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Abstract

The present work deals with two SiCf/[Si–B–C] composites exhibiting very different mechanical behaviours under tensile testing: low
strain to failure for the one, high strain to failure for the other with similar ultimate strength. In the present Part II, emphasis is made on
the clustering procedure of the recorded acoustic emission data. Clustering results are discussed as regards of what is known about the
damage mechanisms operating in both composites (see Part I of this work [Moevus M, Rouby D, Godin N, R’Mili M, Reynaud P, Fant-
ozzi G, et al. Analysis of damage mechanisms and associated acoustic emission in two SiC/[Si–B–C] composites exhibiting different ten-
sile curves. Part I: Damage patterns and acoustic emission activity. Compos Sci Technol; in press]) [1]. The different types of matrix
cracking in the composite are successfully distinguished by the AE analysis. This methodology will further be applied to static fatigue
tests at intermediate temperature, in order to help predicting lifetimes of the composite.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

An experimental study of two SiCf/[Si–B–C] composites
exhibiting different behaviours has been presented in a
companion paper [1]. The difference in the mechanical
behaviours has been attributed to a difference in the inter-
facial shear stress. The global acoustic emission (AE) activ-
ity and the microscopic observations of both composites
have been compared in order to highlight the differences
in damage accumulation. This second part deals more pre-
cisely with a statistical multi-variate analysis of the AE
data, in order to distinguish the signals produced by the
different damage mechanisms.

Acoustic emission is a transient wave resulting from the
sudden release of stored energy during a damage process
[2–4]. These waves propagate through the specimen and
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are transformed in electrical signals by piezoelectric trans-
ducers. The signals depend on the AE source, the propaga-
tion medium and the sensors, thus there is no universal
signature of damaging events. However in permanent set-
up conditions similarities exist among AE signals originat-
ing from similar events. In this way a careful analysis of the
AE signals can lead to the discrimination of the different
damage mechanisms occurring in a composite (matrix
cracking, fibre breaks, interfacial debonding, frictional slid-
ing). Most studies have used AE descriptors such as ampli-
tude or duration to characterize the AE sources. A single
parameter analysis is sometimes sufficient to discriminate
two mechanisms with very different energies. Some authors
applied this type of analysis to CMCs [5–7]. In the case of
CMCs, Morscher used the energy of the waveforms to cor-
relate through thickness matrix cracks, considering that the
signals of fibre failure and interfacial debonding and sliding
have a negligible contribution in energy [8,9]. However, a
discrimination of the acoustic signatures of the damage
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mechanisms based only on one parameter is debatable in
such composites, because the amplitude distribution is gen-
erally not clearly multimodal. A multi-variate analysis
using statistical pattern recognition techniques is more
appropriate and can give interesting results [10–18].

An alternative to parametric analysis is transient analy-
sis: all the waveforms are digitized and analysed. Interest-
ing works have been carried out on the frequency content
of the signals in order to differentiate the different propaga-
tion modes and the damage mechanisms [19–22]. In the
present study the large amount of AE data was dissuasive,
because transient analysis needs extensive acquisition and
storage capacities, and is very time demanding for analy-
sing each waveform. A statistical multi-variate data analy-
sis was preferred. Its efficiency to identify damage
mechanism has been proven by several authors for some
ceramic matrix composites [12–14].

The chosen AE clustering methodology has been
described elsewhere [23] but some improvements have been
made. The entire procedure is described in Section 2. Par-
ticular care was taken in order to optimize the AE data
description before clustering. This methodology was
applied to the data obtained during mechanical testing of
two SiCf/[Si–B–C] composites with different mechanical
behaviours. The damage accumulation of both composites
has been analysed and compared in [1]. The experimental
procedure will be briefly recalled in Section 3. Afterwards
Section 4 gives a rapid description of the damage accumu-
lation. Next the clustering results are presented and com-
pared in Section 5. Lastly the clusters will be associated
with damage mechanisms in Section 6.

2. Unsupervised clustering methodology of the AE signals

In this work the AE signals will be treated as pattern
vectors described by a number d of features, or descriptors
(amplitude, duration, rise time, counts, etc.). The number d

is the dimensionality of the pattern vector. As defined by
Jain et al. [24,25] clustering refers to unsupervised classifi-
cation. No labelled data is available in our case, thus an
unsupervised methodology is required to perform an
exploratory pattern-analysis. A typical pattern clustering
involves the following steps:

– representation of the pattern vectors (feature selection/
extraction procedure),

– definition of a similarity measure appropriate to the
data domain,

– clustering (or grouping of similar pattern vectors),
– cluster validity analysis (using a specific criterion of

optimality),
– labelling the clusters (identifying the AE sources).

Each step will be described in this section (except label-
ling which will be discussed in Section 6). All the procedure
is unsupervised and aims at extracting the natural structure
of the data. Particular care was taken for the pattern repre-
sentation since it determines the final output of the cluster-
ing: with too many redundant features it is possible to
make two arbitrary patterns similar.
2.1. Feature selection using hierarchical clustering

This step is based on the methodology used by Anastas-
sopoulos et al. [10,11] for feature selection. The AE data
was initially described by 18 features given in Fig. 1. The
9 first ones (like the rise time R or the amplitude A) are cal-
culated by the acquisition system, the others are ratios of
the first ones (for example: R/A). Notice that the average
frequency is in fact an apparent frequency equal to the
number of counts divided by the duration of the signal.
The further calculation of correlation coefficients implies
the assumption that all the AE features exhibit Gaussian-
like distributions. This was clearly not the case for several
features such as the duration D or the energy E, which
exhibit exponential distributions. Thus the logarithmic val-
ues of such descriptors (noted Dln, Eln) were used instead of
their natural values. The feature values were then normal-
ized in the range [�1.0;1.0] in order to obtain comparable
scales between all the descriptors.

The correlation matrix of the 18 features was calculated
and subjected to a complete link hierarchical clustering
[26]. This clustering aims at merging the correlated features
into groups, the correlation matrix being updated after
each grouping of two features. The result can be plotted
in a dendrogram (Fig. 1). The determination of a threshold
fixes the number of groups to be considered. It was chosen
so as to select a subset of eight features. With more than
eight features, the final result of the clustering procedure
remains the same, so the other features are redundant.
The selected features are circled in the list of Fig. 1.
2.2. Feature extraction using a principal component analysis

(PCA)

A principal component analysis was performed in order
to define new uncorrelated features and to reduce the
dimensionality of the data [27,28]. The correlation matrix
R of the eight features is calculated. The eigenvectors and
their associated eigenvalues are extracted. The eigenvectors
Vi are linear combinations of the eight features mentioned
below:

V i ¼ aiRln þ biF þ ciRF þ diEln þ eiR=Dln þ fiA=Rln

þ giA=DT ln þ hiA=F ln; ð1Þ

where ai,bi . . . ,hi are constants, and Rln, F, RF, Eln, R/Dln,
A/Rln, A/DTln, A/Fln are the selected features from the den-
drogram (see Fig. 1). They have the particularity of being
uncorrelated, so the initial eight-dimensional domain of da-
ta’s description is transformed in an orthogonal one, and
the eigenvectors form the new base of this domain. The
eigenvectors correspond to the dimensions with the largest
variances. The exact contribution of the kst eigenvector to



Fig. 1. Correlation dendrogram of the AE descriptors.
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the total variance of the data is given by the ratio
kk=ðk1 þ k2 þ � � � þ k8Þ where kk is the kst eigenvalue asso-
ciated with the kst eigenvector. Therefore the principal
components are the j most representative eigenvectors. In
this work, j was defined as the minimum number of eigen-
values that contribute to more than 95% of the variance of
the data by summing their contributions, and j was found
equal to 4. The other eigenvectors can be neglected without
loosing much information. Finally the data was expressed
in the four-principal components’ base.

Johnson [18] applied the PCA as an unsupervised clus-
tering method for the AE data generated during tensile
tests on glass fibre/epoxy laminates. Two principal compo-
nents have been identified, which allow the visualization of
the data in a two-axis graph. Clusters could immediately be
identified. In the present work, with four-principal compo-
nents the visualization of clusters is not obvious and the use
of an unsupervised clustering algorithm is necessary.

2.3. Similarity measure: a weighted Euclidean distance

In order to take into account that the principal compo-
nents do not contain the same quantity of information, the
distance between two points in this 4D-space is defined as
d2

wðX ; Y Þ ¼
P4

i¼1ki:ðX i � Y iÞ2 where ki is the ist eigenvalue,
Xi and Yi are the ist coordinates of the vectors X and Y.
The distance d2

w is a squared weighted Euclidean distance.
It will be used in all the following steps.

2.4. Clustering by the k-means algorithm

The k-means algorithm aims at minimizing the sum of
squared distances between all the vectors of a cluster and
its centre [29]. This method assumes that the number k of
clusters is specified in advance. The coordinates of the clus-
ter centres are randomly initialized. Then each pattern is
assigned to the nearest cluster, according to the weighted
Euclidean distance between the pattern and the centres of
the clusters. Afterwards the new coordinates of the centres
are computed and the procedure is repeated until there is
no change in the coordinates of the centres. The main prob-
lem is that this algorithm can reach either a local or global
convergence depending on the initialisation. To avoid this
difficulty, a random uniform initialization was chosen
rather than a simple random one. This leads to a more
reproducible result. Moreover the clustering was run 15
times and only the best result was saved.

2.5. Cluster validity: Davies and Bouldin criterion

The optimal number of clusters k was empirically deter-
mined by using the Davies and Bouldin criterion [30],
which does not depend on k. The Davies and Bouldin coef-

ficient DB is defined as DB ¼ 1
k

Pk
i¼1maxi6¼j

diþdj

Dij

n o
where di

and dj are the average within-class distances of clusters i

and j respectively, and Dij denotes the distance between
the two clusters i and j. The best clustering result corre-
sponds to a minimum value of DB. So several clusterings
were performed with k varying from 2 to 10, and the opti-
mal number k was chosen so as to minimize DB.
3. Experimental procedure

The materials and mechanical tests monitored by AE
have been described in [1]. They will be briefly recalled.
The studied materials are SiCf/[Si–B–C] composites exhib-
iting very different mechanical behaviours because of a dif-
ferent interfacial shear stress. The composite having a
larger strain to failure is called M–E (‘‘Elongation”), and
the other M–S (‘‘Stiffness”). One specimen of each material
was tested at room temperature. The specimens were
loaded in tension up to a specific load value corresponding
to a strain equal to 0.3%. The load was hold during nearly
20 h. Unloading cycles were applied before performing a
residual tensile test up to failure. AE was monitored by
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using a two-channel MISTRAS 2001 acquisition system of
Physical Acoustics Corporation. Two resonant MICRO-80
sensors were attached on the specimen 78 mm apart. Med-
ium viscosity vacuum grease was used as a coupling agent.
The acquisition parameters were set as follows: threshold
40 dB, peak definition time 50 ls, hit definition time
100 ls, hit lockout time 1000 ls. The location procedure
and AE filtering have been described in [1].

4. Damage description and expectations for the AE

clustering

In such CMCs, matrix cracking can be classified into
several kinds of cracking. First, cracks initiate in the exter-
nal seal-coat and at the macropores inside the composite,
and propagate through the inter-yarn matrix (C1). Then
the cracks propagate inside the transverse yarns through
fibre–matrix interfaces (C2). Multiple matrix cracking
finally occurs inside the axial yarns (C3). These cracks
are deflected by the fibre–matrix interphase layer (C4),
leading to fibre debonding and overloading. Some fibre
breaks are expected under high stresses. They rapidly lead
to instable fracture of entire yarns and of the composite.

Microscopic observations after failure revealed that the
crack networks of M–E and M–S are rather different [1].
M–S contains much more cracks than M–E, so the mean
crack spacing values (and pull-out lengths) are smaller in
M–S (Table 1 in [1]). The crack spacing measurements also
confirm the observation that matrix cracking saturation in
the axial yarns is reached in M–E at the end of the test, but
not in M–S. Moreover a dense cracking was observed in a
particular matrix layer of M–S (C5) which was not visible
in M–E.

According to these observations some expectations can
be formulated on the corresponding AE. The sources of
AE are the different matrix cracks, interfacial debonding,
individual fibre fractures and yarn fractures. After cluster-
ing of the AE data, the maximum possible number of clus-
ters may be equal to the number of mechanisms if all the
acoustic signatures are distinguishable. But some mecha-
nisms may produce similar AE signals that would not be
separated by the clustering algorithm. In this case the num-
Table 1
List and characteristics of the AE sources and clusters of signals

AE source C1-cracks C2-cracks C3-cracks

Crack area (mm2) M–E 0.4–0.8 0.3–0.6 0.1–0.2
M–S

Number of cracks M–E 1500–3000 3000 25000
M–S 3000–8000 5000 150000

AE cluster A B C (+F)

Energy (attoJ) M–E 118440 2220 260
M–S 152800 2710 170

Number of events M–E 2396 5560 3676
M–S 7246 9686 11900
ber of clusters would be less than the number of mecha-
nisms. The energy of the AE signals is related to the
energy released by the AE source. This parameter is thus
very important to discriminate the different mechanisms.
It depends on the size of the source, on the material
strength and on the stored elastic energy.

Three types of matrix cracking (C1, C2, C3) have been
observed in both composites [1] which can produce three
types of signals, because they have different morphologies
and sizes (Table 1): C1-cracks cross several matrix layers
(�0.2 mm length) and several yarns (their width is several
millimetres according to microscopic observations); C2-
cracks inside the transverse yarns are parallel to the fibres
and travel through matrix layers and interphases. There-
fore these cracks may propagate step by step. Their length
is limited by the yarn’s thickness (0.1–0.2 mm) and their
width could be approximately 3 mm (distance between
two crossed axial yarns ? zones in compression) but it
was not possible to really measure the size of such cracks;
C3-cracks inside the axial yarns are the shortest ones
because their area is limited by the cross-sectional area of
one yarn (approximately 1 mm width and 0.1–0.2 mm
thick).

One additional type of cracking (C5) has been observed
in M–S which should lead to an additional cluster of sig-
nals in M–S: the width of such cracks is similar to that of
C1-cracks but their length is limited by the layer’s thickness
(�0.05 mm). So the corresponding AE signals may have a
smaller energy than those associated with C1-cracks but a
higher energy than those associated with C3-cracks.

Debonding in the axial yarns (C4) is consecutive to C3-
cracks in the axial yarns. This mechanism should produce
low energy signals since debonding is limited by both the
fibre perimeter (0.05 mm) and the debonding length
(�0.3 mm in M–E and 0.05 mm in M–S).

Before the final fracture of the composite, some fibre
breaks may be recorded. When the consecutive overload-
ing on the survival fibres is too high, entire yarns fail
leading to the fracture of the specimen. These last signals
may have a higher energy than the individual fibre breaks.
We have no a priori information about the energy of fibre
breaks signals in comparison with the energy of matrix
C4-debonding C5-cracks Fibre fracture Yarn fracture

0.015 – 0.00015 0.1–0.2
0.003 0.15–0.25

? – – –
? 6000–16000 – –

D E

200 –
205 850

2784 –
4484 8172
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cracks because it depends both on the fracture area, the
Young’s modulus of the constituents and their strain to
failure. Therefore the comparison between the energy
released by matrix cracking and by fibre fracture is not
obvious.

In the case of matrix cracking, rough estimations of the
number of cracks can be made by considering the presence
of approximately 16 axial yarns in the width of the speci-
men, nine rows in the thickness in M–E and 12 rows in
M–S, and a monitored specimen’s length of 60 mm. The
crack spacing distances were measured for each type of
cracks in [1]. All the possible AE sources, their characteris-
tics and expected number of events are summarized in
Table 1.

5. AE data clustering results

The AE clustering procedure described in Section 2 has
been applied to the AE data recorded during the previously
described tests on M–E and M–S. The signals recorded
during the unload–reload cycles have been suppressed
because they are very few, and in the case of M–E they
are principally produced by interfacial sliding which is
not considered as a damage mechanism.

5.1. Description of the obtained clusters

According to the Davies and Bouldin criterion, the opti-
mal clustering was obtained with four clusters in M–E and
with six clusters in M–S. This corresponds to the minimum
values of Davies and Bouldin coefficient as shown in
Fig. 2. Table 2 summarizes the mean characteristics of
the obtained clusters of AE signals. The A, B, C, D clusters
of M–E, ranked by energy, are also present in M–S and
have the same mean characteristics. Two additional clus-
ters E and F appeared in M–S. A-type signals are the big-
gest ones: highest energy, duration and amplitude. B-type
signals can be distinguished by lower energy, higher rise
time to duration ratio and higher apparent frequency than
the cluster A. Clusters C and D exhibit quite the same low
energy but C presents the shortest rise time whereas D has
the longest one, the corresponding waveforms are thus
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Fig. 2. Davies and Bouldin criterion: the minimum values of coefficient
DB are obtained with four clusters in M–E and six clusters in M–S.
really different. In M–S composite, cluster E appears inter-
mediate between B and C; it differs from B by its very short
rise time and from C by its high frequency. Cluster F has a
very short duration but its rise time and rise frequency are
similar to those of cluster C. For the low amplitude signals
(C, D and F) the acquisition threshold has a strong influ-
ence on the AE descriptors calculation, and particularly on
the duration of the signals. The decay part of the wave-
form may be shortened because the ultimate counts of
the waveform may be lower than the threshold value.
Therefore, since only the decay characteristics of the F-
type signals differ from the C-ones, the cluster F seems
to be a part of cluster C, which has been separated by
the algorithm in the case of M–S because of the very large
number of signals in this composite. In the following we
consider that C- and F-type signals belong to the same
cluster (C + F).

5.2. The AE activity associated with each cluster

The clusters’ activities are shown in Fig. 3 for both
materials. The proper activities of the different clusters
are not very far from the global activity as described in
[1]. Nevertheless some differences can be noticed. In the
case of M–E (Fig. 3a), cluster B is the most active from
the beginning of the test, before yielding, and its activity
increases during the residual tensile test. The same feature
is observed for the clusters A and C, but these clusters are
less active during the load hold sequence and seem to
saturate. Conversely the cluster D is less active during the
initial loading and its activity increases during the other
steps. In M–S (Fig. 3b) the trend is overall similar except
that the clusters A and (C + F) are more active. Here,
the cluster E is one of the most active and cannot be
neglected. All the clusters exhibit significant activity during
the load hold step. We notice that C is inactive at the end of
the test in M–E, and that this is not the case for (C + F) in
M–S. The main information about the clusters is summa-
rized in Table 1: energy and number of events in each
composite.

The residual tensile test leads to final fracture. It is
shown in [1] that there is a local concentration of the AE
events in the fracture zone before the final fracture of M–
E. It is thus interesting to analyse which cluster is more
linked with what happens during fracture. To do this, the
signals coming from the fracture zone (in the interval of
position [+12; +22] mm in M–E, [+8;+18] mm in M–S, 0
being the gauge length centre) are separated from the rest
of the data. Concerning the so-called unbroken zone, the
number of events is averaged in order to give the number
of AE events for the same zone length as the fracture zone
one (10 mm). The M–E clusters’ activities in the unbroken
zone and in the fracture zone are compared in Fig. 4. It
appears very clearly that clusters A and B rise more steeply
in the fracture zone before fracture than in the other zone.
Clusters A and B also manifestly increase in the fracture
zone for M–S material.



Fig. 3. Activities of the clusters during the test, (a) in M–E and (b) in M–S composite.

Fig. 4. Comparison of the clusters’ activities (a) in the unbroken zone and (b) in the fracture zone, during the residual tensile test on M–E composite.

Table 2
Mean characteristics of the clusters

Cluster Energy (attoJ) Amplitude (dB) Risetime (ls) Duration (ls) Risetime/duration Frequency (kHz)

M–E A 118440 83 10 852 0.01 210
B 2220 65 12 168 0.07 264
C 260 57 4 73 0.05 180
D 200 55 23 76 0.31 165

M–S A 152840 83 9 1057 0.01 215
B 2710 65 14 206 0.07 237
C 180 55 5 76 0.07 128
D 200 54 28 86 0.32 142
E 850 62 3 117 0.03 224
F 140 54 9 38 0.24 247
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6. Discussion

The results are in good agreement with what was
expected after damage descriptions (Section 4). All the
clusters found in M–E are also present in M–S with very
similar characteristics; in the same way, all the mechanisms
occurring in M–E also occur in M–S. Moreover two addi-
tional clusters were isolated in M–S, in which one addi-
tional mechanism has been observed. It has been shown
that the second additional cluster could be joined to
another one because their main characteristics are similar.
Therefore the preceding results of unsupervised clustering
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allow the proposition of an identification of damage mech-
anisms associated with clusters of signals. The discussion
will be organised in five paragraphs, each one correspond-
ing to one cluster. The identification with one or more
mechanisms (described in Table 1) will be discussed taking
into account the mean characteristics of the cluster (and
particularly the energy level of the signals), its activity in
link with the applied loadings, and the expected number
of signals.

Cluster A appears in great majority at the beginning of
the test, during initial loading (Fig. 3), so it should corre-
spond to some matrix cracking. Since this cluster groups
the signals having the highest energy level (Table 1), it is
associated with C1-cracks, which are the biggest observed
cracks. The number of A-type signals is in good agreement
with the number of C1-cracks in M–E and in M–S compos-
ites (Table 1). This mechanism is expected to saturate, but
in reality some activity is recorded during the residual ten-
sile test just before failure in the failure zone (Fig. 4). This
suggests that this cluster also contains fracture signals asso-
ciated with the final fracture of the composite. These sig-
nals are attributed to some yarn’s fracture or collective
fibre breaks (individual fibre failures will rather be associ-
ated to cluster B of lower energy). As a conclusion, the
cluster A contains signals from two damage mechanisms
which are chronologically well separated. It is thus possible
to refine the clustering result by extracting the last fracture
signals from cluster A.

Cluster B is also active from the beginning of initial
loading, we thus associate it with another type of matrix
cracking. These signals have the second place according
to the energy rank (Table 1), so they can be attributed to
C2-cracks. By comparing the number of C2-cracks and
the number of B-type signals, it appears that there are
two or three times more signals than cracks. However the
estimation of the number of cracks is not precise at all
because the cracks’ width could not be measured. More-
over, the C2-cracks propagate step by step through matrix
layers and interphase layers around the transverse fibres,
and can produce several AE signals per crack. This cluster
has a significant activity during the load hold step (Fig. 3).
It is coherent because under constant load a propagation of
debonding at the fibre–matrix interfaces is expected. This
debonding occurs both in transverse yarns (C2-cracks)
and in axial yarns. According to Fig. 4, cluster B is also
linked with the final fracture of the composite, since its
activity locally increases in the fracture zone just before
failure. These last signals can thus be associated with fibre
breaks. It seems difficult for the clustering algorithm to iso-
late the fibre fractures from the rest of the AE data, cer-
tainly because the number of such fractures is very small
in comparison with the global number of cracks.

Cluster C (or (C + F) in M–S) contains relatively short
signals with short rise time and low amplitude when com-
pared to the others. Its activity during initial loading
(Fig. 3) suggests that it corresponds to the last type of
matrix cracking in M–E: C3-cracks in the axial yarns.
These are the shortest cracks. Moreover, a saturation of
the activity of this cluster is observed in M–E but not in
M–S (Fig. 3a). This is in agreement with the fact that the
multiple cracking saturation in the axial yarns is reached
in M–E but not in M–S, due to the difference in the inter-
face characteristics [1]. This has been confirmed by the
microscopic observations. From the average crack spacing
of 0.33 mm, 25000 cracks are estimated in M–E, associated
with only 3600 AE events (Table 1). In M–S, nearly 12000
signals of cluster (C + F) have been recorded whereas
150000 cracks are likely to be created in this material. This
large discrepancy is probably due to the high acquisition
threshold level (40dB). The C-type signals have a low
energy and some of them may not be detected because of
their too low amplitudes.

Cluster D: this cluster is the last one to be activated, and
it becomes more active as strain increases (Fig. 3). D-type
signals seem to be a consequence of the existing damage
in the material, and are more likely attributed to fibre–
matrix interfacial debonding (C4-cracks). The D-type sig-
nals have the particularity of having a longer rise time than
the other ones (Table 2), therefore the shapes of these sig-
nals are well differentiated from the others. This mecha-
nism is especially expected to occur during the load hold
sequence; this is actually the case for cluster D. As for C-
type signals, some D-type signals were probably not
recorded because of their low level of amplitude.

Cluster E only appears in M–S composite. The only
additional observed mechanism in that material is the dense
C5-cracking in a particular matrix layer of M–S. The energy
of the corresponding signals is expected to be smaller than
the A-type signals but larger than the C-type signals; this
is the case of the cluster E (Table 1). The number of signals
is consistent with the estimated number of cracks.

7. Conclusion

As a conclusion, a scenario for the identification of each
cluster with one ore more damage mechanisms has been
achieved taking into account the differences between the
two studied composites. In the first paper [1] we analysed
the different mechanical behaviours in relation with micro-
scopic observations of the damage states after tensile tests.
It has been shown that the global AE activity is different in
both composites, which is in agreement with different
damage accumulation scenarios. In this second paper, the
AE data was subjected to an unsupervised multi-variate
clustering analysis, which allows revealing the natural
structure of the data. It has been pointed out that several
types of signals can be distinguished, and that the obtained
clusters are coherent with the expected differentiation of
damage mechanisms. In particular, the different kinds of
matrix cracking occurring in 3D-composites are well distin-
guished by the algorithm. The numbers of signals are in
agreement with the rough estimations of the associated
numbers of cracks, except for the low energy signals
because the acquisition threshold value is too high to detect
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all of them. The signals corresponding to fibre failures were
not separated by the algorithm, probably because of the
small number of related signals.

This methodology will further be applied to static fati-
gue experiments monitored by AE at intermediate temper-
atures on a SiCf/[Si–B–C] composite. Clustering of AE
data should be helpful to monitor the different damage
kinetics and to perform reliable predictions of lifetimes.
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