SO in N-4 is larger than in H-3, while the amount3

of sulfur present in the form of SO in N-4 is less than in2

H-3. This is evidence for the higher catalytic oxidation
activity of N-4.

4. Discussion

Ammonia-activated ACFs show a higher activity than
steam-activated ACFs, regardless of their surface area.
Sample N-4 also has higher activity than H-3, with similar

Table 4
The total amount of sulfur after adsorption of SO 1O and the2 2

amounts of sulfur (SO and SO ) in washing solution2 3

a b c dSample (mg/g) (%) (%) (%)

H-3 11.2 24.4 35.7 39.9
N-4 28.3 15.1 49.8 35.1

a The total sulfur content of ACF after SO 1O adsorption.2 2
b Sulfur present in the form of SO in washing solution.2
c Sulfur present in the form of SO in washing solution.3
d Sulfur not washed out. Fig. 4. N1s spectra of N-4 ACF.
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2react H SO to form the protonated pyridinic nitrogen formation of O from adsorbed O . As for quaternary2 4 2 2

(H SO is produced by the oxidation and hydration of SO nitrogen, which corresponds to nitrogen atoms incorpo-2 4 2

over ACF in the presence of O and H O); (b) pyrole-like rated in the graphite layers, its function is not clear, but it2 2

nitrogen is difficult to react with the protons due to the fact is estimated that the effective charge on the nitrogen atom
that there are no unpaired electrons on the nitrogen atom of increases when going from top to center and ‘valley’
pyrole, so it contributes little to the 401.6 eV peak. positions [32], so quaternary nitrogen of center and
Therefore, it can be suggested that a part of quaternary ‘valley’ positions may show a positive influence on
nitrogen after desulfurization results from the conversion catalytic activity [34]. With respect to the pyridone, its role
of pyridine-like nitrogen for sample N-4 before desulfuri- is not understood.
zation. Other nitrogen groups, such as amides, lactams and The presence of H O also has considerable influence on2

imides, will react with H SO to be decomposed upon desulfurization activity, because on the one hand it reacts2 4

desulfurization. Thus, we conclude that the nitrogen-con- with SO to form H SO , and on the other hand and also3 2 4

taining groups on the surface of ACFs during the desulfuri- more importantly, it behaves as a regeneration medium to
zation are pyridone-, pyrole-, pyridine-like, and quaternary wash H SO from the SO adsorption sites [1,2,4,6,13]. It2 4 2

nitrogen. is suggested [18,32] that nitrogen-containing groups may
Continuous SO removal over ACFs is carried out by offer polar sites for H O adsorption due to their stronger2 2

the following processes [1–9]: SO adsorbed on the ACF polarity, thus ACFs with nitrogen-containing groups show2

is oxidized into SO by O from the gas phase. The higher adsorption affinity for H O than pure carbons.3 2 2

reaction of SO and H O which condensed in ACF pores Based on the analysis above, nitrogen-containing groups3 2

produces H SO , which is washed by excess amount of favour adsorption of SO and H O and oxidation of SO .2 4 2 2 2

condensed H O to recover the SO adsorption sites. Thus, However, which types of nitrogen-containing groups play2 2

a new cycle of adsorption and oxidation of SO and the most important role still needs to be studied.2

production and elution of H SO starts again. This con-2 4

tinuous operation makes SO removal possible. Hence,2

ACFs which have higher adsorption capacity for SO and2 5. Conclusion
H O, higher catalytic activity for oxidation of SO to SO2 2 3

and easier elution of H SO from the surface of ACFs2 4 Using the solution of ammonia and water as an activa-
have higher desulfurization activities. Pyridine groups tion agent has proved to be an efficient way to directly
show relatively strong basicity, and they have strong introduce nitrogen-containing functional groups onto the
affinity for acidic molecules such as SO to enhance2 surface of ACFs. The resultant ACFs show much higher
ACF’s adsorption capacity. This is confirmed in Table 3. activity for SO removal in the presence of O and H O2 2 2
The adsorption capacities of N-4 for SO and SO 1O are2 2 2 than other commercial ACFs of similar surface areas. This
higher than those of H-3. In addition, the more pyridine- effect can be attributed to the presence of nitrogen-con-
like nitrogen species, the higher is the catalytic activity for taining functional groups since they are able to enhance the
the oxidation reaction [33]. Pyrole-like species are adsorption capacity of SO and H O and the catalytic2 2
believed to be the active part of nitrogen-containing activity for oxidation of SO to SO .2 3
functional groups [38]; Stohr et al. [19] found that
ammonia-treated activated carbons show a higher catalytic
activity than HCN-treated carbons for the oxidation re-
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