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Abstract

The progressive multiplication of matrix transverse cracks in cross-ply laminates made of long carbon fibre reinforced polymer
(CFRP) is addressed in this study. Monotonic tensile tests performed on [03/903]S laminates at 120 �C have shown a marked dependence
of cracking development on loading rate. This paper aims to assess the impact of the material nonlinearity on the loading rate sensitivity
of the damaging process. A ‘‘shear-lag’’ damage analysis, using the nonlinear correspondence principle and appropriate failure criteria, is
carried out to numerically predict the cracking evolution. This work shows that, though important, the material nonlinearity of the
undamaged material does not significantly enhance the loading rate sensitivity of the cracking process and it cannot explain alone
the phenomenon. On the other hand, taking into account the loading rate dependence of the critical strength, together with the R-curve
effect, which gives good predicted cracking curves, suggests that the observed rate effect pertains to the viscoelastic character of the dam-
aged material in the process zone close to crack fronts.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

High-performance CFRP composite laminates are used
in several aircraft structural parts due to weight saving
and high lifetime demands in aeronautic applications. The
next generation of supersonic aircraft, for instance Con-
corde’s successor, will travel at speeds that cause significant
heating of the aircraft structure owing to friction in the
atmosphere. During a flight at a speed of Mach 2, the max-
imum surface temperature will range between 100 �C and
130 �C, depending on the considered part of the structure.
Under such service conditions involving high temperature
and mechanical loads, the candidate composites may dis-
play a variety of damage modes, such as matrix cracking,
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fibre breakage, interfacial debonding between matrix and
fibre, or delamination between plies. In cross-ply laminates
subjected to tensile thermo-mechanical loadings, transverse
matrix cracking is usually the first damage mechanism to be
observed and it creates initiation sites for further and poten-
tially more harmful damage events. Therefore, transverse
matrix cracking must be assessed and monitored in order
to guarantee the structural integrity.

The recent literature contains few experimental and ana-
lytical studies of the influence of viscoelastic behaviour and
loading rate on matrix cracking. Time dependent matrix
cracking in transverse plies of cross-ply carbon/epoxy lam-
inates was experimentally investigated and modelled in [1–
5]. Under quasi static loading, it is observed that the matrix
cracking growth rate depends upon the loading rate at tem-
peratures of 110 �C [1] and 120 �C [4] or even at room tem-
perature [2,3]. A probabilistic failure model involving
loading rate has been proposed by Ogi and Takao [1], giv-
ing a good agreement between experimental results and
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Table 1
Elastic properties and coefficients of thermal expansion (CTE) of the
unidirectional ply at 120 �C

Property Value

Longitudinal modulus (GPa) E11 148
Transverse modulus (GPa) E22 7.12
In-plane Poisson’s ratio m12 0.326
In-plane shear modulus (GPa) G12 3.3
Longitudinal CTE (10�6 �C) a1 0.23
Transverse CTE (10�6 �C) a2 30

Fig. 1. Specimen geometry.
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numerical simulations under monotonic loading. However,
it provides little physical understanding, though the crack-
ing behaviour can be phenomenologically described.

The evolution of transverse matrix cracking in a carbon/
epoxy composite laminate of the type [0m/90n]S will be
addressed in this research. A significant influence of loading
rate on the damaging process at 120 �C has been previously
experimentally brought out [4]. Several phenomena might
explain this effect, notably the viscoelastic behaviour of
the undamaged material in the 90�-plies and that of the
damaged material around crack tip vicinities. Some numer-
ical simulations meant to display the effect of possible
factors have been proposed in previous papers: a one-
dimensional (1D) linear viscoelastic shear-lag approach,
which takes into account thermal stresses, has been imple-
mented in [6,7]. Several failure criteria (critical stress, criti-
cal strain and Reiner-Weissenberg or critical free energy
density), used to describe cracking evolution as a function
of load level assuming a constant loading rate, give very
close numerical results. The failure criteria can properly dis-
play the loading rate effect only if a stress rate dependence is
incorporated into the critical values. Then a two-dimen-
sional linear viscoelastic analysis has been developed in
[6]. The numerically predicted crack density curves show
that, even if the 2D stress state is taken into account, the vis-
coelastic character of the undamaged material is not
marked enough to explain alone the influence of the loading
rate on cracking curves. The improvement brought about
by the incorporation of thermal stresses is not significant
at the considered temperature for the studied material.

However, creep-recovery tests conducted at the studied
temperature reveal that the material at hand displays a
marked nonlinear viscoelastic behaviour. This raises some
further questions, such as: how do transverse cracks grow
if the nonlinear viscoelastic character of material is taken
into account? And can the material nonlinearity increase
the influence of loading rate on cracking?

This paper aims to provide preliminary answers to these
questions. First, the experimental results concerning the
crack density as a function of applied tensile load, assum-
ing a constant stress rate, are described in Section 2. Then,
by using a simplified 1D Schapery model, a material char-
acterization procedure is proposed in Section 3 in order to
approximately identify the nonlinear stress–strain relation-
ship of the material in the 90�-plies. A damage growth
analysis is carried out in Section 4. Some simplifying
assumptions are proposed in order to apply the nonlinear
correspondence principle. A numerical program strategy
meant to predict the cracking evolution is detailed in Sec-
tion 4.4. Some discussions and conclusions are contained
in the last section.

According to the knowledge of the authors, in the recent
literature, very few works present a viscoelastic model
involving the nonlinear behaviour of the undamaged mate-
rial to describe the transverse cracking on the ply scale.
Zhang et al. [8] have proposed a micromechanical model
involving the nonlinear viscoelastic behaviour of the
matrix. The ‘‘localized’’ matrix cracking on the fibre scale
is well modelled by a so-called ‘‘smeared crack’’ approach.
However, this model using a repeating independent unit
cell containing only one ‘‘elastic’’ fibre does not deal with
the non-homogeneous damage kinetics induced by the
ply-scale transverse cracks.

2. Experimental results [4]

A carbon/epoxy composite laminate made of IM7/977-2
system with [03/903]S stacking sequence and a nominal ply
thickness of 0.125 mm, has been studied. The coupons,
140 mm long and 20 mm wide, were designed and provided
by CCR-EADS (Corporate Research Centre, France, of
the European Aeronautic Defence and Space Company).
The material is made up of long carbon fibres possessing
a high modulus of elasticity and of a two-phase toughened
epoxy resin. The thermo-elastic properties of the unidirec-
tional ply experimentally obtained at 120 �C are given in
Table 1.

Monotonic uniaxial tensile tests were conducted on the
cross-ply laminates at a temperature of 120 �C to measure
transverse matrix crack density as a function of applied
load. Three different loading rates (1.3216 MPa/min,
132.16 MPa/min and 1321.6 MPa/min), producing cross-
head velocities of 0.01 mm/min (�10�7 s�1), 1 mm/min
(�10�5 s�1) and 10 mm/min (�10�4 s�1), respectively, were
prescribed.

The tests were stopped several times before the failure of
specimens to count the number of transverse cracks (N) on
the useful length (Lu) of the polished edges by using an
optical microscope; the average crack density, defined by
q = N/Lu, can thus be obtained.

Here the useful length is the ‘‘ gage length’’, i.e. the
length along which transverse cracks are counted under
an optical microscope (see Fig. 1 for details). While the
total length of the specimen is 140 mm, the 80 mm-value
is chosen as the ‘‘useful length’’ in this study. The specimen
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is clamped in the testing machine at its ends along 30 mm-
length end-tabs.

The experimental results are presented in Fig. 2. At this
temperature, loading rate has a significant influence on
cracking. First, it can be seen that the occurrence of the
first cracks is delayed when the loading rate increases.
Namely, the higher the stress rate, the higher the first ply
failure stress. It is also observed that the higher the loading
rate the greater the tensile strength. Moreover, the crack
density increases more rapidly as a function of applied
stress level if the loading rate decreases. This crack density
involves ‘‘long cracks’’ only. A ‘‘long crack’’ is defined as a
‘‘transverse crack’’ which spans the entire thickness of the
central 90�-layer of the laminate. Therefore, at a same
applied stress level, a ‘‘long crack’’ or a ‘‘transverse crack’’
is distinguished from a ‘‘short crack’’ by its length in com-
parison with the 90�-layer thickness. In fact, transverse
cracks emanate from short cracks: these first propagate in
the thickness direction, then in the width direction. How-
ever the first kind of propagation is very rapid (nearly
instantaneous), and cannot be observed. When the 90�
layer is thick enough, the propagation along the width
direction is also very rapid. However, for thin 90� layers
(one elementary ply), the widthwise propagation is slow,
which means that most transverse cracks do not span the
entire specimen width. The widthwise length of each indi-
vidual transverse crack can be measured by stopping the
test at regular times, removing the specimen, then taking
its X-ray picture. This was not systematically done in this
work, but a quantitative study of individual crack lengths
was performed in the same laboratory by Lafarie-Frenot
et al. [24], for instance.

Here, the only observed phenomenon was the transverse
crack multiplication along the specimen length. It was
quantified by the number of such cracks appearing on
the specimen edge.

The two cracking phases, ‘‘crack initiation’’ and ‘‘crack
propagation’’, are experimentally distinguished by the
Fig. 2. Effect of loading rate on matrix cracking evolution during
monotonic tensile tests at 120 �C [4].
manner in which the transverse cracks appear. During
the initiation phase (or cracking onset), it can be observed
(by an optical microscope) that some early transverse
cracks, randomly distributed along the specimen length,
appear in the central 90�-layer. This phase possesses a sto-
chastic nature due to the inhomogeneities of the material
(such as local fiber fraction, local flaw concentration in
the matrix, etc.). After this initiation phase, when the
applied load increases, the number of transverse cracks
increases and the crack distribution becomes more regular.
The crack propagation phase (or cracking development)
corresponds to this stage.

In Fig. 2, the averaged crack density is plotted against
the applied tensile stress at 120 �C for three loading rates.
Each test corresponding to one loading rate was repeated
twice in order to estimate the measurement scatter. The
measurements obtained for both specimens were found to
be very similar: the scatter on crack numbers might be eval-
uated between 10 per cent for lower load values and 1 per
cent at the end of the tests. More details are given in [7]. It
can be noted that the slope of the first two curves corre-
sponding to 0.01 and 1 mm/min (_e ¼ 3 � 10�7 s�1 and
3 � 10�5 s�1 respectively) are not very different, whereas
the third curve (10 mm/min or _e ¼ 3 � 10�4 s�1) has a
markedly lower slope. It should be remarked that the three
investigated strain rates are in the lower part of the range
of the possible values which can be sustained by this mate-
rial (up to _e ¼ 1500 s�1), [25].

3. Material characterization

3.1. Constitutive equations

The Schapery model is selected to describe the nonlinear
viscoelastic response of the unidirectional 90�-plies. The
three-dimensional constitutive equations of the Schapery
model can be expressed as [9]:

eiðtÞ¼ gð0Þij reqðtÞ
� �

J 0ijrjðtÞþgð1Þij reqðtÞ
� �

�
Z t

0�
DJ ij wijðtÞ�wijðsÞ

� � d

ds
gð2Þij reqðsÞ
� �

rjðsÞ
h i

ds

ð1Þ

i = (1, 2, . . ., 6) and j = (1, 2, . . ., 6), where the single-index
stresses and strains are defined by:

r1 ¼ r11; r2¼ r22; r3 ¼ r33; r4 ¼ r23; r5 ¼ r13; r6¼ r12

e1 ¼ e11; e2¼ e22; e3¼ e33; e4¼ 2e23; e5¼ 2e13; e6 ¼ 2e12

The reduced times are given by:

wijðtÞ ¼
Z t

0

du
aij reqðuÞ
� � ;

Jij(t) = J0ij + DJij(t) are the creep functions of the material;

gð0Þij , gð1Þij , gð2Þij and aij are the nonlinearizing functions which
depend on the so-called ‘‘equivalent stress’’ denoted req.

Starting from the set of five stress invariants already
employed by Hashin, a suitable definition of the equivalent



Fig. 3. Comparison between experimental data and interpolation (using
N = 3) of recovery strain at 120 �C and for 10 MPa applied stress.
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stress for transversely isotropic materials is fully discussed
by Schapery [10]. For a general three-dimensional stress
state, one can choose the equivalent stress in the form of
a scalar function accounting for stress interaction:

req ¼ r2
22 þ r2

33 þ k1r22r33 þ k2r
2
23 þ k3 r2

13 þ r2
12

� �� �1=2 ð2Þ

where k1, k2 and k3 are material constants; for a plane
stress state, the equivalent stress can be shown to reduce
to req ¼ r2

22 þ keqr2
12

� �1=2
and possible values for keq are

proposed.
Now, let f ðtÞ � gðtÞ ¼

R t

0� f ðt � sÞ d
ds gðsÞds denote the

Stieltjes convolution of time functions f(t) and g(t). If we
suppose that the nonlinear behaviour of the material in
the 90�-ply group is adequately described by only one
stress-dependent function gð2Þ22 , which amounts to take
gð0Þ22 ¼ gð1Þ22 ¼ a22 ¼ 1, a one-dimensional functional rela-
tionship between stress and strain in the case of a trans-
verse loading can be obtained in the form:

eðtÞ ¼ J 22ðtÞ � g2 reqðtÞ
� �

rðtÞ
� �

ð3Þ

where g2 � gð2Þ22 ; r � r2 and e � e2 are respectively the ap-
plied tensile stress and the strain in the transverse direction;
J22(t) is the creep function of the material in the transverse
direction such that E22(t) � J22(t) = H(t), E22(t) being the
material relaxation function and H(t) being the Heaviside
step function. The equivalent stress is given by req ¼
r2

22 þ keqr2
12

� �1=2
, where keq is a material constant.
Fig. 4. Compliance (10�10 Pa�1) versus time (min) from creep test at
several stress levels for IM7/977-2 carbon/epoxy [90]n laminates, at
120 �C.
3.2. Material characterization procedure

In the linear range, the purely tensile viscoelastic
response of the undamaged material in the 90�-layer at
120 �C is described by the creep function J22(t). A general-
ized Kelvin-Voigt model is chosen to represent this func-
tion. The creep function is adequately expressed in the
form: J22(t) = J20 + DJ22(t), where J20 is a constant and
DJ 22ðtÞ ¼

PN
n¼1J 2n 1� e�t=sn

� �
is the transient part in which

sn is the retardation time related to the amplitude J2n.
The material parameters to be determined are the coef-

ficients involved in the J22 function which characterizes the
material behaviour in the linear range on one hand, and
those involved in the g2 function which characterizes the
material nonlinearity on the other. As J22 is taken in the
form J 22ðtÞ ¼ J 20 þ

PN
n¼1J 2nð1� e�t=snÞ, the necessary coef-

ficients are J20, J2n, and sn (n = 1, . . . , N). g2 is defined by
the coefficients ag and bg. All these coefficients were
obtained by comparing the experimental recovery and
creep curves with the theoretical predictions given by
Eqs. (4) and (5), through a least-square method.

The experimental data from a series of creep-recovery
tests conducted on 90�-specimens and provided by A. Vinet
(CCR-EADS) were used. An example of identification pro-
cedure is detailed in [11]. The tests have been conducted at
120 �C for three stress levels: 10 MPa, 15 MPa and
20 MPa. The strain response curve of the 10 MPa creep-
recovery test, performed during a period of a 24-h load
followed by a 100-h recovery, is presented in Fig. 3. The
time-dependent compliance curves corresponding to the
three stress levels reveal that a stress of 10 MPa is probably
the bound of the linear viscoelastic regime at 120 �C of
such a material, as can be seen in Fig. 4 in which we pro-
vide the comparative creep compliance curves for the three
stress levels.

For stress levels lower than 10 MPa, all the compliance
curves are undistinguishable, whereas the curves for a
stress greater than 10 MPa are different from each other.

Therefore, from now on, the experimental data obtained
at the stress level of 10 MPa or lower will be treated as lin-
ear data, whereas data obtained at higher stress levels will
be considered as nonlinear data for the concerned material.

The creep function J22(t) is characterized by using the
data in the linear range at 10 MPa.

From Eq. (3), the one-dimensional functional relation-
ship between stress and strain in the case of a transverse
loading has the following form:

eðtÞ ¼ J 22ðtÞ � g2 reqðtÞ
� �

rðtÞ
� �

where J 22ðtÞ ¼ J 20 þ DJ 22ðtÞ; req ¼ r2
22 þ keqr2

12

� �1=2
with

r22 = r; ‘‘�’’ denotes the Stieltjes Convolution. The func-
tion g2 characterizes the nonlinear behaviour of the mate-
rial. In the linear range where g2 = 1, Eq. (3) becomes:

eðtÞ ¼ J 22ðtÞ � rðtÞ



Fig. 5. Comparison between experimental data and interpolation of the
creep function at 120 �C and a stress of 10 MPa for the [90�] carbon/
epoxy.
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The stress history of the creep-recovery tests conducted on
the 90�-specimens is:

rðtÞ ¼ �r0 HðtÞ � H t � t1ð Þ½ �
where t1 is the creep time. The strain response of the creep-
recovery test is then:

eðtÞ ¼ J 22ðtÞ � fr; �0½HðtÞ �Hðt� t1Þ�g
¼ r; �0fJ 20½HðtÞ �Hðt� t1Þ� þ DJ 22ðtÞ � ½HðtÞ �Hðt� t1Þ�g

The recovery strain is the strain obtained for t > t1. When
t > t1 the first term in the bracket in which the parameter
J20 is involved is zero. This leads to the following relation-
ship between recovery strain and applied stress level:

erðtÞ ¼ eðt > t1Þ ¼ DJ 22ðtÞ�HðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
DJ22ðtÞ

�DJ 22ðtÞ�H t� t1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DJ22ðt�t1Þ

8><
>:

9>=
>;�r0

Therefore, we finally obtain the recovery strain response as:

erðtÞ ¼ DJ 22ðtÞ � DJ 22ðt � t1Þf g�r0 ðt > t1Þ ð4Þ
First, the transient part DJ22(t) is obtained from Eq. (4)

where �r0 ¼ 10 MPa is the applied creep-stress and t1 = 24
(h) is the creep time. The experimental recovery strain is fit-
ted to the theoretical curve, Eq. (4), by using the least-
square method. Then, the measured creep strain data are
used to determine the initial component J20 of the creep
function from the following relation:

J 20 ¼
ecðtÞ
�r0

� DJ 22ðtÞ ð0 < t < t1Þ

where ec(t) denotes the creep strain response under stress
�r0. The attempt to interpolate the experimental data in
the linear range for �r0 ¼ 10 MPa shows that a good agree-
ment between measured and interpolated points can be ob-
tained by taking three terms (N = 3) in the transient part of
the creep function. The characterization results are pre-
sented in Table 2. The experimental and interpolated
curves pertaining to recovery and creep responses are com-
pared in Figs. 3 and 5, respectively.

Next, the experimental recovery curves for other stress
levels in the nonlinear range are exploited to characterize
the nonlinearizing function g2. The recovery strain
response is now such that:

erð�r0; tÞ ¼ DJ 22ðtÞ � DJ 22ðt � t1Þ½ ��r0g2ð�r0Þ ðt > t1Þ ð5Þ
where g2 = 1 in the linear range and g2 > 1 in the nonlinear
range. Eq. (5) can be obtained in the same manner as Eq.
(4) when g2ð�r0Þ 6¼ 1.
Table 2
Parameters of transverse direction compliance at 120 �C

Term Coefficient J2n (Pa�1) Retardation time sn (min)

0 1.335 · 10�10

1 2.500 · 10�12 20
2 1.555 · 10�12 500
3 8.034 · 10�12 5000
The least-square method is applied to the curves er ver-
sus time t in order to determine the values of function g2 at
each stress level �r0 (10 MPa, 15 MPa and 20 MPa). In
Fig. 6, the numerical simulations show a good reproduc-
tion of the three recovery strain curves corresponding to
the three considered stress levels.

The curves in Fig. 6 cannot directly display the nonlin-
ear character of the material; for this purpose, it would
be necessary to plot the recovery compliance (recovery
strain over applied stress) versus time instead of recovery
strain versus time. Here, the same constitutive equation is
used for loading and unloading; however, due to the non-
linear behaviour and the time-dependent effects, the stress–
strain loading and unloading curves would be different.

All the parameters obtained from the above characteriza-
tion procedure should finally be assessed by using the creep
data (strain or compliance) for all stress levels in the nonlin-
ear range. The creep strain response for any stress level is
given in the form: ecð�r0; tÞ ¼ J 20 þ g2 �r0ð ÞDJ 22ðtÞ½ ��r0, where
the term in square brackets is the ‘‘nonlinear compliance’’
depending on �r0. Fig. 7 shows the comparison between
interpolated curves and experimental data of the nonlinear
compliance for the two considered stress levels �r0 ¼
Fig. 6. Comparison between experiment and interpolated strain recovery
curves for three constant stress levels in the nonlinear range (10 MPa,
15 MPa and 20 MPa) at 120 �C.
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15 MPa and �r0 ¼ 20 MPa. It can be seen from Fig. 7 that a
sufficiently good reproduction of the experimental curves
outside the linear range can be obtained by using only one
stress-dependent nonlinearizing function g2.

This function can be represented in the form: g2ðrÞ ¼
1þ agrbg , where ag and bg are material constants character-
izing the nonlinear behaviour; and r should be the
equivalent stress in the general case. This interpolation
choice was motivated by the trends for g2 function
observed on other similar materials [26]. However, other
types of interpolation have been attempted, but they did
not lead to significant alteration of the results.

ag and bg are mere coefficients involved in the represen-
tation of function g2: in Schapery’s model, the Gibbs free
energy has a second order expansion related to a nonlinear
generalized Maxwell model, and, in the special case used
here, 1/g2 is the dimensionless nonlinear factor common
to all springs of the model [27]. bg is a dimensionless expo-
nent and ag is such that the product agrbg has no dimension
when r is in MPa. For instance, when bg = 2, stress r is in
(MPa) and the dimension of ag is (MPa�2).

The limited number of available values of g2 for the three
considered stress levels (10 MPa, 15 MPa and 20 MPa) are
used to fit the above function and result in: ag = 1.4 · 10�3

and bg = 2 (with stress in MPa). For a stress greater than
20 MPa, the value of g2 will be extrapolated from the above
equation, due to lack of experimental data.

Moreover, in Section 4.3.1, while solving the set of non-
linear ordinary differential equations (31)–(33) with the
boundary conditions (34), we found that, if we use an inte-
ger exponent (such as 2) rather than a decimal one (such as
2.1, 2.2, etc.), the convergence of the solution is faster. In
addition, if we choose a higher order function, for example
a fourth power (namely bg = 4), this will lead to a more pre-
cise interpolated curve in the stress data range (0 6 �r0 6

20 MPa), but this will result in an extrapolated g2-value
increasing too fast outside this stress range (�r0 > 20
MPa). This increase of g2 in the range (20 MPa 6 �r0 6

40 MPa) seems unrealistic for the class of material at hand.
All these reasons explain why a quadratic interpolation was
used here.
Fig. 7. Comparison between interpolated nonlinear compliance curves
and experiment for two stress levels of 15 MPa and 20 MPa at 120 �C.
Fig. 8 presents the variations of g2 as a function of r for
the material at hand.

4. Crack multiplication analysis

4.1. Preliminary assumptions

Here, we consider [03/903]S cross-ply composite lami-
nates, as shown in Fig. 9, possessing one central 90�-layer
of thickness 2h1 (denoted by superscript (1)) and two outer
0�-layers of thickness h2 (denoted by superscript (2)). The
x, y, z directions are the loading direction, the width direc-
tion and the thickness direction, respectively.

The laminate is subjected to an ‘‘ideal’’ progressive
repeated loading program (Fig. 10). Each loading ‘‘cycle’’
comprises two phases: a monotonic increase in load of
the form �rðtÞ ¼ _�r� t, �r being the external applied stress
in the x-direction, _�r being the constant loading rate, t

denoting the time, from zero up to a maximum level, whose
amplitude depends on the current cycle, and a phase in
which the load decreases to zero; the last is followed by a
‘‘recovery’’ period long enough so that the strains in the
layers are allowed to tend to zero before starting a next
loading ‘‘cycle’’. The same value of stress rate ( _�r) should
be used during the whole loading program.

Some assumptions will be made regarding the damage
description. First, under prescribed loading conditions, it
is assumed that no delamination occurs and only the trans-
verse cracking phenomenon is considered. Second, the
experimental observations show that the matrix crack dis-
tribution in the central 90�-layer tends to become periodic
when the applied load increases. As a result, the damaged
laminate is divided into several unit cells comprised
between two existing adjacent cracks, assuming a 2L uni-
form spacing. Due to the symmetry of the cracked lami-
nate, only a half of the unit cell is considered (Fig. 9). In
each loading ‘‘cycle’’ (Fig. 10), it is supposed that a new
transverse crack appears only when the applied stress
reaches its maximum value, and that there is no additional
crack formed during the decreasing phase of the applied
loading. As a consequence, the ‘‘uniform’’ crack spacing
2L = 2Lk is a constant during the time interval tþk 6 t 6
t�kþ1, where tk+1 denotes the instant where a new crack
Fig. 8. Nonlinear function g2 versus stress.



Fig. 9. Laminate and crack geometries.
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Fig. 10. ‘‘Ideal’’ progressive repeated loading program with hypothesis of
new crack formations.
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forms in the cell 2Lk. Third, the nonlinear viscoelastic
character will be taken into account but only the one-
dimensional response of the laminate is considered. Let
us also note that this cracking model is confined to a
constant temperature condition (120 �C).

4.2. Mesoscale equations

The so-called mesoscale is defined as the scale of the
ply – an intermediary between the microscale of the fibre
and the macroscale of the laminate. Now, using Eq. (3)
for the central 90�-layer of the laminate, the nonlinear vis-
coelastic constitutive equation in the x-direction using only
one stress-dependent function g2 is given in the form:

eð1Þx ðx; z; tÞ ¼
oU 1ðx; z; tÞ

ox
¼ J 22ðtÞ � g2 req

� �
rð1Þx ðx; z; tÞ

� �
ð6Þ

where eð1Þx ¼ eð1Þx ðx; z; tÞ, U 1 ¼ U 1ðx; z; tÞ; rð1Þx ¼ rð1Þx ðx; z; tÞ
and sð1Þxz ¼ sð1Þxz ðx; z; tÞ are respectively the strain, the dis-
placement, the normal stress and the shear stress in the
x-direction in the 90�-layer. All are functions of coordi-
nates x, z and time t. The equivalent stress in the central
layer is given by: reqðx; z; tÞ ¼ rð1Þ2x þ keqsð1Þ2xz

� �1=2
, keq � 3.03

is taken as a suitable approximation for the material at
hand [12]. Let now ~f ð1Þð	 	 	Þ ¼ 1

2h1

Rþh1

�h1
f ð1Þð. . . ; zÞdz and

~f ð2Þð	 	 	Þ ¼ 1
h2

R h1þh2

h1
f ð2Þð. . . ; zÞdz define the average values

of any function f over the central layer thickness 2h1 and
the outer layer thickness h2, respectively. Averaging Eq.
(6) over the thickness of the central layer amounts to elim-
inate the z-coordinate and results in:
~eð1Þx ðx; tÞ ¼
o ~U 1ðx; tÞ

ox
¼ J 22ðtÞ � g2 req

� �
rð1Þx ðx; z; tÞ

� �
2h1

where the symbol h i2h1
denotes the average of a particular

function over the thickness of the central layer. By using
the following approximation (see Appendix):

rð1Þx g2 req

� �� �
2h1
� ~rð1Þx g2 ~rð1Þx

� �
ð7Þ

the averaged constitutive equation of the layer can be ob-
tained in the form:

~eð1Þx ðx; tÞ ¼
o ~U 1ðx; tÞ

ox
¼ J 22ðtÞ � ~rð1Þx g2 ~rð1Þx

� �� �
ð8Þ

The outer 0�-layers are supposed to display an elastic
behaviour in the x-direction. Their averaged constitutive
equation has the form:

~eð2Þx ðx; tÞ ¼
o ~U 2ðx; tÞ

ox
¼ 1

E11

~rð2Þx ðx; tÞ ð9Þ

where ~eð2Þx , ~U 2, ~rð2Þx are respectively the x-direction strain,
displacement and normal stress averaged over the thickness
of the 0�-layer.

With a view to applying the nonlinear correspondence
principle, the behaviour of the interface between the outer
0�-layer and the central 90�-layer is supposed to result from
the viscoelastic shear behaviour of the sole 90�-layer at
z = h1; for the material system at hand, taking into account
the fact that (see Appendix):

s
g2 r
eq

	 

� s
g2 s


ffiffiffiffiffiffi
keq

p� �
ð10Þ

the interface constitutive behaviour can be obtained in the
form:

c
ðx; tÞ ¼ J 23ðtÞ � s
g2 s

ffiffiffiffiffiffi
keq

p� �� �
ð11Þ

where the superscript (*) is used to denote the value of a
variable at the interface z = h1; c
 ¼ cð1Þxz ðx; z ¼ h1; tÞ is the
shear strain related to the interfacial shear stress
s
 ¼ sð1Þxz ðx; z ¼ h1; tÞ; J23(t) is the shear creep function such
that J23(t) = 2(1 + m23)J22(t), m23 being out-of-plane Pois-
son’s ratio which is supposed constant in this study
(m23 = 0.4); r
eq ¼ reqðx; z ¼ h1; tÞ denotes the equivalent
stress at the interface.

The displacements in the x-direction of the 90� and 0�
layers, denoted by U1and U2 respectively, are assumed to
have the following distribution:



Fig. 11. Variation of the function D(t) for carbon/epoxy IM7/977-2 at
120 �C.
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U 1ðx; z; tÞ ¼ z2f1ðx; tÞ þ f2ðx; tÞ; jzj 6 h1

U 2ðx; z; tÞ ¼ ~U 2ðx; tÞ; h1 6 jzj 6 h1 þ h2

�
ð12Þ

where f1 and f2 are functions of the x-coordinate and time t.
Supposing that the displacement in z-direction in the cen-
tral layer varies very slowly with x, the following relation
between the interface shear strain and the average displace-
ments can be obtained by using the continuity condition
for displacements at the interface (see the Appendix for
details):

c
ðx; tÞ ¼ 3
~U 2ðx; tÞ � ~U 1ðx; tÞ

h1

ð13Þ

The averaged equilibrium equations of the layers and of the
whole laminate are given by (see the Appendix for details):

h1

o~rð1Þx

ox
ðx; tÞ þ s
ðx; tÞ ¼ 0 ð14Þ

h2

o~rð2Þx

ox
ðx; tÞ � s
ðx; tÞ ¼ 0 ð15Þ

h1~rð1Þx ðx; tÞ þ h2~rð2Þx ðx; tÞ ¼ ðh1 þ h2Þ�rðtÞ ð16Þ

The boundary conditions, at x = 0 and x = L, appropri-
ate to the geometry of the cracked laminate shown in
Fig. 8, are given by:

~rð1Þx ðL; tÞ ¼ 0; s
ð0; tÞ ¼ 0 ð17Þ
The eight unknowns (~rð1Þx , ~rð2Þx , s*, ~eð1Þx , ~eð2Þx , c*, ~U 1, ~U 2) of

the viscoelastic problem are the solution of the system of
Eqs. (8), (9), (11), (13)–(16) with boundary conditions
(17) and suitable initial conditions.

4.3. Matrix cracking development

4.3.1. Nonlinear correspondence principle

In this sub-section, the nonlinear correspondence princi-
ple [13] is used to find an approximate solution of the
above nonlinear viscoelastic problem by introducing a ‘‘ref-
erence’’ elastic problem. Once the reference elastic solution
is found, the viscoelastic solution can be computed by
using simple relationships between the two solutions.

The so-called correspondence principle used here is not
the classical correspondence principle, which supposes a
linear behaviour, but the very special ‘‘nonlinear corre-
spondence principle’’ introduced by R.A. Schapery, which
allows the nonlinear viscoelastic problem to be replaced by
a nonlinear elastic problem.

The creep function found in the preceding section can be
rewritten in the form: J22(t) = J20D(t), where D(t) is a
dimensionless function, whose value is always close to
unity (Fig. 11), such that:

DðtÞ ¼ 1þ DDðtÞ; DDðtÞ ¼
X3

n¼1

J 2n

J 20

1� e�t=snð Þ ð18Þ

The averaged constitutive equation of the 90�-layer, given
by Eq. (8), is rewritten in the form:
~eð1Þx ðx; tÞ ¼ DðtÞ � J 20~rð1Þx g2 ~rð1Þx

� �� �
ð19Þ

In order to apply the nonlinear correspondence principle,
the outer 0�-layers are artificially supposed to display a
‘‘viscoelastic’’ behaviour in the x-direction by using the fol-
lowing approximation:

~eð2Þx ðx; tÞ ¼
1

E11

~rð2Þx ðx; tÞ � DðtÞ � 1

E11

~rð2Þx ðx; tÞ
 �

ð20Þ

The constitutive equation of the interface, Eq. (11), can be
rewritten in a form involving the same function D(t):

c
ðx; tÞ ¼ DðtÞ � 2 1þ m23ð ÞJ 20g2 r
eq

	 

s
ðx; tÞ

h i
ð21Þ

Now, a ‘‘reference’’ elastic problem, with the same trac-
tion boundary conditions as those of the viscoelastic prob-
lem, is defined by new unknown functions denoted by
superscript ‘‘R’’ such that:

~rðiÞx ðx; tÞ ¼ ~rðiÞRx ðx; tÞ; i ¼ 1; 2 ð22Þ
s
ðx; tÞ ¼ s
Rðx; tÞ ð23Þ
~eðiÞx ðx; tÞ ¼ DðtÞ � ~eðiÞRx ðx; tÞ; i ¼ 1; 2 ð24Þ
c
ðx; tÞ ¼ DðtÞ � c
Rðx; tÞ ð25Þ

~eðiÞRx ðx; tÞ ¼
o ~U R

i ðx; tÞ
ox

; i ¼ 1; 2 ð26Þ

c
Rðx; tÞ ¼ 3
~U R

2 ðx; tÞ � ~U R
1 ðx; tÞ

h1

ð27Þ

Substituting Eqs. (22)–(27) into the corresponding visco-
elastic equations derived in the preceding section leads to
the constitutive equations of the layers and the interface
of the ‘‘R’’ problem in the form:

~eð1ÞRx ðx; tÞ ¼ J 20 ~rð1ÞRx ðx; tÞg2 ~rð1ÞRx ðx; tÞ
� �� �

ð28Þ

~eð2ÞRx ðx; tÞ ¼ 1

E11

~rð2ÞRx ðx; tÞ ð29Þ

c
Rðx; tÞ ¼ 2 1þ m23ð ÞJ 20 s
Rðx; tÞg2 s
Rðx; tÞ
ffiffiffiffiffiffiffiffi
k eq

p� �� �
ð30Þ

It can be seen that the R-unknowns are the solution of a
nonlinear elastic problem.
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Next, using the relationship between the interface shear
strain and the average displacements of the reference elastic
problem given by Eq. (27), then eliminating the strain vari-
ables by using Eqs. (26) and (28)–(30), results in the follow-
ing relationship only involving the R-stresses:

os
R

ox
� 1

o
os
R

2h1

3
1þ m23ð Þs
Rg2 s
R

ffiffiffiffiffiffi
keq

p� �� �
� J 11

J 20

~rð2ÞRx � ~rð1ÞRx g2 ~rð1ÞRx

� �� �
¼ 0 ð31Þ

Note that as the stresses are the same for both problems, all
the relations between viscoelastic stresses are equally valid
for the elastic stresses denoted by superscript ‘‘R’’. There-
fore the equilibrium equations of the layers of the reference
elastic problem are given by:

o~rð1ÞRx

ox
þ s
R

h1

¼ 0 ð32Þ

o~rð2ÞRx

ox
� s
R

h2

¼ 0 ð33Þ

The averaged boundary conditions at x = 0 and x = L are:

~rð1ÞRx ðL; tÞ ¼ 0; ~rð2ÞRx ðL; tÞ ¼ ð1þ h12Þ�rðtÞ; s
Rð0; tÞ ¼ 0

ð34Þ
Now the set of nonlinear ordinary differential equations
(31)–(33) with the boundary conditions equation (34) can
be used to compute the ‘‘R’’ elastic stresses (~rð1ÞRx , ~rð2ÞRx

and s*R). In this new problem, time t only acts as a param-
eter through the prescribed laminate stress �rðtÞ. Once the
‘‘R’’ elastic stresses are found, the nonlinear viscoelastic
stresses and strains are obtained by using the viscoelas-
tic–elastic relationships equations (22)–(25). Then, a failure
criterion must be used to describe the cracking evolution.

4.3.2. Failure criteria

A critical strain failure criterion will be used here to pre-
dict crack multiplication as a function of applied load level.
This criterion states that a new crack appears in the central
90�-layer when the maximum strain attains some critical
value. In order to study the loading rate effect on cracking,
two versions of the criterion will be considered. If the crit-
ical value is a constant and does not depend upon the load-
ing rate, the criterion is called ‘‘rate insensitive’’, which
reads:

max
�L6x6L

~eð1Þx ðx; tÞ
� �

¼ ec ð35Þ

If the critical value depends on the loading rate, we have a
so-called ‘‘rate sensitive’’ criterion which can be expressed
in the following form:

max
�L6x6L

~eð1Þx ðx; tÞ
� �

¼ ec þ ke _�r= _�rrð Þn ð36Þ

where ec, ke, n are material constants and _�rr denotes a ref-
erence stress rate. For the sake of presentation, eð1Þc ð _�rÞ will
denote the general expression of the critical value in the
two cases. Other failure criteria (such as a maximum stress
criterion or Reiner-Weissenberg free energy density crite-
rion), have been attempted and compared [6].

4.4. Numerical approach and results

A numerical program using the shooting method [14]
was developed to solve the system of nonlinear differential
equations (31)–(33), with the non homogenous boundary
conditions equation (34). The unknowns are the ‘‘R’’ elas-
tic stresses consisting of the average normal stresses ~rðiÞRx in
layers i (i = 1, 2) and the interface shear stress s*R. For a
given damage state characterized by the half distance
L = Lk between two adjacent cracks, at any applied load
level �rðtÞ, the stress distribution between the cracks can
be obtained. With the above-mentioned imposed boundary
conditions, the average normal stress in the 90�-layer (~rð1ÞRx )
in x-direction is found to reach its maximum value midway
between cracks (x = 0).

A critical strain failure criterion is then used to obtain a
numerical simulation of the crack density as a function of
the applied stress. Using Eq. (24), the relationship between
the viscoelastic and ‘‘R’’ elastic strains in the 90�-layer, at
time t = tj, can be obtained in the form:

~eð1Þx ðx; tjÞ¼
Z tj

0

Dðtj� t0Þ
o ~eð1ÞRx ðx;t0Þ
� �

ot0
dt0 ð�L6 x6LÞ ð37Þ

Taking into account the monotonic loading history
�rðtÞ ¼ _�rðtÞ; _�r being the constant loading rate, leads to:

~eð1Þx x; �rj

� �
¼
Z �rj

0

D
�rj

_�r
� r0

_�r

� �
o ~eð1ÞRx x; r0ð Þ
� �

or0
dr0 ð38Þ

where �rj ¼ _�rtj. For the sake of convenience, let us set
~ej ¼ ~eð1Þx x; �rj

� �
and ~eR

j ¼ ~eð1ÞRx x; �rj

� �
. Using Eq. (18), Eq.

(38) can be rewritten in a form involving the function
DD(t):

~ej ¼ ~eR
j þ

Z �rj

0

DD
�rj

_�r
� r0

_�r

� �
o

or0
~eR

j

h i
dr0 ð39Þ

In (39) the first ‘‘elastic’’ term ~eR
j can easily be evaluated by

using Eq. (28). In order to calculate the second term involv-
ing the integral, one can assume that ~eR

j varies linearly dur-
ing each stress increment D�r such that �rj ¼ NjD�r, Nj being
a large integer; then Eq. (39) is approximated by:

~ej¼~eR
j þ
Xi¼Nj

i¼1

~e R
i �~eR

i�1

D�r

Z iD�r

ði�1ÞD�r
DD

NjD�r
_�r
�r0

_�r

� �
dr0

" #
ð40Þ

where ~ei ¼ ~eð1Þx x; �ri ¼ iD�rð Þ and ~eR
i ¼ ~eð1ÞRx x; �ri ¼ iD�rð Þ. The

expression (40) can be evaluated at any position x between
two adjacent cracks spaced 2L apart (�L 6 x 6 L).

At a given damage state (namely for a fixed value of Lk

or a fixed crack density qk, qk = 1/(2Lk)), the normal stress
in the 90�-layer takes its maximum midway between two
adjacent cracks (x = 0). Then the strain in the layer reaches
its maximum at x = 0 because all the strains go back
to zero everywhere in the layer at the end of each loading
‘‘cycle’’ of the ‘‘ideal’’ progressive repeated loading pro-



Fig. 13. Influence of the loading rate on the evolution of the maximum
nonlinear viscoelastic strain between two adjacent cracks in the central
90�-layer, obtained when the crack density equals 5 (cm�1); [03/903]S IM7/
977-2 laminate.
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gram (Fig. 10). When the applied stress varies from �r ¼ 0
to �r ¼ �rj, the maximum viscoelastic strain ~emax

j ¼
~eð1Þx x ¼ 0; �rj

� �
is computed by applying Eq. (40) at x = 0;

then it is checked whether ~emax
j equals the critical value

eð1Þc ; if this failure condition is satisfied, the values of the
applied stress �rj ¼ �r
k and of the corresponding crack den-
sity qk are saved; otherwise, the applied stress is further
increased until the criterion is met; the stress increment
should be small enough to obtain a correct value of �r
k . This
calculation procedure is repeated for several Lk values in
order to find the stress �r
k at which a new crack forms (a
cracking curve is thus obtained). Note that the applied
stress starts from zero (then increases to �r
kÞ for each calcu-
lation involving a new Lk value.

Fig. 12 presents the numerical simulation of the varia-
tion of the maximum normal stress (at x = 0) when the
applied stress increases, for a fixed value of crack density.
In the figure, the ‘‘linear stress’’ obtained by taking
g2 = 1 and the so-called ‘‘effective stress’’ defined by
~rð1Þeff ¼ ~rð1ÞRx � g2 ~rð1ÞRx

� �
¼ ~rð1Þx � g2 ~rð1Þx

� �
are also plotted;

this ‘‘effective stress’’ appearing in Eq. (28) ‘‘governs’’ the
variation of the ‘‘R’’ nonlinear elastic strain ~eð1ÞRx .

Fig. 13 presents the variation of the maximum nonlinear
viscoelastic strain in the 90�-layer with the applied stress
for the three considered loading rates. Fig. 14 presents
the predicted crack evolution obtained from a maximum
strain failure criterion whose critical value is independent
of the loading rate. It can be seen on the zoomed-in figure
that, for the three considered loading rates, the numerically
predicted cracking curves are very close from each other.

Therefore, the rate-insensitive version of the failure cri-
terion Eq. (35) cannot adequately display the effect of the
loading rate on the experimental cracking curves. On the
other hand, it can be seen that the values of constants ke
Fig. 12. Variation of maximum stress (MPa) between two adjacent cracks
in the 90�-layer as a function of applied stress (MPa), obtained when the
crack density equals 5 (cm�1).

Fig. 14. Predicted transverse cracking evolution at 120 �C for three
loading rates using a rate-independent critical strain criterion (ec = 0.007);
[03/903]S IM7/977-2 laminate.
and n in a criterion of the type Eq. (36) convey the loading
rate sensitivity of the simulated cracking curves. Fig. 15
presents the numerically simulated evolution of the crack
density for the three loading rates, obtained by using a
rate-dependent critical strain failure criterion with the fol-
lowing material constants: ec = 0.0058, ke = 0.0012 and
n = 0.23; _�r r ¼ 1:3216 MPa=min. The predicted curves
obtained from the 1D linear viscoelastic analysis detailed
in [6] (again using a shear-lag approach) are also presented
in the figure together with the experimental data.

Note that the stress increment D�r is 2.5 MPa for all sim-
ulations presented in Figs. 12–15; another simulation using
a smaller stress increment, D�r ¼ 1 MPa, brought no signif-
icant improvement.



Fig. 15. Crack density (cm�1) versus applied stress (MPa) at 120 �C for
three loading rates. Comparison between experiment, 1D viscoelastic
linear [6] and nonlinear simulations using a rate-dependent critical strain
criterion (ec = 0.0058, ke = 0.0012 and n = 0.23). [03/903]S IM7/977-2
laminate.
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5. Discussion and conclusions

The monotonic tensile tests performed on the IM7/977-2
carbon/epoxy [03/903]S laminates at 120 �C, with three
respective crosshead velocities (0.01 mm/min, 1 mm/min
and 10 mm/min), have displayed a marked loading rate
dependence of the transverse matrix cracking evolution.
Several phenomena might explain this effect: the viscoelastic
behaviour of the undamaged material in the 90�-plies and
that of the damaged material surrounding the crack front.
The above effect could also be connected with thermal,
physical and chemical ageing processes in the material.

5.1. Influence of viscoelastic behaviour (linear and

nonlinear) of the undamaged material

The 1D and 2D linear viscoelastic analyses, detailed in
our previous papers [6,7], have shown that the linear visco-
elastic character of the undamaged material is not marked
enough to explain alone the influence of the loading rate on
the cracking process for the material at hand.

The aim of the present paper was to assess a possible
effect on the phenomenon of the nonlinear viscoelastic
behaviour of the undamaged material in the 90�-plies. A
material characterization procedure using a simplified
Schapery model was proposed in Section 3 in order to iden-
tify the nonlinear viscoelastic constitutive equation of the
90�-layer by using data obtained from the creep-recovery
tests. The damage analysis was carried out in Section 4
to numerically predict the cracking evolution as a function
of the applied load by using two versions of a strain failure
criterion. Some stringent simplifying assumptions were
used insofar as our main objective was to investigate the
impact of any nonlinear material behaviour on loading rate
sensitivity of the cracking process.

The comparison between the linear and nonlinear stress
responses when the crack density q equals 5 cm�1, pre-
sented in Fig. 12, shows that the material nonlinearity,
described by the nonlinearizing function g2(r), sharply
decreases the stress level between two existing cracks in
the damaged 90�-layer. However, the nonlinear strain is
related with the ‘‘effective stress’’ which is greater than
the ‘‘linear stress’’ as presented in Fig. 12; so that, at this
damage state (q = 5 cm�1), using a strain failure criterion,
the ‘‘nonlinear simulation’’ predicts an earlier cracking
process than the ‘‘linear simulation’’ (as shown in Fig. 15).

Fig. 13 presents the predicted variation of the maximum
strain between two adjacent cracks in the 90�-layer with the
applied stress for three loading rates. It can be seen that the
slopes of the simulated curves are slightly different, which
means that, for the material at hand, there is a weak influ-
ence of the loading rate due to the nonlinear viscoelastic
behaviour of the material. As a result, the rate insensitive
failure criterion given by Eq. (35), in which the critical
value is a constant, cannot sufficiently convey the influence
of the loading rate on the experimental cracking curves; the
predicted cracking curves obtained for the three loading
rates (Fig. 14) are too close from each other. A supplemen-
tary simulation with an ‘‘artificially enhanced’’ nonlinearity
using the function g2ðrÞ ¼ 1þ cagrbg , with c = 5, did not
show a noticeable increase in the loading rate sensitivity
of the cracking curves.

5.2. Influence of the viscoelastic behaviour of the damaged

material

The viscoelastic behaviour of the undamaged material
cannot alone explain the marked effect of the loading rate
on transverse cracking. On the other hand, the rate sensi-
tive failure criterion, expressed by Eq. (36), gives a good
agreement between the experimental data and the simu-
lated cracking curves displayed in Fig. 15. Using a rate-
dependent critical value amounts to take into account the
viscoelastic character of the failing material in the process
zone around crack fronts. Moreover, another cracking test,
at 120 �C under neutral environment (nitrogen), with a
loading rate of 13.216 MPa/min (corresponding to a cross-
head velocity of 0.1 mm/min) has shown that the possible
oxidation of the material had no effect on the loading rate
sensitivity of the cracking process [15].

5.3. Improvement of the cracking description

As shown in Fig. 15, the predicted cracking curves, for
each loading rate, are in good agreement with experiment
except for the very early phase of the phenomenon. A prob-
abilistic energy based criterion proposed by Vinogradov
and Hashin [16] can be attempted in order to better repro-
duce the S-form of the cracking curves by properly describ-
ing the very low crack density range. In fact, using this
approach [16] amounts to take into account the ‘‘R-curve’’
effect when characterizing the resistance to transverse crack
multiplication, as empirically showed by Han et al. [17].

For the material system at hand, the numerical simula-
tions have showed that the viscoelastic behaviour (linear
or nonlinear) of the undamaged material cannot explain
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the marked effect of the loading rate on transverse crack-
ing. On the other hand, the loading rate dependence of
the critical material strength gives a good description of
the phenomenon. Therefore, the cracking process can be
sufficiently well described by assuming a linear elastic
behaviour for the undamaged material and using a failure
criterion involving a rate-dependent critical value display-
ing a ‘‘R-curve’’ effect. An energy balance based criterion
can be written in the form:

Gð�r; qÞ ¼ cðq; _�rÞ ð41Þ
The elastic energy release rate G [17] in the left-hand side of
Eq. (41), which is found by using a 1D shear-lag stress
analysis [17,18] and by supposing that new cracks appear
midway between two existing adjacent cracks, assuming a
2L uniform spacing (L = 1/(2q), q being the crack density),
is in the form:

Gð�r; qÞ ¼ Gmaxð�rÞ tanh
a

2q

� �
� a

2q
1� tanh2 a

2q

� � �� �
ð42Þ

where Gmaxð�rÞ ¼ 1
a

E22

Ex

1
E11
ð1þ h12Þ �r� 1

ð1þh12Þ
E11Da21DT

h i2

;

Ex ¼ E11þh12E22

1þh12
; Da21 = a2 � a1; h12 = h1/h2; a2 ¼ 3G23

h1
�

1
h2E11
þ 1

h1E22

	 

. A 2D analysis can also be derived [19]. The

critical energy release rate c is assumed to be a function
of both crack density q and loading rate _�r in the form:

cðq; _�rÞ ¼ c0 þ m0 þ m1q
m2ð Þ

_�r
_�rr

� �m3

ð43Þ

where m0, m1, m2, m3 are material constants and _�rr denotes
a reference stress rate; (m0 + c0) is the ‘‘initial’’ value of the
critical energy release rate corresponding to cracking onset
when _�r ¼ _�rr. For a given loading rate, c increases as the
crack density increases (‘‘R-curve’’ effect). Fig. 16 repre-
sents the simulated cracking curves obtained for the three
loading rates, by using the law (43) with the constants:
c0 = 157.2 (J/m2), m0 = 0 J/m2, m1 = 57.6 (J/m2), m2 =
Fig. 16. Crack density (cm�1) versus applied stress (MPa) at 120 �C for
three loading rates. Comparison between experiment and simulations
using an energy based criterion involving both ‘‘R-effect’’ and loading rate
effect into critical value. [03/903]S IM7/977-2 laminate.
0.256, m3 = 0.2 and _�rr ¼ 1:3216 MPa=min. A good agree-
ment between the experimental data [4] and the proposed
simulation has been obtained regarding both the rate sen-
sitivity and the S-form of the cracking curves for each load-
ing rate. It can also be seen in Fig. 16 that the slopes of the
simulated cracking curves are very different for the three
studied loading rates. This can be ‘‘explained’’ by taking
into account both the ‘‘R-curve’’ effect and the loading rate
dependence of the critical value, c, of energy release rate in
the form of Eq. (43).
5.4. Prospects

The rate dependence of the material resistance to trans-
verse matrix cracking (at the studied temperature of
120 �C) was described in a phenomenological way. It is
known that the toughness of the material is the area of
the ‘‘traction-separation curve’’ r (d; _d) pertaining to the
cohesive zone ahead of the crack front, where the local
stress r depends upon the crack opening displacement d
and its opening rate _d; see Landis et al. [20] for example.
In order to predict the traction-separation law, it would
be desirable to be able to deduce the behaviour of the fail-
ing material in the cohesive zone from that of the bulk
material. However this problem is still widely open, except-
ing for some works dealing with polymer fracture [21].

Until now we have supposed that the new cracks imme-
diately cross the specimen width as they appear. In order to
better assess the loading rate influence on the phenomenon,
it would be advisable to take into account the finite time of
propagation of matrix cracks in the width direction of the
specimen. A possible approach could use the work of Liang
et al. [22,23].

One of the most important conclusions of this work is
that, though important, the nonlinearity of the undamaged
material does not significantly enhance the stress (or strain)
rate sensitivity of the damaging process.
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Appendix A. Approximations (7) and (10)

In this section, the approximations given by (7) and (10)
are assessed in the case when the outer 0�-layers and the
inner 90�-layer are supposed to display a linear elastic
behaviour in the x-direction. A 1D stress state is considered
in this analysis based on a shear-lag approach [17,18].



450 T.H. Nguyen, D. Gamby / Composites Science and Technology 67 (2007) 438–452
A.1. Stress analysis

The constitutive equations of the layers and of the inter-
face are:

eð1Þx ðx; zÞ ¼
oU 1ðx; zÞ

ox
¼ 1

E22

rð1Þx ðx; zÞ ðA:1Þ

eð2Þx ðx; zÞ ¼
oU 2ðx; zÞ

ox
¼ 1

E11

rð2Þx ðx; zÞ ðA:2Þ

c
ðxÞ ¼ 1

G23

s
ðxÞ ðA:3Þ

where E11, E22, G23 are respectively the longitudinal, trans-
verse and shear modulus of the unidirectional ply given in
Table 1; c
ðxÞ ¼ cð1Þxz ðx; z ¼ h1Þ is the shear strain related to
the interfacial shear stress s
ðxÞ ¼ sð1Þxz ðx; z ¼ h1Þ. Averaging
Eqs. (A.1) and (A.2) over the thickness of the 90�-layer and
the 0�-layer, respectively, results in the averaged constitu-
tive equations of the layers as follows:

~eð1Þx ðxÞ ¼ ~U 01ðxÞ ¼
1

E22

~rð1Þx ðxÞ ðA:4Þ

~eð2Þx ðxÞ ¼ ~U 02ðxÞ ¼
1

E11

~rð2Þx ðxÞ ðA:5Þ

The prime symbol denotes a derivative with respect to x.
The displacement distributions in the x-direction in the lay-
ers are assumed as follows:

U 1ðx; zÞ ¼ z2f1ðxÞ þ f2ðxÞ; jzj 6 h1

U 2ðx; zÞ ¼ ~U 2ðxÞ; h1 6 jzj 6 h1 þ h2

�
ðA:6Þ

From the definition of ~U 1 and the continuity condition for
displacements at the interface (z = h1), the two space func-
tions f1(x) and f2(x) can be expressed as:

f1ðxÞ ¼ 3
2h2

1

~U 2ðxÞ � ~U 1ðxÞ
� �

f2ðxÞ ¼ 1
2

3 ~U 1ðxÞ � ~U 2ðxÞ
� �

(
ðA:7Þ

Supposing that the displacement in the z-direction in the
90�-layer varies very slowly with x, a relationship between
the interfacial shear strain (c*) and the averaged displace-
ments ( ~U 1; ~U 2) can be obtained (in the same form as Eq.
(15)); Then from Eq. (A.3), we obtain:

s
ðxÞ ¼ 3G23

h1

~U 2ðxÞ � ~U 1ðxÞ
� �

ðA:8Þ

Taking the derivative of Eq. (A.8) with respect to x results
in:

~U 02ðxÞ � ~U 01ðxÞ ¼
h1

3G23

s
0ðxÞ ðA:9Þ

Combining Eq. (A.9) with Eqs. (A.4) and (A.5) leads to the
following ordinary differential equation:

s
00ðxÞ � a2s
ðxÞ ¼ 0 ðA:10Þ
where

a2 ¼ 3G23

h1

1

h2E11

þ 1

h1E22

 �
Taking into account the boundary conditions at x = 0 and
x = L (Eq. (19)), the solution for the interface shear stress
can be obtained as:

s
ðxÞ ¼ 3G23

E11

h
h1h2

�r

 �
sinhðaxÞ

a coshðaLÞ ðA:11Þ

where h = h1 + h2.
Substituting Eq. (A.11) into Eq. (A.9) leads to:

~U 02ðxÞ � ~U 01ðxÞ ¼
1

E11

h
h2

coshðaxÞ
coshðaLÞ �r ðA:12Þ

The averaged equilibrium equation of the 90�-layer is given
by:

h1~rð1Þ0x ðxÞ þ s
ðxÞ ¼ 0 ðA:13Þ
Substituting Eq. (A.11) into Eq. (A.13), then integrating
this equation and applying the boundary conditions, the
solution for averaged normal stress in the 90�-layer is
found in the form:

~rð1Þx ðxÞ ¼
E22

Ex
1� coshðaxÞ

coshðaLÞ

� �
�r ðA:14Þ

where Ex ¼ h1E22þh2E11

h . Combining Eqs. (A.14) and (A.12)
leads to:

~U 02ðxÞ � ~U 01ðxÞ ¼
1

E11

h
h2

�r� E x

E22

~rð1Þx ðxÞ
 �

ðA:15Þ

Substituting Eq. (A.15) into the derivative with respect to x
of Eq. (A.7) results in:

f 01ðxÞ ¼
3

2h2
1

1

E11

h
h2

�r� Ex

E22

~rð1Þx ðxÞ
 �

ðA:16Þ

Substituting the displacement distribution in the 90�-layer
given by Eq. (A.6) into Eq. (A.1) gives:

rð1Þx ðx; zÞ ¼ E22 z2f 01ðxÞ þ f 02ðxÞ
� �

ðA:17Þ

Integrating Eq. (A.17) over the thickness of the 90�-layer
gives the averaged normal stress in the form:

~rð1Þx ¼
1

h1

Z h1

0

rð1Þx dz ¼ E22

h2
1

3
f 01ðxÞ þ f 02ðxÞ

 �
ðA:18Þ

Eliminating f 02ðxÞ from Eqs. (A.17) and (A.18) leads to:

rð1Þx ðx; zÞ ¼ ~rð1Þx ðxÞ þ E22 z2 � h2
1

3

 �
f 01ðxÞ ðA:19Þ

Substituting Eq. (A.16) into Eq. (A.19), results in the fol-
lowing relationship between the ‘‘local stress’’ rð1Þx ðx; zÞ,
the averaged stress ~rð1Þx ðxÞ and the applied stress �r:

rð1Þx ðx; zÞ ¼ ~rð1Þx ðxÞ þ
1

2

h
h2

1

E11

E22�r� Ex~r
ð1Þ
x ðxÞ

� � 3z2

h2
1

� 1

 !

ðA:20Þ

It can be seen that the normal stress rð1Þx ðx ¼ L; zÞ is not
zero everywhere on the crack surface x = L (only its aver-
age ~rð1Þx ðx ¼ LÞ is zero); this is a necessary limitation of the
‘‘shear-lag’’ type analysis. Due to the displacement distri-
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bution Eq. (A.6) and the assumption of very slow variation
of the displacement in the z-direction, the shear stress sð1Þxz

has a linear variation across the thickness of the 90�-layer;
this leads to:

sð1Þxz ðx; zÞ ¼
s
ðxÞ

h1

z ðA:21Þ

where s*(x) is the interface shear stress. Eqs. (A.20) and
(A.21) can be used to express the equivalent stress as a
function of x and z,

reqðx; zÞ ¼ rð1Þ2x þ keqs
ð1Þ2
xz

� �1=2 ðA:22Þ
Fig. A1. Comparison between left-hand side (F1) and right-hand side (F2)
of the approximation (7) for several crack density values at different
applied stress levels.

Fig. A2. Comparison between left-hand side (F3) and right-hand side (F4)
of approximation (10) for several crack density values at different applied
stress levels.
A.2. Numerical assessment of approximation (7)

Approximation (7) is defined by

rð1Þx g2ðreqÞ
� �

2h1
� ~rð1Þx g2 ~rð1Þx

� �
ð7Þ

where g2ðrÞ ¼ 1þ agrbg and the bracket symbol h i2h1
de-

notes the average of a function over the thickness of the
central layer. Substituting the expressions of the equivalent
stress req (Eq. (A.22)) and of the ‘‘local stress’’ rð1Þx (Eq.
(A.20)) into the term in the bracket, then averaging over
the thickness 2h1 of the 90�-layer results in:

rð1Þx g2ðreqÞ
� �

2h1
¼ F 1 ~rð1Þx ; s
; �r; keq; ag; bg

� �
ðA:23Þ

where F1 is a function of the applied stress �r, the shear
stress s*(x), the averaged normal stress ~rð1Þx ðxÞ between
two adjacent cracks and the parameters characterizing
the nonlinearity of the material (keq, ag, bg). Let us now
consider the right-hand side of approximation (7); using
the expression of the averaged normal stress ~rð1Þx ðxÞ given
by Eq. (A.14) results in:

~rð1Þx g2 ~rð1Þx
� �

¼ F 2 ~rð1Þx ; �r; ag; bg

� �
ðA:24Þ

where F2 is a function of �r, ~rð1Þx ðxÞ, ag and bg. The numer-
ical simulation of the distributions along the half crack
spacing (L) of the two functions F1 and F2 (namely the
left-hand side and the right-hand side of approximation
(7), respectively) is presented in Fig. A1. The comparison
between these two functions is studied for several damage
states, characterized by crack density q ¼ 1

2L, and at differ-
ent applied stress levels. For a given crack density, F1 and
F2 are almost equal when the applied stress is not very high;
when the applied stress is greater and close to the value nec-
essary to form a new crack in the 90�-layer, there is some
difference between F1 and F2. It can be seen in Fig. A2,
for a small value (q = 2 cm�1) or a sufficient high value
(q = 5 cm1) of the crack density, that the difference between
the two functions over the interval between two adjacent
cracks is acceptable up to a very high applied stress level
(600 MPa for q = 2 cm�1 or 700 MPa for q = 5 cm1), ex-
cept near the crack surface (x = L). In fact, at the crack po-
sition, stresses are zero, so both F1 and F2 equal zero. The
approximation is therefore also reasonable near the crack
position. For a very high crack density (about 10 cm�1),
the difference between the two functions becomes more
important when the applied stress is close to the value nec-
essary to form a new crack at this damage state.
A.3. Numerical assessment of approximation (10)

Consider now approximation (10); that is:
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s
g2 r
eq

	 

� s
g2 s


ffiffiffiffiffiffi
keq

p� �
ð10Þ

where r
eq ¼ reqðx; z ¼ h1Þ is the equivalent stress at the inter-
face z = h1; Substituting the normal stress rð1Þx ðx; z ¼ h1Þ gi-
ven by Eq. (A.20) and the interfacial shear stress s*(x)
given by Eq. (A.11) into Eq. (A.22), results in the left-hand
side and the right-hand side of (10), respectively, in the form:

s
g2 r
eq

	 

¼ F 3 ~rð1Þx ; s
; �r; keq; ag; bg

� �
ðA:25Þ

s
g2 s

ffiffiffiffiffiffi
keq

p� �
¼ F 4 ~rð1Þx ; s
; �r; keq; ag; bg

� �
ðA:26Þ

A numerical comparison between the two functions F3 and
F4 is presented in Fig. A2 for a small value (q = 2 cm�1)
and a sufficient high value (q = 5 cm�1) of the crack den-
sity. F3 and F4 are nearly equal when the applied stress is
not very high. When the applied stress attains the value
necessary to form a new crack, there is some difference be-
tween the two functions along the interval (�L < x < + L),
except near its center (x = 0). The difference is more impor-
tant near the crack positions and it is due to the locally
non-zero normal stress on the crack surfaces at z = h1 pre-
dicted by the ‘‘shear-lag’’ analysis. However, it must be
remembered that a fully 3D analysis would predict a zero
shear stress both at the center of the interval between adja-
cent cracks (x = 0) and at crack positions (x = L).

A.4. Conclusions

The accuracy of both approximations depends upon the
applied stress level, the damage state of the laminate as well
as the nonlinear character of the considered material. If the
applied stress is small or the crack density is low, the
approximations are appropriate. They may become very
inaccurate when the stress grows at a high damage level.
In the special case when the layers are assumed to display
a linear elastic behaviour, the above-mentioned numerical
simulations show that these approximations are acceptable
up to some high applied stress level at a high damage state
(namely L small). These results suggest that both approxi-
mations are admissible in the studied conditions.
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