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Abstract

The shape of unsymmetric laminates at room temperature has an out-of-plane deformation after autoclave curing processing.

Unsymmetric cross-ply laminates show two stable curvature shapes because of snap-through when the side lengths of laminates are
over a critical value. The shapes of the unsymmetric laminates at room temperature are influenced by various environmental factors
such as temperature and moisture. Experiments show a significant effect of tool-plate, which cannot be ignored, on the cured shape

of an unsymmetric laminate. We developed the simplified higher-order plate theory for laminates with linear transverse shear profile
by applying the Rayleigh-Ritz approximation in the solution procedure. For a refined approximation, in-plane strains were
expanded to complete fifth order polynomials. The slippage effects resulting from the interaction between the laminates and the
tool-plate were considered. A dimensionless slippage coefficient was introduced, which was correlated to the asymptotic curvature

value of the model corresponding experimental one was introduced, and the effect of processing parameters were studied. The
previous models, which had been applied only to a square plate, were extended to predict curvatures of rectangular plate con-
figurations with various aspect ratios. The slippage coefficient obtained from the square laminates can be used directly without

modification to predict curvatures of rectangular plates with various aspect ratios.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Advanced composite structures are manufactured
mostly by the autoclave or press-process. During this
process, the shapes of laminates change because the
elastic moduli and thermal expansion coefficients mis-
match between plies. Specifically, the mismatch in the
thermal expansion coefficient between plies with differ-
ent fiber orientation generates residual stresses during
the cooling and curing process. These residual stresses
causes bending–stretching and bending–twisting cou-
plings, which tend to change the shapes of the unsym-
metric laminates from flat plates to curved plates. These
stresses may also reduce initial failure strengths of
laminates. Thus, the cured shape must be accurately
predicted to estimate the residual stresses.
The stable shapes of unsymmetric cross-ply laminates

depend upon the size of the plate specimen. Small-
squared laminates are saddle shaped. As the size of the
plate increases, the stable deformation shape changes
from saddle to cylindrical and enters two stable equili-
brium states, known as the ‘‘snap-through phenom-
enon’’. Fig. 1 shows the feasible curvature shapes of
unsymmetric cross-ply laminates at room temperature.
Fig. 1(a) shows flat configurations at a stress-free tem-
perature, which is assumed to be near the glass transition
temperature. Fig. 1(b)–(d) show several types of room-
temperature shape after cooling down. Fig. 1(b) shows the
saddle shape of cross-ply laminates. The CLT (Classical
Lamination Theory) [1,2] predicts only this type of room-
temperature shape. The CLT predicts neither the curva-
ture shape change due to the size effects nor the snap-
through behavior. The snap-through action produces
either the shape of Fig. 1(d) or the state of Fig. 1 (c).
Several analyses have been proposed to predict the

cured shapes of unsymmetric laminates at room tem-
perature. Originally, Hyer [1–3] and Hamamoto and
Hyer [4] developed a nonlinear model based on the von
Karman plate theory. This model can predict the snap-
through phenomenon and curvature shapes qualita-
tively, including branch points of curvatures. Hong and
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Jun [5] included an in-plane strain effect in their model-
ing to account for free-edge effects. Peeters et al. [6]
reviewed several theoretical models that could predict
curvature shapes of unsymmetric laminates. Schlecht et
al. [7] and Schlecht and Schulte [8] employed the finite
element methode for the calculation of the room-tem-
perature shapes of unsymmetric laminates. Using the
FEA, the geometry of laminate and the lay-up sequence
can be modeled easily. Recently, Dano and Hyer [9]
proposed a refined model by expanding the complete
cubic polynomial for the in-plane normal strain and
constant out-of-plane curvatures. However, this model
is not adequate to find the convergent solution of room-
temperature curvature shapes. An accurate prediction
of curvature shapes requires a more refined model.
The predictions of previously proposed models differ

from experimental data because the autoclave process
exerts various environmental factors on the laminates.
To investigate the factors that cause the difference
between model predictions and experimental results,
Cho et al. [8] proposed a higher-order plate model with
von Karman nonlinearity to account for the environ-
ment factors. Instead of modeling each factor individu-
ally, they introduced a dimensionless slippage coefficient
to investigate global effects of processing parameters.
However, the third-order shear deformation model they
developed is not adequate to describe the slippage effect
because the transverse shear stress profile through the
thickness of laminates does not show a monotonic pat-
tern in the thickness direction. Thus, the model needed
to be corrected to reliably predict the room-temperature
curvature shapes. They used the Rayleigh-Ritz approx-
imation in the solution procedure and a cubic poly-
nomial as the basis function for the in-plane
displacement field. However, this cubic polynomial does
not accurately predict the curvature shape of the lami-
nates after it has been cooled to room temperature.
In the present study, we use the slippage model pro-

posed by Cho et al. [10] to predict the room-tempera-
ture curvature shapes. To produce a monotonically
varying transverse shear stress profile through the
thickness of the laminates, a quadratic higher-order
plate model was developed and the previous cubic
model was not used. In addition, to obtain the higher
precision Rayleigh-Ritz approximate solutions, a fifth-
order polynomial basis function was employed on the
in-plane normal strain field instead of the cubic poly-
nomial basis functions for the in-plane displacement
field as was used in the previous study. The model pre-
viously applied only to the square plates was extended
to predict curvature of unsymmetric rectangular lami-
nates of various aspect ratios.
2. Formulation

2.1. Displacements, strains, and slippage modeling

In the model of Hamamoto and Hyer [4], the dis-
placement fields that predicted the curved shape with
snap-through for the unsymmetric laminates are based
on the CLT with von Karman geometric non-linearity.
But since their model does not include the transverse
shear strain, the transverse shear stress resulting from
slippage between laminates and tool-plate cannot be
included. In our present study, the displacement fields
that account for the slippage effect were based on sim-
plified higher-order theory,

u1ðx; y; zÞ ¼ u01ðx; yÞ þ ’1zþ �1z
2

u2ðx; y; zÞ ¼ u02ðx; yÞ þ ’2zþ �2z
2

u3ðx; y; zÞ ¼ wðx; yÞ
ð1Þ

The schematic of the laminate and tool plate and the
profile of the transverse shear stresses are given in Fig. 2.
The boundary conditions of transverse shear stress at the
top and bottom surfaces of laminates are given as follows.

z ¼ h=2 : �32 ¼ �31 ¼ 0
z ¼ �h=2 : �32 ¼ �2T2; �31 ¼ �1T1

ð2Þ

T1 and T2 are transverse shear stresses in the x and y
directions, respectively, at the boundary surface. The
dimensionless coefficients �1 and �2 indicate the degree
of slippage. The terms of ��T� � ¼ 1; 2ð Þ indicate
transverse shear stresses due to slip between the lami-
nates and the tool-plate. The interaction between tool-
plate and laminate will be referred to as a ‘‘slippage
effect’’. It produces transverse shear stress across the
thickness of the laminates, which reduces the curvature
after cooling, as shown in Fig. 2. To express the vari-
ables ��T� in terms of the quantities related to the
bending moment resultants, one must consider the
effects of transverse shear stress on the curvature shape.
These mechanisms are modeled in Fig. 3. When flat lami-
nates are cured at high temperature and cooled down to
room temperature, the flat laminates change to curved
laminates and this change is directly related to themoment
Fig. 1. Geometric shapes with different curvatures at room-temperature.
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resultants,M1 andM2. Themoment resultantsM1 andM2

are calculated from the following relationships.

N
M

� �
¼

A B
C D

� �
"0

	

� �
ð3Þ

Fig. 3(a) shows a deformed post-curing configuration
that did not consider the slippage effects. M�

� indicates
the moment resultants that generate curvature at room
temperature. M� is the moment resultant that generates
the actual shape of curved laminate at room tempera-
ture. Because the slippage effects were not considered,
the values of the resultant moments M� and M�

� were
equal in Fig. 3(a).
Fig. 3(b) shows the case in which the curvature

decreased because of slippage effects. Since this effects
change the moment resultants from M� to M�

� , the fol-
lowing moment equilibrium equations associated with
laminate equilibrium configurations should be satisfied:
Fig. 2. Transverse shear stress boundary conditions.
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Ð Lx=2
�Lx=2

�1T1dx
h

2
¼ 2 M�

1 �M1

� �
¼ 2��1M1

Ð Ly=2
�Ly=2

�2T2dy
h

2
¼ 2 M�

2 �M2

� �
¼ 2��2M2

ð4Þ

where the change of moment resultants (M� �M
�
�) are

approximated as ���M�, with the introduction of coeffi-
cients ���. The transverse shear stresses ��T� are assumed
uniform over the surface of the laminates. The transverse
shear stresses may be approximated as follows:

�1T1 �
4

Lxh
D11�

�
1a

�2T2 �
4

Lyh
D22�

�
2b

ð5Þ

Fig. 3(c) is the ideal critical case, in which the
deformed curvature shape of laminates after curing is
nearly flat because of the excessively applied slippage
effect. The coefficient ��� reaches the critical value ���cr.
The critical value ���cr is equal to 1, at which curvatures
have zero asymptotic values.
Dimensionless coefficients �1and �2 ranging from 0 to

1 for cross-ply laminate are given by the following
equations.

�1 ¼
��1
��cr
; �2 ¼

��2
��cr

ð6Þ

Thus, when � is equal to 0, the results are the same as
Hyer’s, in which slippage effects are ignored. On the
other hand, when � is equal to 1, the laminates remain
flat after curing.
Transverse shear strains are then given by:


32

31

� �
¼

@u1
@z

þ
@u3
@x

@u2
@z

þ
@u3
@y

8><
>:

9>=
>;

¼
1

Q44Q55 �Q
2
45

Q55 �Q45

�Q45 Q44

� �
�32
�31

� �
ð7Þ

The four dependent variables ’1; ’2; �1 and �2 are sub-
ject to the surfaceboundary conditions given inEq. (2). The
four dependent variables can be determined as follows.

’1 ¼
1

2

Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

�
@w

@x

’2 ¼
1

2

Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45

�
@w

@y

�1 ¼ �
1

2h

Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

�2 ¼ �
1

2h

Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45

ð8Þ
Substituting Eq. (8) into Eq. (1), the final displace-
ment fields satisfying transverse shear stress boundary
conditions at the top and bottom surfaces are obtained.

u1 ¼ u01 �
@w

@x
zþ

z

2

Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

�
z2

2h

Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

u2 ¼ u02 �
@w

@y
zþ

z

2

Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45

�
z2

2h

Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45

ð9Þ

As shown in Fig. 2, the transverse shear stresses due
to slippage effects were modeled as a linear function
through the thickness. On the other hand, in the pre-
vious study [10], the in-plane displacement is assumed to
be cubic and the transverse shear stress distribution is
assumed to be parabolic through the thickness. The
displacement field and transverse shear strain proposed
in Ref. [10] are shown below.

u1 ¼ u01 �
@w

@x
z�

z2

2h

Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

�
2z3

3h2
Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

u2 ¼ u02 �
@w

@y
z�

z2

2h

Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45

�
2z3

3h2
Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45


yz ¼
@u2
@z

þ
@w

@y
¼
zð2z� hÞ

h2
Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45


xz ¼
@u1
@z

þ
@w

@x
¼
zð2z� hÞ

h2
Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

ð10Þ
Fig. 3. Modeling to determine slippage coefficient ��.
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However, the parabolic profile leads to an unrealistic
pattern of the transverse shear stresses across the thick-
ness. This unrealistic transverse shear stress profile is
depicted in Fig. 2.
We assume a simple linear distribution of the trans-

verse shear deformation through the thickness. The
approximate analysis is based on a Rayleigh-Ritz mini-
mization of the total potential energy. The displacement
functions obtained in Eq. (9) and Eq. (1) are used to
derive the expressions for their corresponding strains
needed to compute the laminate strain energy. Thus,
rather than the displacement fields, the laminate mid-
plane strains were expanded.
The mid-plane strains accounting for geometric von

Karman non-linearity are expressed as:

"0x ¼
@u01
@x

þ
1

2

@w0

@x

� �2

"0y ¼
@u02
@y

þ
1

2

@w0

@y

� �2


0xy ¼
@u01
@y

þ
@u02
@x

þ
@w0

@x

� �
@w0

@y

� �
ð11Þ

The in-plane normal strains were expanded as complete
fifth-order polynomials to obtain the convergent refer-
ence solution, and the out-of-plane deflection was
assumed to be a complete quadratic polynomial equa-
tion, which was used to generate constant curvature as
shown in Fig. 4.
The fifth-order mid-plane strains and out-of-plane

displacement are given as follows:

"0x ¼ c00 þ c10xþ c01yþ c20x
2 þ c11xyþ c02y

2

þ c30x
3 þ c21x

2yþ c12xy
2 þ c03y

3 þ c40x
4

þ c31x
3yþ c22x

2y2 þ c13xy
3 þ c04y

4 þ c50x
5

þ c41x
4yþ c32x

3y2 þ c23x
2y3 þ c14xy

4 þ c05y
5

"0y ¼ d00 þ d10xþ d01yþ d20x
2 þ d11xyþ d02y

2

þ d30x
3 þ d21x

2yþ d12xy
2 þ d03y

3 þ d40x
4

þ d31x
3yþ d22x

2y2 þ d13xy
3 þ d04y

4 þ d50x
5

þ d41x
4yþ d32x

3y2 þ d23x
2y3 þ d14xy

4 þ d05y
5

w0ðx; yÞ ¼
1

2
ðax2 þ cxyþ by2Þ

ð12Þ

The total strains in the laminates are given by

"x ¼ "0x þ z	
0
x; "y ¼ "0y þ z	

0
y; 
xy ¼ 
0xy þ z	

0
xy


yz ¼
@u2
@z

þ
@w

@y
¼

1

2
�
z

h

� �
Q55�2T2 �Q45�1T1

Q44Q55 �Q
2
45


xz ¼
@u1
@z

þ
@w

@x
¼

1

2
�
z

h

� �
Q44�1T1 �Q45�2T2

Q44Q55 �Q
2
45

ð13Þ
where "0x, "
0
y and 


0
xy are the laminate mid-plane strains

and 	0x, 	
0
y and 	

0
xy are the mid-plane curvatures in the x-

and y-directions and the twist curvature, respectively.
The mid-plane curvatures are defined by

	0x ¼ �
@2w0

@x2
¼ �a; 	0y ¼ �

@2w0

@y2
¼ �b;

	0xy ¼ �2
@2w0

@x@y
¼ �c

ð14Þ

The in-plane displacements u01 and u02 can be obtained
by integrating the strain-displacement equations with
von Karman non-linearity.

u01 ¼
Ð
"0x �

1

2

@w0

@x

� �2
( )

dxþ g yð Þ

u02 ¼
Ð
"0y �

1

2

@w0

@y

� �2
( )

dyþ h xð Þ

ð15Þ

The in-plane shear strain 
0xy is obtained by substitut-
ing Eq. (12) and Eq. (15) into Eq. (16).


0xy ¼
@u01
@y

þ
@u02
@x

þ
@w0

@x

� �
@w0

@y

� �
ð16Þ

Transverse shear strains in Eq. (13) now can be expres-
sed as functions of generalized coordinates a, b and c by
using Eq. (5).

2.2. Minimization of total potential energy

The deformed shapes after curing are in a state of
equilibrium in which the total potential energy inside
the body is at minimum. Assuming a plane stress state,
the strain energy density function of the laminate,  ,
can be expressed in the following form, and the total
potential energy is represented as the volume integral of
the strain energy density function.
Fig. 4. Cylindrical curvature shape of an unsymmetric laminate plate.
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 ¼
1

2

"x

"y


xy

8><
>:

9>=
>;
T
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

ðkÞ
"x

"y


xy

8><
>:

9>=
>;

þ
1

2


yz


xz

� �T Q44 Q45

Q45 Q55

� �ðkÞ 
yz


xz

� �
�

"x

"y


xy

8><
>:

9>=
>;
T

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

ðkÞ
�xDT

�yDT

�xyDT

8><
>:

9>=
>;

ð17Þ

where DT is the applied temperature and the Qij
� �ðkÞ

is
the transformed reduced stiffness matrix of the k-th
layer.
Back-substituting the mid-plane strains and curva-

tures into the total strains, Eq. (9), and into the defini-
tion of the total potential energy, Eq. (17), the final
result is an algebraic expression for the total potential
energy of the laminate of the form

� ¼

ð ð ð
v

 dxdydz

¼ � a; b; c; c00; c10; c01; . . . ; d00; d10; d01; . . . ; e1 . . . e6ð Þ

ð18Þ

Obviously, � is also a function of the laminate mate-
rial properties and geometry, but here interest centers
on the unknown coefficients. To study the deformation
of the laminate, we used the variation of the total
potential energy by equating the first variation to zero
and reorganizing the equations by reducing some coef-
ficients between them that obtained by equating the first
variation to zero. From the 51 dependent variables
given in Eq. (18), the 48 variables out of total 51 vari-
ables can be expressed in terms of the remaining three
variables a, b, and c through symbolic manipulation
provided by the commercial software Mathematica [11].
The final results were reduced to three nonlinear alge-
braic equations with three dependent variables, a, b and
c. These equations admit multiple solutions and each
solution corresponds to each equilibrium branch. In the
present study, the second variation of total potential
energy was considered to indicate the stability of the
equilibrium path.
3. Numerical results and discussions

The laminates that were used for verification in the
present experiment were DMS-2224 manufactured by
Hercules Co., and the material properties of the lami-
nates are given as follows.
� Laminates (DMS-2224)

E1 ¼ 104:8 GPa; E2 ¼ 8:07 GPa;

G12 ¼ 4:17 GPa; G13 ¼ G12

�12 ¼ 0:33; �1 ¼ 0:3	 10�6=
C;

�2 ¼ 36:5	10�6=
C

DT ¼ 150
C; lamina thickness ¼ 0:01397 cm

� Aluminum: E=70 GPa, �=0.34, �=2.3	10�5/
C
� Rubber:E=7	10�4GPa, �=0.5, a=1.3	10�4/
C

For calculation convenience, the lamina thickness was
assumed to be uniform at each layer. The laminates were
heated for 30 min from room temperature up to 177 
C
monotonically and cured at 177 
C for 2 h and cooled to
room temperature at a cooling rate of 5 
C/min. During
this cycle, the autoclave pressure was maintained at
0.586	106 Pa. The cured 300	300 mm laminates were cut
successively to the smaller square plates to measure the
curvature for each length of side. The rectangular plate
case also followed the same procedure. The curvature 	
was experimentally determined using the relation

	 ¼
1

R
¼

8d

C 2 þ 4d 2
ð19Þ

as depicted in Fig. 5.
The change of curvature for various side lengths of

the laminate considering von Karman nonlinearity are
depicted and experimental results are compared with
analytical solutions obtained by Hyer’s theory. The
dimensionless coefficients �1 and �2 were derived from the
correlation of theoretical solutions with the experimental
data at one point (side length of laminate=0.3 m).
Fig. 6 shows the change of curvature shapes of square

laminate versus side length. When the side length was
smaller than 0.045 m, the shape of the laminate became
saddle shaped. On the other hand, when the side length
was larger than the critical size (=0.045 m), the curva-
ture shape changed from saddle to the cylindrical pat-
tern. The deformed schematics in Fig. 6 are given to
Fig. 5. Measurements of curvature.
2270 M. Cho, H.Y. Roh /Composites Science and Technology 63 (2003) 2265–2275



illustrate the change of curvature shapes versus the side-
length of the laminates. As shown in Fig. 6, though the
original Hyer’s model predicts the snap-through phe-
nomenon and curvature shapes qualitatively, the curva-
tures obtained by his method are larger than the
experimental results. However, our model using the
fifth-order polynomial approximation based on Hyer’s
model and considering slippage effect agreed better with
the experiment data. The results were more accurate
than those in Cho et al.’s study [10], because the model
was based on the feasible profile of transverse shear
distribution across the thickness of laminates and fifth-
order complete polynomial approximate was used in the
in-plane normal strain assumption. In Fig. 7, the change
Fig. 6. Change of curvature as a function of the side length for [02/902] laminate (Smooth Al Tool: �1=�2=0.055) [—: Present, .....: Hyer, &:

Experiment].
Fig. 7. Change of curvature as a function of the side length for [04/904] laminate (Smooth Al Tool: �1=�2=0.11) [—: Present, .....: Hyer, &:

Experiment].
M. Cho, H.Y. Roh /Composites Science and Technology 63 (2003) 2265–2275 2271



of curvature of the laminate with [04/904] cross-ply
layup was investigated. As the thickness of laminate
increased, the values of the coefficients �1 and �2
increased. Moreover, as the number of plies increased,
the bifurcation point of curvature moved toward a lar-
ger side-length. Accordingly, when the same tool-plate
was used and as the thickness of laminate is increased,
the coefficients increased and the bifurcation point of
curvature moved toward the direction of increasing
side-length.
Figs. 8 and 9 show the model predictions and the

experimental results for the rubber tool-plate cases. The
results show that the matched values of the coefficients
�1 and �2 were larger than those for the aluminum tool-
plate case. These larger values suggest that the curvature
was affected by the surface roughness and thermal
Fig. 8. Change of curvature as a function of the side length for [02/902] laminate (Rubber Tool: �1=�2=0.0865) [—: Present, .....: Hyer, &:

Experiment].
Fig. 9. Change of curvature as a function of the side length for [04/904] laminate (Rubber Tool: �1=�2=0.11) [—: Present, .....: Hyer, &:

Experiment].
2272 M. Cho, H.Y. Roh /Composites Science and Technology 63 (2003) 2265–2275



Fig. 10. Change of curvature as a function of the side length for [02/902] laminate with 0.2	0.2 m (Smooth Al Tool: �1=0.075,�2=0.055) [—:

Present, &: Experiment].
Fig. 11. Change of curvature as a function of the side length for [02/902] laminate with 0.1	0.3 m (Smooth Al Tool: �1=0.075,�2=0.055) [—:

Present, &: Experiment].
M. Cho, H.Y. Roh /Composites Science and Technology 63 (2003) 2265–2275 2273



expansion properties of the tool-plate. As the laminate
thickness increased, the coefficients �1 and �2 increased,
which is similar to the behavior displayed by the smooth
aluminum tool-plate. When the laminate thickness
increased, the slippage coefficient was less sensitive to
the type of the tool-plate.
Figs. 10–12 show the change of slippage coefficients and

the curvature variations of the laminate plate of various
aspect ratios which used the same tool-plate (the smooth
aluminum tool). When the aspect ratio was equal to 1
(square plate case), the analytical results including the
slippage effects agreed well with experimental results as
shown in Fig. 10. Figs. 11 and 12 depict the correlations
between the predicted curvature shape and test results
as the side lengths were varied at a fixed aspect ratio 1/3 or
2/3, respectively. Figs. 11 and 12 show that the bifurcation
point of curvature b appears in the larger side-length as
the aspect ratio decreased. The theoretical results obtained
from the present model correlated very well with the
experimental values. Moreover, the slippage coefficients
�1and �2 which matched in square laminates can be
used, as they are, in the rectangular laminates of various
aspect ratios since the environment effects such as the
conditions of curing and tool-plates are the same.
4. Conclusions

A refined analytical model of the curvature shapes of
unsymmetric laminates at room-temperature and
experimental results were presented. The model
accounts for slippage effects. To develop a more accu-
rate model than the one in the previous study [10], we
modified the transverse shear stress profile to give a
monotonic pattern across the thickness of the laminates
and used fifth-order polynomial approximation to
derive the laminate mid-plane strains. The asymptotic
curvature values of the proposed model were matched
to the experimental value at one point; the slippage
coefficients were obtained. We observed that the change
Fig. 12. Change of curvature as a function of the side length for [02/902] laminate with 0.2	0.3 m (Smooth Al Tool: �1=0.075,�2=0.055) [—:

Present, &: Experiment].
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of curvature depends on the type of tool-plate and the
laminate thickness. The slippage coefficient derived
from the square laminates can be directly applied to the
rectangular-shape laminates of various aspect ratios for
equal layup configurations and same type of tool-plate.
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