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Abstract

A generalized boundary-continuous displacement based double Fourier series solution to the boundary-value problem of free

vibration of thin anisotropic fiber reinforced plastic (FRP) rectangular plates is presented. The transverse vibrational characteristics

of laminated anisotropic plates with arbitrary combinations of admissible boundary conditions are theoretically investigated.

Numerical results presented here pertain to the natural or resonant frequencies of five-layer symmetric cross-ply plates with all edges

clamped, and rotated cross-ply anisotropic plates with all edges simply supported, which are, in turn compared with the corre-

sponding experimental results for two sets of glass fiber reinforced plastic (GFRP) thin anisotropic rectangular plates, fabricated

using two different techniques. The influence of possible defects generally encountered in the fabrication process on the experi-

mentally obtained resonant frequencies is also discussed here.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Free vibration response analysis of thin anisotropic

plates, fabricated with fiber reinforced composite mate-

rials such as glass/epoxy, graphite/epoxy, carbon/carbon,

boron/epoxy, Kevlar-49/epoxy, etc., is of intense interest

to aerospace engineers [1]. A variety of factors, such as

high strength-to-weight and stiffness-to-weight ratios
(resulting in fuel economy), corrosion resistance, longer

fatigue life and stealth characteristics (of military air-

craft, e.g., B-2 bomber, Nighthawk F117-A fighter) are

responsible for increased usage of fiber reinforced com-

posite laminates in aerospace structural applications. A

more recent advancement in composites in the commer-

cial aircraft sector, e.g., all-composite empennages on the

Boeing 7J7 andMcDonnell Douglas MD-91X, is to limit
sonic fatigue caused by the new fuel efficient propfan or

unducted fan (UDF) engines. All these advancements

and design requirements place a premium on an in-depth
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understanding of the response characteristics of such

structural components. The present study is intended to

capture some of these intricacies of the dynamic response

of composite structural components through analysis of

a model problem––free vibration of a thin anisotropic

rectangular plate. The Kirchhoff hypothesis provides a

well established framework for computing through-

thickness-averaged response quantities, such as deflec-
tions, stress resultants, stress couples (moment

resultants), natural frequencies, buckling loads, etc., of

thin plates made of composite materials.

Derivation of analytical (e.g., Fourier series) solution

for the problem of an anisotropic plate is fraught with

many complexities, such as those introduced by bend-

ing–twisting coupling and more important, general

admissible boundary conditions, that cannot be handled
by traditional analytical approaches, such as almost two

centuries-old Navier’s and close to a century-old Levy’s.

Green and Hearmon [2] introduced a boundary-con-

tinuous displacement type Fourier series method (see

[3]) to solve the problem of a thin anisotropic plate

subjected to simply supported boundary conditions

prescribed at all four edges. The first objective of the
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Nomenclature

a, b length and width, respectively, of a rectan-

gular plate

as; . . . �dr boundary Fourier coefficients

Dij bending and twisting rigidities

fi natural or resonant frequency (Hz)

h total thickness of a laminated plate

M1, M2, M6 stress couples (moment resultants)

m, n number of terms in Fourier series
Q1, Q2 shear stress resultants

r, s number of terms in Fourier series

t time

u3 transverse displacement component

Wrs plate Fourier coefficients

x1, x2, x3 Cartesian coordinate system

/0 fiber orientation angle of fiber reinforced

plastic anisotropic plate

q plate aspect ratio (a/b)

q0 volume density of a fiber reinforced lamina
material

x natural or resonant circular frequency (rad/s)

Fig. 1. A typical thin rectangular laminated plate.
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present investigation is to theoretically show that this

method can easily be extended or generalized to solve

laminated anisotropic plate boundary-value problems

with other types of boundary conditions, such as all
edges clamped or all edges free or some arbitrary com-

binations, e.g., cantilever and propped cantilever. It may

be noted here that Bert and Mayberry [4], and Ashton

and Waddoups [5] were the first to use approximate

Raleigh–Ritz technique to solve the problem of lami-

nated anisotropic plates. Whitney [6] presented a

boundary discontinuous type double Fourier series

based analytical solution for an anisotropic plate with
all edges clamped using two series, and compared his

results with those due to the Ritz method computed by

Ashton and Waddoups [5].

A review of the literature further reveals that al-

though a few experimental investigations and the com-

parisons of experimentally determined natural or

resonant frequencies with their counterparts computed

using approximate Raleigh–Ritz technique have been
reported in the published literature, e.g., Bert and

Mayberry [4], and Ashton and Waddoups [5], few au-

thors have presented comparisons of natural frequencies

computed using sophisticated analytical techniques,

such as the boundary-continuous displacement type

Fourier series method [2,3] with their experimental

counterparts. Additionally, fabrication of model com-

posite anisotropic plates has not been most often a part
of the experimental effort. Consequently, the effect of

factors influenced by the fabrication processes on the

experimental results have rarely been considered. The

second and more important objective of the present

study is to address this important issue.
2. Statement of the problem

A rectangular Cartesian coordinate system (x1, x2 and
x3 axes) is considered to represent the plate geometry as

shown in Fig. 1. The x1–x2 plane is placed at mid-depth
(reference surface) of the plate of thickness h, while axis
x3 is normal to it. The equations of motion for a sym-

metrically laminated anisotropic plate can be written as

follows:

M1;11 þ 2M6;12 þM2;22 ¼ �q
o2u3
ot2

; ð1Þ

where the stress couples or moment resultants, M1, M2

and M6 are given by

M1 ¼ �ðD11u3;11 þ D12u3;22 þ 2D16u3;12Þ; ð2aÞ

M2 ¼ �ðD12u3;11 þ D22u3;22 þ 2D26u3;12Þ; ð2bÞ

M6 ¼ �ðD16u3;11 þ D26u3;22 þ 2D66u3;12Þ; ð2cÞ

and the area density of the laminated plate material is

�q ¼
XN
k¼1

Z xðiÞ
3

xði�1Þ
3

q0 dx3; ð3Þ

in which q0 is the volume density of a fiber reinforced
layer material. u3 denotes transverse displacement

(deflection) along x3-axis, while Dij (i; j ¼ 1; 2; 6) are

bending/twisting rigidities, respectively (see [7] for defi-

nition).

On substitution of Eq. (2) into Eq. (1), the governing

partial differential equations for a symmetrically lami-

nated anisotropic plate may be expressed in terms of the
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transverse displacement component and its derivatives

in the following single equation:

D11u3;1111 þ 4D16u3;1112 þ 2ðD12 þ 2D66Þu3;1122

þ 4D26u3;1222 þ D22u3;2222 ¼ ��q
o2u3
ot2

: ð4Þ

The following boundary conditions, prescribed at an

edge x1 ¼ 0 or a, and their counterparts prescribed at one

or both of the other two edges, form along with the

governing PDE’s (1)–(3) a self-adjoint differential system:

(i) Simply supported edge (SS):

u3 ¼ M1 ¼ 0; ð5aÞ
(ii) Clamped edge (CE):

u3 ¼ u3;1 ¼ 0; ð5bÞ
(iii) Free edge (F):

Q1 ¼ M1 ¼ 0; ð5cÞ
(iv) Roller-skate edge (RS):

Q1 ¼ u3;1 ¼ 0; ð5dÞ

in which the effective transverse shear stress resultant on

a free edge normal to the x1-axis is given by

Q1 ¼ Q1 þM6;2 ¼ M1;1 þ 2M6;2: ð6Þ
3. Double Fourier series solution subjected to admissible

and complementary boundary constraints

The assumed solution function for the problem of a

finite-dimensional thin anisotropic plate, posed by the

governing partial differential equation (4) and boundary
conditions given by one of Eq. (5) for the edges x1 ¼ 0; a,
and their counterparts prescribed at the other two edges,

can be selected in the most general case as

u3ðx1; x2; tÞ ¼ eixtW ðx1; x2Þ; ð7Þ
in which, with complementary plate boundary constraint

(‘‘ordinary’’ discontinuity) assigned at edges, W ðx1; x2Þ is
expanded in the following double Fourier series:

W ðx1; x2Þ ¼
X1
r¼1

X1
s¼1

Wrs sinðarx1Þ sinðbsx2Þ;

0 < x1 < a; 0 < x2 < b; ð8aÞ

in which

ar ¼ rp=a; bs ¼ sp=b; ð8bÞ
and Wrs represents r � s number of plate Fourier coeffi-

cients. The following will illustrate the most general

procedure of (partial) differentiation of the assumed

double Fourier series, given by Eq. (8a), in the presence

of ‘‘ordinary’’ discontinuities (resulting from the above
hypothesis of complementary boundary constraint) for

the general (or mixed) types of prescribed boundary

conditions [8].

W;1ðx1; x2Þ ¼
1

2

X1
s¼1

as sinðbsx2Þ þ
X1
r¼1

X1
s¼1

ðarWrs

þ as/r þ bswrÞ cosðarx1Þ sinðbsx2Þ;

06 x1 6 a; 0 < x2 < b; ð9aÞ

W;2ðx1; x2Þ ¼
1

2

X1
r¼1

cr sinðarx1Þ þ
X1
r¼1

X1
s¼1

ðbsWrs

þ cr/s þ drwsÞ sinðarx1Þ cosðbsx2Þ;

0 < x1 < a; 06 x2 6 b; ð9bÞ
W;12ðx1; x2Þ ¼ W;21ðx1; x2Þ

¼ 1

2

X1
r¼1

arcr cosðarx1Þ þ
1

2

X1
s¼1

bsas cosðbsx2Þ

þ
X1
r¼1

X1
s¼1

farbsWrs þ bsðas/r þ bswrÞ

þ arðcr/s þ drwsÞg cosðarx1Þ cosðbsx2Þ;

06 x1 6 a; 06 x2 6 b; ð9cÞ

W;111ðx1; x2Þ ¼
1

2

X1
s¼1

�as sinðbsx2Þ

þ
X1
r¼1

X1
s¼1

½�a2r ðarWrs þ as/r þ bswrÞ

þ �as/r þ �bswr� cosðarx1Þ sinðbsx2Þ;

06 x1 6 a; 0 < x2 < b; ð9dÞ

W;222ðx1; x2Þ ¼
1

2

X1
r¼1

�cr sinðarx1Þ

þ
X1
r¼1

X1
s¼1

½�b2
s ðbsWrs þ cr/s þ drwsÞ

þ �cr/s þ �drws� sinðarx1Þ cosðbsx2Þ;

0 < x1 < a; 06 x2 6 b; ð9eÞ

W;1211ðx1; x2Þ

¼ W;1112ðx1; x2Þ ¼ W;1121ðx1; x2Þ ¼ W;2111ðx1; x2Þ

¼ � 1

2

X1
r¼1

a3r cr cosðarx1Þ þ
1

2

X1
s¼1

bs�as cosðbsx2Þ

þ
X1
r¼1

X1
s¼1

½�a2rfarbsWrs þ bsðas/r þ bswrÞ

þ arðcr/s þ drwsÞg

þ bsð�as/r þ �bswrÞ� cosðarx1Þ cosðbsx2Þ;

06 x1 6 a; 06 x2 6 b; ð9fÞ



88 R.A. Chaudhuri et al. / Composite Structures 67 (2005) 85–97
W;2221ðx1; x2Þ
¼ W;1222ðx1; x2Þ ¼ W;2122ðx1; x2Þ ¼ W;2212ðx1; x2Þ

¼ � 1

2

X1
s¼1

b3
s as cosðbsx2Þ þ

1

2

X1
r¼1

ar�cr cosðarx1Þ

þ
X1
r¼1

X1
s¼1

½�b2
sfarbsWrs þ arðcr/s þ drwsÞ

þ bsðas/r þ bswrÞg
þ arð�cr/s þ �drwsÞ� cosðarx1Þ cosðbsx2Þ;
06 x1 6 a; 06 x2 6 b; ð9gÞ

in which the unknown boundary Fourier coefficients as,
bs, cr, dr, �as, �bs, �cr and �dr are as defined in Appendix A,

while /i and wi are given as follows:

ð/i;wiÞ ¼
ð0; 1Þ; i ¼ odd

ð1; 0Þ; i ¼ even

� �
: ð10Þ

The remaining partial derivatives can be obtained by
termwise differentiation.

For a fourth order PDE, given by Eq. (4) representing

the equation of motion of a laminated anisotropic plate,

subjected to full complementary boundary constraints

assigned at both ends in each direction (e.g., the edges

either free or roller-skate type), the boundary Fourier

coefficients, as; . . . �dr, number 4ðr þ sÞ. The non-zero

boundary displacements and their partial derivatives for
free or roller-skate type boundary conditions are given

as follows:

fW ð0; x2Þ;W ða; x2Þg ¼ a
4

X1
s¼1

ð�as � bsÞ sinðbsx2Þ;

ð11a;bÞ

fW ðx1; 0Þ;W ðx1; bÞg ¼ b
4

X1
r¼1

ð�cr � drÞ sinðarx1Þ;

ð11c;dÞ

fW;11ð0; x2Þ;W;11ða; x2Þg ¼ a
4

X1
s¼1

ð��as � �bsÞ sinðbsx2Þ;

ð11e;fÞ

fW;22ðx1; 0Þ;W;22ðx1; bÞg ¼ b
4

X1
r¼1

ð��cr � �drÞ sinðarx1Þ:

ð11g;hÞ
For laminated anisotropic plates with one or more edges

supported (i.e., either simply supported or clamped), the

number of boundary Fourier coefficients will be corre-
spondingly reduced. For example, for a laminated

anisotropic cantilever plate with the edge x1 ¼ 0 being

clamped, W ð0; x2Þ ¼ 0, which gives as ¼ �bs. Similarly,

for the same plate with the edge x1 ¼ a being clamped,

W ða; x2Þ ¼ 0, which gives as ¼ bs. In either case, the

number of unknown boundary Fourier coefficients will

be 4r þ 3s. For a laminated anisotropic propped canti-
lever plate with the edge x1 ¼ 0, a being clamped and

simply supported, respectively, W ð0; x2Þ ¼ W ða; x2Þ ¼ 0,

which gives as ¼ bs ¼ 0. In that case, the number of

unknown boundary Fourier coefficients will be 4r þ 2s.
For a laminated anisotropic plate with the edges either

clamped or simply supported, W ð0; x2Þ ¼ W ða; x2Þ ¼
W ðx1; 0Þ ¼ W ðx1; bÞ ¼ 0, which will render as ¼ bs ¼
cr ¼ dr ¼ 0.

The next step is to introduce the assumed solution

function, given by Eqs. (7), (8a) and (8b), and its

appropriately derived derivatives, such as those given by

Eq. (9) above into the governing partial differential
equations (4), which yields the following:

X1
r¼1

X1
s¼1

½F1ðr; sÞ sinðarx1Þ sinðbsx2Þ

þ F2ðr; sÞ cosðarx1Þ cosðbsx2Þ� þ
X1
r¼1

F3ðrÞ cosðarx1Þ

þ
X1
s¼1

F4ðsÞ cosðbsx2Þ ¼ 0; ð12Þ

in which

F1ðr; sÞ ¼ D11fa3r ðarWrs þ as/r þ bswrÞ � arð�as/r

þ �bswrÞg þ 2ðD12 þ 2D66ÞarbsfarbsWrs

þ bsðas/r þ bswrÞ þ arðcr/s þ drwsÞg

þ D22fb3
s ðbsWrs þ cr/s þ drwsÞ

� bsð�cr/s þ �drwsÞg � �qx2Wrs; ð13aÞ

F2ðr; sÞ ¼ 4D16½�a2rfarbsWrs þ bsðas/r þ bswrÞ
þ arðcr/s þ drwsÞg þ bsð�as/r þ �bswrÞ�

þ 4D26½�b2
sfarbsWrs þ bsðas/r þ bswrÞ

þ arðcr/s þ drwsÞg þ arð�cr/s þ �drwsÞ�; ð13bÞ

F3ðrÞ ¼ 2ð�D16a
3
r cr þ D26ar�crÞ; ð13cÞ

F4ðsÞ ¼ 2ð�D26b
3
s as þ D16bs�asÞ: ð13dÞ

This step yields double Fourier sine–sine and cosine–

cosine series as well as single cosine Fourier series,

equating the coefficients of each of which to zero will

generate 2rsþ r þ s algebraic equations against rs un-
knowns of the assumed solution, i.e., more equa-

tions than unknowns, thus denying the existence of a

Fourier series type solution. Since Eq. (12) is valid in

the domain (open region) of the plate, this difficulty

can be alleviated by expanding cosðarx1Þ cosðbsx2Þ,
cosðarx1Þ and cosðbsx2Þ in the form of Fourier sine–sine

series as suggested by Green and Hearmon [2], Chau-

dhuri and Kabir [3], and Kabir and Chaudhuri [9–11] as
follows:
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cosðarx1Þ cosðbsx2Þ ¼
X1
m¼1

X1
n¼1

hrmhsn sinðamx1Þ sinðbnx2Þ;

r 6¼ 0; s 6¼ 0; 0 < x1 < a; 0 < x2 < b;

ð14aÞ

cosðarx1Þ ¼
X1
m¼1

hrm sinðamx1Þ; r 6¼ 0; ð14bÞ

cosðbsx2Þ ¼
X1
m¼1

hsn sinðbnx2Þ; s 6¼ 0; ð14cÞ

with

hrm ¼
4m

pðm2�r2Þ ; mþ r ¼ odd; m 6¼ r;
0; mþ r ¼ even;

�
ð15aÞ

hsn ¼
4n

pðn2�s2Þ ; nþ s ¼ odd; n 6¼ s;
0; nþ s ¼ even;

�
ð15bÞ

and

h0m ¼ h0n ¼ 1: ð15cÞ
Utilization of Eqs. (14) and (15) followed by arrange-

ment of the resulting series as a double Fourier sine–sine

series, and setting the coefficient of each term to zero,

yields the following set of equations for r; s ¼ 1; 2; 3; . . . :

F ðr; sÞWrs � 4
X1
m¼1

X1
n¼1

ambnðca2m þ vb2
nÞhrmhsnWmn

þ 4c
X1
m¼1

X1
n¼1

½�a2mfbnðan/m þ bnwmÞþ amðcm/n

þ dmwnÞgþ bnð�an/m þ �bnwmÞ�hrmhsn

þ 4v
X1
m¼1

X1
n¼1

½�b2
nfbnðan/m þ bnwmÞþ amðcm/n þ dmwnÞg

þ amð�cm/n þ �dmwnÞ�hrmhsn

þ 2
X1
m¼1

amðv�cm

"
� ca2mcmÞhrm þ

X1
n¼1

bnðc�an � vb2
nanÞhsn

#

þ 4c
X1
n¼1

1

2
bn�anhsn

(
þ
X1
m¼1

bnð�an/m þ �bnwmÞhrmhsn

)

þ 4v
X1
m¼1

1

2
am�cmhrm

(
þ
X1
n¼1

amð�cm/n þ �dmwnÞhrmhsn

)

¼�ar a2r ðas/r

n
þ bswrÞ� ð�as/r þ �bswrÞ

o
� 2n

n
bsðas/r:þ bswrÞþ arðcr/s þ drwsÞ

o
� gbs

n
b2
s ðcr/s þ drwsÞ� ð�cr/s þ �drwsÞ

o
; ð16Þ

in which

F ðr; sÞ ¼ a4r þ 2na2rb
2
s þ gb4

s � k; ð17Þ
with

n ¼ ðD12 þ 2D66Þ=D11; g ¼ D22=D11; ð18a;bÞ
c ¼ D16=D11; v ¼ D26=D11; ð18c;dÞ
and

k ¼ �qx2=ðD11Þ: ð18eÞ

Eq. (16) can be further simplified by using the following

summation results [2]:

1

2n2
þ

X1
m¼2;... even

1

ðn2 � m2Þ ¼ 0; n ¼ odd; ð19aÞ

X1
m¼1;... odd

1

ðn2 � m2Þ ¼ 0; n ¼ even: ð19bÞ

The remaining equations are supplied by the prescribed

admissible boundary conditions at each edge.
4. Examples of boundary conditions

The following two sets of examples are employed to
illustrate the present theoretical procedure for obtaining

double Fourier series solution to the problem of free

vibration of a laminated anisotropic plate subjected to

an arbitrary mix of admissible boundary conditions.
4.1. A cantilever plate

In what follows, a cantilever anisotropic plate with

the edge x1 ¼ 0 clamped is considered first. The

boundary conditions are given as follows:

W ð0; x2Þ ¼ 0; W;1ð0; x2Þ ¼ 0; ð20a;bÞ

W;11ða; x2Þ þ 2cW;12ða; x2Þ þ ðn� 2lÞW;22ða; x2Þ ¼ 0;

ð20cÞ

W;111ða; x2Þ þ 4cW;112ða; x2Þ þ ðnþ 2lÞW;122ða; x2Þ
þ 2vW;222ða; x2Þ ¼ 0; ð20dÞ

ðn� 2lÞW;11ðx1; 0Þ þ 2vW;12ðx1; 0Þ þ W;22ðx1; 0Þ ¼ 0;

ð20eÞ

2cW;111ðx1; 0Þ þ ðnþ 2lÞW;112ðx1; 0Þ þ 4vW;122ðx1; 0Þ
þ gW;222ðx1; 0Þ ¼ 0; ð20fÞ

ðn� 2lÞW;11ðx1; bÞ þ 2vW;12ðx1; bÞ þ W;22ðx1; bÞ ¼ 0;

ð20gÞ

2cW;111ðx1; bÞ þ ðnþ 2lÞW;112ðx1; bÞ þ 4vW;122ðx1; bÞ
þ gW;222ðx1; bÞ ¼ 0; ð20hÞ

in which

l ¼ D66

D11

: ð21Þ

On substitution of Eqs. ((11a),(f)–(h)) into Eqs.

(20a,c,e,g) and noting from Eq. (9) that
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W;112ða; x2Þ ¼ W;222ða; x2Þ ¼ W;111ðx1; 0Þ
¼ W;122ðx1; 0Þ ¼ W;111ðx1; bÞ
¼ W;122ðx1; bÞ ¼ 0; ð22Þ

the required number of algebraic equations are supplied
by the additional boundary conditions. The final step

involves expansion of cosine term in the moment

boundary conditions into a sine series of the form:

cosðbsx2Þ ¼
X1
r¼1

hsr sinðbrx2Þ ð0 < x2 < bÞ; ð23Þ

where as before

hsr ¼
4r

pðr2 � s2Þ ; r þ s ¼ odd; n 6¼ s;

0; r þ s ¼ even:

8<
: ð24Þ
4.2. All edges either simply supported or clamped

The boundary conditions are given as follows:

(i) All edges simply supported:

W ð0; x2Þ ¼ 0; ð25aÞ
W;11ð0; x2Þ þ 2cW;12ð0; x2Þ þ ðn� 2lÞW;22ð0; x2Þ ¼ 0;

ð25bÞ
W ða; x2Þ ¼ 0; ð25cÞ
W;11ða; x2Þ þ 2cW;12ða; x2Þ þ ðn� 2lÞW;22ða; x2Þ ¼ 0;

ð25dÞ
W ðx1; 0Þ ¼ 0; ð25eÞ
ðn� 2lÞW;11ðx1; 0Þ þ 2vW;12ðx1; 0Þ þ W;22ðx1; 0Þ ¼ 0;

ð25fÞ
W ðx1; bÞ ¼ 0; ð25gÞ
ðn� 2lÞW;11ðx1; bÞ þ 2vW;12ðx1; bÞ þ W;22ðx1; bÞ ¼ 0;

ð25hÞ
(ii) All edges clamped:

W ð0; x2Þ ¼ 0; W;1ð0; x2Þ ¼ 0; ð26a;bÞ
W ða; x2Þ ¼ 0; W;1ða; x2Þ ¼ 0; ð26c;dÞ
W ðx1; 0Þ ¼ 0; W;1ðx1; 0Þ ¼ 0; ð26e;fÞ
W ðx1; bÞ ¼ 0; W;1ðx1; bÞ ¼ 0: ð26g;hÞ
In both the situations of supported edges, the assumed
transverse displacement solution function is given by

W ðx1; x2Þ ¼
X1
r¼1

X1
s¼1

Wrs sinðarx1Þ sinðbsx2Þ;

06 x1 6 a; 06 x2 6 b; ð27Þ

which completely satisfies the displacement boundary

conditions a priori, in a manner similar to Navier’s

approach, while they do not satisfy the corresponding
moment or slope boundary conditions for all edges

simply supported or all edges clamped, respectively. The

derivatives, that cannot be obtained by termwise differ-

entiation, are given as follows:

W;11ðx1; x2Þ ¼ �
X1
r¼1

X1
s¼1

a2rWrs sinðarx1Þ sinðbsx2Þ;

0 < x1 < a; 0 < x2 < b; ð28aÞ

W;111ðx1; x2Þ ¼
1

2

X1
s¼1

�as sinðbsx2Þ þ
X1
r¼1

X1
s¼1

½�a3rWrs

þ �as/r þ �bswr� cosðarx1Þ sinðbsx2Þ; ð28bÞ

W;22ðx1; x2Þ ¼ �
X1
r¼1

X1
s¼1

b2
sWrs sinðarx1Þ sinðbsx2Þ;

0 < x1 < a; 0 < x2 < b; ð28cÞ

W;222ðx1; x2Þ ¼
1

2

X1
r¼1

�cr sinðarx1Þ

þ
X1
r¼1

X1
s¼1

½�b3
sWrs þ �cr/s þ �drws�

� sinðarx1Þ cosðbsx2Þ: ð28dÞ

It can be easily seen that the Eq. (28) is obtained from

Eq. (9) by letting unknown boundary Fourier coeffi-

cients as, bs, cr and dr vanish. The procedure described

above generates 2ðr þ sÞ unknown boundary Fourier

coefficients, resulting in a total number of rsþ 2ðr þ sÞ
unknowns in the system, which call for as many equa-

tions in order to produce a solution to the problem

under investigation. The next step is to introduce the
assumed solution function, given by Eq. (27), and its

appropriately derived derivatives, such as those given by

Eq. (28) above into the governing partial differential

equations (4). This step yields double Fourier sine–sine

and cosine–cosine series as before. Utilization of Eqs.

(14) and (15) followed by arrangement of the resulting

series as a double Fourier sine–sine series, and setting

the coefficient of each term to zero, yields the following
set of equations for r; s ¼ 1; 2; 3; . . . :

F ðr; sÞWrs � 4
X1
m¼1

X1
n¼1

ambnðca2m þ vb2
nÞhrmhsnWmn

þ 4c
X1
n¼1

1

2
bn�anhsn

(
þ
X1
m¼1

bnð�an/m þ �bnwmÞhrmhsn

)

þ 4v
X1
m¼1

1

2
am�cmhrm

(
þ
X1
n¼1

amð�cm/n þ �dmwnÞhrmhsn

)

¼ arð�as/r þ �bswrÞ þ gbsð�cr/s þ �drwsÞ; ð29Þ

which is identical to its counterpart derived by Green

and Hearmon [2]. Eq. (29) can be further simplified by

using the summation results given by Eq. (19). The

above step generates rs equations. The remaining re-

quired equations numbering 2ðr þ sÞ may be obtained
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from satisfying either (i) Eqs. (25b,d,f,h) for the case of

all edges simply supported, or (ii) Eqs. (26b,d,f,h) for the

case of all edges clamped.

(i) All edges simply supported:

Satisfying the moment boundary conditions given by

Eqs. (25b,d,f,h) and subsequent elimination of the

boundary Fourier coefficients �as, �bs, �cr and �dr yield the

following set of equations (for each r; s ¼ 1; 2; . . .) [2]:

F ðr; sÞWrs � 2
X1
m¼1

X1
n¼1

ambnfcða2m þ a2r Þ

þ vðb2
s þ b2

nÞghrmhsnWmn ¼ 0; ð30Þ

which can be represented in the following compact form:X1
m¼1

X1
n¼1

fPrs
mn � kdrsmngWmn ¼ 0; ð31Þ

where

P rs
mn ¼

Qrs
mnh

rs
mn; mþ r ¼ odd; nþ s ¼ odd;

0; mþ r ¼ even; or nþ s ¼ even;

�
ð32aÞ

P rs
mn ¼ a4r þ 2na2rb

2
s þ gb4

s ; ð32bÞ
Qrs

mn ¼ �2ambnfcða2m þ a2r Þ þ vðb2
s þ b2

nÞg; ð32cÞ
hmnrs ¼ hrmhsn; ð32dÞ
and

drsmn ¼
1; m ¼ r; n ¼ s;
0; otherwise:

�
ð32eÞ

The set of equations given by Eq. (31) can be divided

into two groups: (i) r þ s ¼ odd and (ii) r þ s ¼ even.

For non-trivial solution, the determinant corresponding

to each group must vanish.

It may be noted that for a cross-ply plate
(D16 ¼ D26 ¼ 0), the solution given by Eq. (30) or Eq.

(31) reduces to the corresponding Navier solution

(Qrs
mn ¼ 0). Further substitution of n ¼ g ¼ 1 reduces the

solution to its homogeneous isotropic counterpart.

(ii) All edges clamped:
Satisfying the slope boundary conditions given by

Eqs. (26b,d,f,h) yields the following sets of algebraic

equations:X1
r¼1;... odd

arWrs ¼ 0;
X1

r¼2;... even

arWrs ¼ 0

for s ¼ 1; 2; . . . ð33a;bÞ
X1

s¼1;... odd

bsWrs ¼ 0;
X1

s¼2;... even

bsWrs ¼ 0

for r ¼ 1; 2; . . . ð33c;dÞ

which, in conjunction with Eq. (29) will yield the re-

quired frequency determinants following the standard

procedure. It may be noted that substitution of c ¼ v ¼
0 (D16 ¼ D26 ¼ 0) into Eq. (29), reduces it to its coun-

terpart for a cross-ply plate. Further substitution of n ¼
g ¼ 1 reduces the solution to its homogeneous isotropic

counterpart, given by Green [12].
A computer program, based upon the pivotal con-

densation method, has been developed to compute ei-

genvalues and eigenfunctions of the arbitrarily

laminated plate boundary-value problem.
5. Experimental determination of natural frequencies

In what follows, first a novel method for fabrication

of glass fiber reinforced plastic (GFRP) laminated

anisotropic plates is described followed by the actual

conduct of the experiment.

(i) Fabrication of GFRP laminated anisotropic plates:

Rotated symmetric cross-ply GFRP plates with the

fiber orientation angle, /0=ðp=2þ /0Þ=/0=ðp=2þ /0Þ=/0,

with /0 varying from 0� to 90� at an interval of 22.5�
have been fabricated. The plates have been fabricated

using E-glass fibers in continuous non-woven rovings

form (supplied by Hindustan Pilkington) and epoxy

resin mix. The resin mix is comprised of Araldite LY 556
and Hardener HY 951, both supplied by CIBA, in the

ratio of 100:10 by weight. Small amounts of solvents like

acetone and methyl ethyl ketone (MEK) have also been

used sometimes to facilitate resin transfer in the resin

transfer method discussed below. The primary innova-

tion in the method of fabrication pertains to using

wooden rectangular frames with thin nails or pins at

specified spacings depending on the fiber orientation
angle, shown in Fig. 2. The spacing d between two

contiguous fiber rovings is decided first based upon the

desired fiber volume percentage (Vf ) of a unidirectional

ply or layer. As can be seen from Fig. 2(a), spacings of

nails or pins, dx and dy , in the x1 and x2 directions,

respectively, on a rectangular wooden frame for lay-up

of a ply with the fiber orientation angle, /0, can easily be

calculated to be dcosecð/0Þ and dsecð/0Þ, respectively.
Corresponding spacings of nails or pins, d 0

x and d 0
y , in the

x1 and x2 directions, respectively, on a rectangular

wooden frame for lay-up of a ply with the fiber orien-

tation angle, p=2þ /0, can be seen to be dsecð/0Þ ¼ dy
and dcosecð/0Þ ¼ dx, respectively (Fig. 2(b)). Continu-

ous rovings either in the dry or impregnated with the

resin mix are laid on the plate surface passing or

wrapping around these nails or pins. Two types of
techniques––the resin flow method and resin transfer

method––have been implemented here, the details of

which are available in Chaudhuri and Balaraman [13]

and will not be repeated here. The series of plates fab-

ricated by the resin flow and resin transfer techniques

are designated C- and D-series, respectively [13]. In this

study, six five-layer plates have been fabricated using



Fig. 2. Nail spacings on frames for laying up plies with fiber orien-

tation angle (a) /0 and (b) p=2þ /0 with respect to x1-direction.

Fig. 3. Photograph of the experimental set-up for the vibration of a

clamped laminate.

Fig. 4. Schematic diagram for a knife edge simulating a simply sup-

ported boundary condition.
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each of the techniques described above, one of which

from each set has been utilized to experimentally

determine the bending and twisting rigidities directly. In

addition, one five-layer ‘‘defective’’ cross-ply [0�/90�/0�/
90�/0�] D-series plate has been fabricated to experi-
mentally assess the effect of human error, sloppiness of

manufacturing, etc. on the dynamic response of the

GFRP laminate.

(ii) Experimental technique:

The experimental set-up is shown in the accompa-
nying photograph (Fig. 3). It involves vibrating the

GFRP plate using an electrodynamic shaker or vibra-

tor, placed underneath the plate, and connected to a

variable frequency generator. The vibration output is

measured using a mechanical type transducer or elec-

trodynamic pickup, which picks up the vibration output

signal, which is then amplified by an amplifier. Both the

input and output signals are fed to an oscilloscope. The
resonant (natural) frequency is represented by a Lis-

sajous figure (an ellipse) on the oscilloscope screen. The

mode shapes are measured by moving the transducer

manually across the length and width of the plate as

shown in the photograph (Fig. 3). Two types of

boundary conditions have been simulated: (a) all edges

simply supported and (b) all edges clamped. Fig. 3

shows a clamped plate. The simply supported boundary
condition, which is usually more difficult to implement

experimentally, has been simulated by creating a notch

around the perimeter of the rectangular plate supported

on top and bottom by knife edges (schematically shown

in Fig. 4), attached to steel frames similar to its clamped

edge counterpart.
6. Results and discussion

The length, a, and width, b, of the fiber reinforced

plastic (FRP) plates tested for experimental determina-

tion of resonant frequencies are, unless otherwise stated,
820 and 420 mm, respectively. First, the bending rigid-

ities D11, D22, D12 and D66 have directly been measured

for each of the C-0� and D-0� plates by performing

bending and twisting tests [14]. C-0� or D-0� is a

shorthand notation for a ½/0=90þ /0=/0=90þ /0=/0�
laminate with /0 ¼ 0. Also measured have been densities

of each of two series of fabricated plates. These are listed

in Table 1.
Tables 2 and 3 display the experimentally determined

resonant frequencies and mode shapes of C-0� and D-0�
symmetric cross-ply laminates with all edges clamped,

and also show comparisons with their theoretical

counterparts. Additionally, the lowest seven theoretical

and two experimental resonant frequencies for all edges

simply supported are also displayed for the purpose of

comparison. As shown in Table 2, the experimentally
determined fundamental frequency for a simply sup-

ported C-0� symmetric cross-ply plate is 11.75% higher

than its theoretical counterpart. In contrast, the exper-

imentally determined fundamental frequency for its

clamped counterpart is within 6% of its theoretical

counterpart. The agreement between experimentally and



Table 1

Properties of C- and D-series symmetric cross-ply [0/90/0/90/0] laminates

Laminate Thickness (mm) Density (103 kg/m3) Volume percentage of fibers D11 (Nm) D22 (Nm) D12 (Nm) D66 (Nm)

C-0� 8.0 1.274 11.0 377.69 200.71 63.37 61.13

D-0� 6.5 1.340 16.5 222.30 122.43 38.55 38.55

Table 2

Resonant frequencies and mode shape patterns of a C-series rectangular (q ¼ 1:95) [0/90/0/90/0] symmetric cross-ply laminate

Res. Freq. f (Hz) Mode shape (r=s) Theo. (all edges SS) Expt. (all edges SS) Expt. (all edges C) Theo. (all edges C)

f1 1/1 50.110 56 100 106.335

f2 2/1 88.382 102 128 149.810

f3 3/1 157.247 – 185 230.878

f4 1/2 167.531 – 215 270.248

f5 2/2 200.442 – 240 306.456

f6 4/1 255.692 – 259 345.486

f7 3/2 261.614 – 298 375.046

Table 3

Resonant frequencies and mode shape patterns of D-series rectangular (q ¼ 1:95) [0/90/0/90/0] symmetric cross-ply laminates

Res. Freq. f (Hz) Mode shape ðr=sÞ Theo. (all edges

SS)

Expt. (all edges

SS)

Expt. (all edges

C) (defective)

Expt. (all edges C)

(good)

Theo. (all

edges C)

f1 1/1 42.408 45 89 93 89.513

f2 2/1 74.424 79 114 119 125.867

f3 3/1 131.687 – 175 183 193.532

f4 1/2 141.772 – – 220 227.564

f5 2/2 169.633 – – 252 258.290

f6 4/1 213.443 – – – 288.617

f7 3/2 220.998 – – 300 315.962
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theoretically determined resonant frequencies becomes,

however, progressively worse with higher modes with

the exception of the seventh mode. For example, the

discrepancy for the second mode of the above simply
supported C-0� symmetric cross-ply plate is 15.41%. As

regards the corresponding clamped laminate, the dis-

crepancies are 14.6%, 19.87%, 20.44%, 21.69%, 25.03%

and 20.54% for the second, third, fourth, fifth, sixth and

seventh mode, respectively. The reason for this dis-

crepancy is that the interlaminar or transverse shear

deformation and rotatory inertia become important

even for a thin laminate like the present one as the
wavelength becomes smaller with the rise of the resonant

frequency.

Table 3 shows similar comparisons for a D-0� sym-

metric cross-ply laminate. The experimentally deter-

mined fundamental frequency for a ‘‘good’’ clamped

D-0� symmetric cross-ply plate is within 4% of its

theoretical counterpart. The theoretical fundamental

frequency is, however, unexpectedly lower than its
experimental counterpart, which is probably due to

some discrepancy in manufacturing between the ‘‘good’’

D-0� laminate used for experimental determination of

elastic rigidities and its counterpart for determination of

natural frequencies. However, 4% difference is well

within the established engineering tolerance. The
experimentally determined higher resonant frequencies

of the ‘‘good’’ clamped D-0� symmetric cross-ply plate

are, however, lower than their theoretical counterparts,

as expected. In contrast to the C-0� symmetric cross-ply
laminate, the discrepancies between experimentally and

theoretically determined natural frequencies, however,

remain small even for higher modes. For example, the

discrepancies are 5.46%, 5.44%, 3.32%, 2.44% and 5.05%

for the second, third, fourth, fifth and seventh mode,

respectively. The reason may be due to the fact that the

D-0� symmetric cross-ply plate is thinner (b=h ¼ 64:62)
than the corresponding C-0� one (b=h ¼ 52:5). The other
reason may be attributable to the quality of fabrication

of the D-0� laminate as compared to its C-0� counter-

part. The resin flow method used for fabrication of C-0�
plate in all likelihood left resin-rich as well as resin-

starved areas, which have rendered the plate more sus-

ceptible to localized shear deformation. The ‘‘defective’’

D-0� symmetric cross-ply plate has been tested to check

on this hypothesis. For example, the discrepancies be-
tween the experimentally and theoretically determined

frequencies of this laminate are 9.43% and 9.58% for the

second and third mode, respectively, which has partially

proved the correctness of the hypothesis.

As shown in Table 3, the experimentally determined

fundamental frequency and the second lowest frequency
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for the simply supported ‘‘good’’ D-0� symmetric cross-

ply laminate are 6.11% and 6.15%, respectively, higher

than their theoretical counterparts. It may be remarked

in this connection that the experimentally determined
resonant frequencies of the simply supported cross-ply

C-0� and D-0� laminates, shown in Tables 2 and 3,

should have been progressively smaller than their theo-

retical counterparts because of the influence of the in-

terlaminar shear deformation and rotatory inertia

mentioned above. However, this decrease is more than

compensated by the inability to implement ideal simply

supported boundary conditions, and to prevent the
occurrence of some clamping effect at the edges.

Table 4 shows comparison of the lowest two theo-

retical and experimental resonant frequencies for sym-

metric rotated cross-ply anisotropic C-series ½/0=90þ
/0=/0=90þ /0=/0� laminates, with all edges simply sup-

ported, for different angles of orientation, /0. As ex-

pected, the experimentally measured frequencies are

slightly higher than their theoretically computed coun-
terparts, because it is very difficult to simulate vanishing

moment at a boundary. For example, the measured

fundamental frequencies are 11.80%, 13.41%, 13.65%,

13.72% and 11.56% higher than their computed coun-

terparts for the fiber orientation angle, /0 ¼ 0�, 22.5�,
45�, 67.5� and 90�, respectively. Likewise, the second

lowest measured resonant frequencies are higher than

their computed counterparts by 15.43%, 15.30%,
16.34%, 14.99% and 15.35% for the fiber orientation

angle, /0 ¼ 0�, 22.5�, 45�, 67.5� and 90�, respectively. As

Bert and Mayberry [4] has also noted, transverse shear

flexibility, and rotatory inertia have all been neglected in

the analysis, which would all tend to lower the experi-

mental resonant frequencies of the symmetric rotated

cross-ply anisotropic plates with all edges simply sup-

ported. However, as noted above, some clamping effect,
which could not be eliminated in the simulation of the

knife-edge (SS) boundary conditions, has contributed to

higher experimental frequencies.

Fig. 5 displays comparison of theoretical and exper-

imental (lowest two) resonant frequencies for symme-

tric rotated cross-ply anisotropic D-series ½/0=90þ
/0=/0=90þ /0=/0� laminates, with all edges simply sup-

ported, for different angles of orientation, /0. The
agreements between the two sets of results are slightly

closer for the D-series laminates than their C-series
Table 4

Comparison of theoretical and experimental resonant frequencies for C-s

½/0=90þ /0=/0=90þ /0=/0� laminates for different angles of orientation, /0 (

f ðHzÞn/0 0� 22.5�

f1 (Theo.) 50.089 51.140

f1 (Expt.) 56 58

f2 (Theo.) 88.362 92.801

f2 (Expt.) 102 107
counterparts for reasons explained above. Fig. 6 exhibits

the variation of the computed fundamental frequencies

for symmetric rotated cross-ply anisotropic D-series

½/0=90þ /0=/0=90þ /0=/0� laminates, with all edges
simply supported, for two different aspect ratios,

q ¼ a=b, with the angle of orientation, /0. It is note-

worthy from Table 4, and Fig. 5 that with aspect ratio

remaining constant, the resonant frequencies corre-

sponding to different modes vary in different fashions

with respect to the angle of orientation. Also, the reso-

nant frequency corresponding to a particular mode may

vary differently with the angle of orientation for different
aspect ratios.

It is further interesting to observe from Fig. 5 the

occurrence of interaction modes corresponding to cer-

tain degenerate frequencies. Warburton [15] has earlier

commented that such modes can occur for isotropic

plates with the same boundary conditions in the x and y
directions. Additionally, such occurrence of interaction

modes for the laminates under investigation depends
upon the angle of fiber orientation, /0, aspect ratio, q,
and bending and twisting rigidities. Most interestingly,

in such anisotropic laminates, the pair of modes, cor-

responding to degenerate frequencies, causing interac-

tion modes to occur may be r0=s0 þ s00=r00 (r0; s0; r00; s00 ¼
1; 2; 3; . . .) type meaning thereby, that depending on the

magnitudes of the rigidities, angle of fiber orientation

and aspect ratio, any two modes can give rise to an
interaction mode. This is unlike the case for an isotropic

or cross-ply plate, where a typical pair is r0=s0 þ s0=r0

type.
7. Summary and conclusions

A generalized boundary-continuous displacement

based double Fourier series solution to the boundary-

value problem of free vibration of thin laminated

anisotropic FRP rectangular plates is presented. The
transverse vibrational characteristics of laminated

anisotropic plates with arbitrary combinations of

admissible boundary conditions are theoretically inves-

tigated. Numerical results presented here pertain to the

natural or resonant frequencies of five-layer symmetric

cross-ply plates with all edges clamped, and rotated

cross-ply ½/0=90þ /0=/0=90þ /0=/0� anisotropic plates
eries rectangular (q ¼ 1:95) symmetric rotated cross-ply anisotropic

all edges simply supported)

45� 67.5� 90�

56.313 59.796 62.749

64 68 70

96.270 92.184 87.561

112 106 101



Fig. 5. Comparison of theoretical (––) and lowest two experimental (�) frequencies for symmetric rotated cross-ply anisotropic D-series rectangular

(q ¼ 1:95) ½/0=90þ /0=/0=90þ /0=/0� laminates for different angles of orientation, /0 (all edges simply supported).
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with all edges simply supported, which are, in turn
compared with the corresponding experimental results

for two sets of GFRP thin anisotropic rectangular

plates, fabricated using two different techniques––(i)

resin flow method and (ii) resin transfer method. The

influence of possible defects generally encountered in the

fabrication process on the values of the experimentally

obtained natural frequencies is also discussed here. The

main conclusions drawn from this study, are presented
as follows:
1. Numerical results obtained for simply supported rect-
angular thin rotated cross-ply ½/0=90þ /0=/0=90þ
/0=/0� anisotropic plates show that

(i) the occurrence of interaction modes, corre-

sponding to certain degenerate resonant frequen-

cies, for such plates depends upon the angle of

fiber orientation, aspect ratio, and bending and

twisting rigidities;

(ii) that in such type of plates, the pair of modes
causing interaction modes to occur may be



Fig. 6. Variation of the computed fundamental frequencies for sym-

metric rotated cross-ply anisotropic D-series ½/0=90þ /0=/0=90þ
/0=/0� laminates for two different aspect ratios with the angle of ori-

entation, /0 (all edges simply supported).
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r0=s0 þ s00=r00 (r0; s0; r00; s00 ¼ 1; 2; 3; . . .) type mean-

ing thereby, that depending on the magnitudes

of the elastic rigidities, angle of fiber orientation

and aspect ratio, any two modes can give rise to
an interaction mode. This is unlike the case for

an isotropic or cross-ply plate, where a typical

pair is r0=s0 þ s0=r0 type;
(iii) that with aspect ratio remaining constant, the

resonant frequencies corresponding to different

modes vary in different fashions with respect to

the angle of orientation. Also, the resonant fre-

quency corresponding to a particular mode
may vary differently with the angle of orientation

for different aspect ratios.

2. Theoretical and experimental results for clamped

rectangular thin cross-ply plates show that

(i) the experimentally obtained resonant frequencies

for all edges clamped lie, in general, between the

corresponding theoretical frequencies for all

edges simply supported and all edges clamped;
(ii) the much lower percentages of error in the mea-

sured resonant frequencies of the plates made by

the resin transfer method compared to those by

the resin flow method can be attributed to the

superiority of the former method in making a

number of identical plates;

(iii) the effect of human error and other similar factors

inherent in the process of fabrication of two iden-
tical GFRP plates made by the resin transfer

method do not affect their experimentally mea-

sured natural frequencies by more than 5%;

(iv) the close agreement between theoretical and

experimental resonant frequencies, for the
clamped cross-ply plates made by the resin trans-

fer method, simultaneously supports the sound-

ness of the method of fabrication, the validity

of the experimental results for the elastic rigidi-
ties and resonant frequencies as well as the theo-

retical results obtained by using the double

Fourier series method within the framework of

the classical lamination theory.

3. The experimental results for the simply supported

thin rotated cross-ply ½/0=90þ /0=/0=90þ /0=/0�
anisotropic plates show that the lowest two experi-

mentally determined resonant frequencies for differ-
ent angles of fiber orientation are always, albeit

slightly, higher their theoretical counterparts because

of some clamping effect at the edges.
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Appendix A. Boundary Fourier coefficients

The boundary Fourier coefficients, arising out of or-

dinary discontinuities in W ðx1; x2Þ and its partial deriv-
atives, are defined as follows:

ðas; bsÞ ¼
4

ab

Z b

0

½�W ða; x2Þ � W ð0; x2Þ� sinðbsx2Þdx2;

ðA:1a;bÞ

ðcr; drÞ ¼
4

ab

Z a

0

½�W ðx1; bÞ � W ðx1; 0Þ� sinðamx1Þdx1;

ðA:1c;dÞ

ð�as; �bsÞ ¼
4

ab

Z b

0

½�W;11ða; x2Þ � W;11ð0; x2Þ� sinðbsx2Þdx2;

ðA:1e;fÞ

ð�cr; �drÞ ¼
4

ab

Z a

0

½�W;22ðx1; bÞ � W;22ðx1; 0Þ� sinðamx1Þdx1:

ðA:1g;hÞ
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