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Abstract—The densification rate and microstructural evolution of powder compacts densifying by
solution-reprecipitation in the presence of a liquid phase are predicted with the assumption that solid
particles are equisized spheres randomly packed and pulled together by a liquid that wets perfectly both
the solid and its grain boundaries. The influences of applied pressure, initial packing density, and of the
“sphering force” due to changes in solid particle shape are accounted for. The resulting sintering rate
retains approximately the one-third power law dependence of linear shrinkage on time predicted by
Kingery, and shows good agreement with published experimental data. The analysis is extended to include
the role of particle coarsening, so as to assess its importance and influence in densification kinetics.
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1. INTRODUCTION

Liquid phase sintering is one of the most industrially
significant powder densification processes. In its
usual form, this process consists of heating, some-
times under pressure, a mixed powder compact until
a small amount of chemically stable liquid phase
forms and greatly accelerates sintering of the
powders. Because of its practical importance, a large
body of research, summarized in two monographs
[1, 2], has been conducted on liquid phase sintering,
towards identification and quantification of the rate
of sintering, and towards prediction of the resulting
material microstructure.

There is broad agreement that, despite consider-
able microstructural complexity and system-to-
system specificities, the densification of liquid phase
sintered structures proceeds essentially in three
stages. The first of these is a relatively rapid
rearrangement of solid particles, which begins
immediately upon formation of the liquid. The
second stage, solution-reprecipitation, is observed
only in systems featuring some solubility of the
remaining solid phase in the liquid phase. In the third
stage, microstructural coarsening is observed in many
systems, accompanied by much slower solid-state
sintering in systems where there is formation of a
network of solid bridges between touching solid
particles.

The first stage, rearrangement, is geometrically
complex. When the liquid phase forms, the remaining
solid phase particles change position under the action
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of capillary forces, to eliminate void spaces within the
structure. Rearrangement is complicated by several
capillary and dissolution phenomena; however, in the
simpler systems, the observed densification kinetics
are predominantly limited by viscous flow of the
liquid. Hence, as first shown by Kingery [3], the rate
of densification during rearrangement is roughly
constant, and inversely proportional to the solid
particle radius if monosized solid phase powders are
used. Rearrangement stops either when the liquid fills
all pore space present, or when the solid particles are
packed to the maximum volumetric density that can
be attained from the initial mixed powder structure
without deformation of the solid particles.

When rearrangement does not fully densify the
compact, solution-reprecipitation can provide a rapid
alternate densification path in systems where there
is some solubility of the solid in the liquid phase.
Solution-reprecipitation is the process whereby solid
phase material along contact areas between touching
solid particles dissolves into the liquid, and deposits
elsewhere along the liquid/solid interface. The net
result of this process is that solid particles are
deformed, in a manner that causes an increase in
their packing density and, hence, a reduction in pore
volume within the powder compact. Resulting
microstructures feature, in non-faceted solid/liquid
systems, flattened spheres typical of the “grain shape
accommodation” that is observed, for example, in
heavy alloy microstructures (examples are given on
pages 7 and 104 of the monograph by German [2]).

Despite considerable research on the kinetics
of densification during this second, solution-
reprecipitation, phase of liquid phase sintering,
few quantitative models exist. Essentially, the only
quantitative prediction of the rate of densification
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during this stage of the process is that of Kingery
[4, 5], which equates the linear rate of shrinkage of a
powder compact with that of two isolated particles
wetted at their contact region by the liquid. Kingery’s
analysis predicts that the relative shrinkage of a
powder compact during sintering by solution-
reprecipitation is proportional to r~**#'*, where r is
the solid powder particle radius, and r is time.

Despite clear substantiation of this prediction by
experiment [1,2,6,7], Kingery’s model has been
criticized on the basis that it is too simple. Indeed, it
ignores the possible influence of several phenomena,
including solid phase particle coarsening, which is
necessarily present to some extent during sintering by
solution-reprecipitation [2, 8, 9). Significant criticism
of Kingery’s model can also be voiced on the
same grounds as with similar early models of solid
state sintering, namely that consideration of two
touching particles only is an oversimplification of the
microstructure of a densifying powder compact.

Significant advances have been accomplished over
the past decade in the theoretical analysis of
solid-state powder densification. The outcome of
this research effort is a coherent microstructural
framework for analysis of solid state densification,
based on the random close packed sphere model.
Resulting equations agree with experiment, and show
that analyses of powder densification based on two-
particle models are, indeed, oversimplified [10-13].

This article provides a quantitative analysis of
the kinetics of liquid phase sintering by solution-
reprecipitation which relieves several of the assump-
tions inherent in Kingery’s model, yet recovers the
essential predictions of that model, its good
agreement with experiment, and the overall physical
insight it first provided. Beyond relieving several of
Kingery’s assumptions, the present model provides a
basis for the analysis of various pertinent phenomena,
such as the presence of large pores in the final micro-
structure, the influence of coarsening on densification
rate, the formation of solid volume fraction gradients
under the influence of gravity, and macroscopic
liquid flow across densified liquid phase sintered
structures.

We begin by presenting the assumptions we make,
then derive governing equations of densification by
liguid phase sintering, and then discuss their
implications and extension to a coarsening system in
the final main section of this article.

2. PRINCIPAL ASSUMPTIONS

We consider a compact densifying by solution-
reprecipitation during liquid phase sintering, immedi-
ately after melting of the liquid and rearrangement
of the powder particles under the action of capillary
forces. We focus on the simplest geometrical case,
namely one for which the following assumptions
hold.

o

(i)

(iif)

(iv)

V)

(vi)

The solid/liquid interfacial energy is iso-
tropic. Consequently we assume that there is
no faceting of the solid particles.

The liquid wets the solid perfectly:

oy + 0 < Oy M

where ¢ denotes interfacial energy, and sub-
scripts s, | and v the solid, liquid, and vapour
phases respectively. Pores are therefore
separated from the solid/liquid boundary by
at least a thin film of liquid. We do not expect
slight violation of this criterion to introduce
large deviations in predictions of the present
analysis.

The liquid penetrates grain boundaries of the
solid phase:

20'51 < Ogb (2)

where oy, is the grain boundary energy of
the solid phase. Therefore, solid grains are
entirely surrounded by liquid, a thin film of
which is always present between neighbour-
ing grains of the solid phase.

The compact densifies by the diffusion-
controlled solution-reprecipitation mechan-
ism.

The solid grains are, at the conclusion of
rearrangement, all of the same size, and
randomly packed as an assembly of equisized
spheres. We assume that there is no
coarsening of the solid phase, despite the fact
that coarsening is necessarily present to some
extent in systems densifying by the solution-
reprecipitation mechanism (we subsequently
relax this assumption). The assumed solid
powder geometry is realistic from an
engineering standpoint [14], but differs from
bimodal powder blends explored by some
authors [8, 9, 15, 16].

The assumption that, at the conclusion of
rearrangement, the solid particles are initially
packed roughly as dense random spheres
stands to reason since, when the liquid-
forming powder melts, capillary forces pull
the refractory solid spheres together until
they reach maximum packing, as noted by
Kingery [3]. This assumption is in agreement
with experimental data in the Fe-Cu and
MgO-Kaolin systems [6,7], and is also
supported, as noted by German, by the
rationalization that, above the volume
fraction solid corresponding to random close
packing, by analogy with rheocast structures,
the apparent viscosity of the semi-solid slurry
must increase dramatically, thus slowing
further rearrangement significantly [17].
The compact densifies in vacuum. The
influence of a finite gas pressure in pores is
thus not addressed here.
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(vii) Although we take into account the influence
of externally applied pressure during densifi-
cation, we assume that this external pressure
does not cause solid grain deformation by
mechanisms other than solution-reprecipita-
tion, such as creep and plastic deformation
(such additional solid phase deformation was
observed in one study Ref. [18]).

(vili) We assume that densification is limited by
the rate of diffusion of one element of the
solid phase through the liquid. If there is
significant solubility of the liquid phase
primary elements in the solid grains, the
influence of such solubility and ensuing
diffusion into the solid on the densification
rate is assumed to be negligible. We base
this assumption on the observation that,
although the thermodynamic driving force
for such homogenization is large in compar-
ison with capillary forces, the rate of solid-
state diffusion is generally low. Furthermore,
a lack of compositional uniformity in the
solid does not influence the liquid/solid
surface energy, since interfacial compositions
in both liquid and solid are very rapidly
brought everywhere to local chemical equi-
librium values [8].

When rearrangement has stopped, solid
particles are thus assumed to be random close
packed spheres, all of radius r, separated by
liquid which contains isolated pores. These
solid grains are pulled against one another by
the liquid/vapour interface, aided by applied
pressure (if any), such that the chemical
activity of the solid in narrow regions of
interparticle near-contact is raised. As a
consequence, solid diffuses through the liquid
to regions remote from interparticle contacts,
resulting in flattening of these contacts and
densification of the powder compact, by the
well-known solution/reprecipitation mechan-
ism presented by Kingery [3]. The rate of
densification therefore depends on the rate
of local neck flattening at solid particle
proximity regions, and on the geometrical
distribution of necks, grains, and pores in the
densifying powder compact.

3. KINETICS OF DENSIFICATION
3.1. Microstructural relations

We use the formalism developed by Arzt et al.
[10, 11] to model the geometrical evolution of the
solid particles. These, save for the thin liquid layer at
flattened particle contact necks are, by themselves,
analogous to a dry powder compact densifying in the
“‘compaction limit”, to use the terminology of Arzt
[10): solid material removed at neck regions is
uniformly redistributed along the remainder of the
solid particle surface area.

As the compact densifies, the average total area «
of the flattened interparticle contact regions therefore
equals, per particle [12]:

2 Vs(Vs _ I/s,O)
(1= Vo)

where V. is the volume fraction solid, » the initial
particle radius, Z the average number of interparticle
contact areas per particle, and V., is the initial
volume fraction of solid, present at the end of
rearrangement and the beginning of densification by
solution/reprecipitation.

After initial rapid rearrangement of the particles,
we can assume, provided the part dimensions are
small, that (i) Darcian flow of the liquid across the
sample is rapid on the time-scale of the sintering
process, and (ii) that microstructural gradients caused
by the gravitational field (e.g. [19, 20]) are negligible.
As a consequence, the liquid pressure is everywhere
the same, and pores in the liquid are necessarily
everywhere of the same size, as depicted in Fig. 1(a).
Calling r, the (uniform) pore radius in the solid/liquid
compact, the pressure in the liquid equals:

aZ = 4nr 3

20—[\/

P=— 7 @
It is known from studies of the deformation of wet
porous media [21, 22] that the response of a solid—
liquid mixture to an external applied pressure P,, is,
at volume fractions such that solid particles are
surrounded by liquid, roughly the same as that of
the dry solid phase subjected to an “effective” stress
or pressure P. (in the terminology used for the
mechanics of porous media), which equals the

applied pressure minus that in the liquid:

P.=P,—P. (5)

Therefore, using equation (6) of Ref. [11], if an
external pressure P,, is applied on the liquid/solid
mixture, the average force f at interparticle necks is
about the same as that which would be obtained in
a dry powder compact made of the same solid
particles and subjected to an applied pressure P = P..
In the liquid/solid powder compact, f is therefore
given by:

_ 4’ 20w
=z (Pap +5 ) (6)

When f is positive, each particle changes shape:
it becomes flat at contact neck areas, and remains
round elsewhere. We assume that the curvature of the
particles at non-flattened liquid/solid interface areas
is essentially constant across the compact. We base
this assumption on the argument that transport of the
solid material through wider liquid pools is much
more rapid than transport through the narrow trough
of liquid separating two nearly contacting particles.
Equalization of curvature along curved solid/liquid
interface regions is therefore rapid on the time scale
of sintering.
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The particles do not change their volume during
densification (if we ignore the very small variations
in the quantity of solid dissolved in the liquid);
hence their average surface curvature does not
depart significantly from 2r~', the original curvature
of the unsintered spherical particles. Consequently,
we can write that, within the approximations of
this model, the curvature C along the solid/liquid
interface in non-flattened regions is roughly given
by:

W{f) — (4 — aZ)C. (7

%

s

Fig. 1. Schematic description of the microstructural evolu-

tion during sintering by solution-reprecipitation: (a) initial

structure at the end of rearrangement; (b) after partial
sintering.
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Hence:

C=——"——. ®)
|4z
4 4nr?

C is larger than 2R, equalling this value before
initiation of densification, and tending to a very large
value if densification proceeds to a point where nearly
all of the solid/liquid interface area is located along
flattened contact areas. The limiting behaviour of
equation (8) is, thus, correct.

The driving force for densification in the solution/
reprecipitation mechanism is the difference in free
energy of the solid between locations along the
curved solid/liquid interface on the one hand, and
that at flat interparticle contact necks on the other.
This, in turn, is proportional to the difference in local
pressure in the solid at each of these locations:

AP =f//a —06,C. (9)
Inserting equations (3), (6) and (8), equation (9)

becomes:

Ap = U=V (Pup + 2—?)

VAV - V) )

20'51(1 — V.\,o)
(1= V) = ViVe = V)

(10)

We note that if P,, =0 and r, tends to infinity,
V, must approach V., this stands to reason, since
this case is that of solid particles fully immersed in a
large quantity of liquid with no applied stress. The
last term on the right-hand side of equation (10)
represents the increase in free energy corresponding
to the departure from sphericity imposed on solid
particles for densification to occur. This term thus
represents the “‘sphering force™ discussed in the
literature [2]: its presence reduces the driving force for
densification, as expected.

Equation (10) gives the driving force for liquid
phase densification by solution/reprecipitation in a
non-coarsening system, with inclusion of the influ-
ence of externally applied stress and of particle excess
surface energy. Coupled with a local description of
solid phase removal from neck areas, it provides a
prediction of the rate of densification.

3.2. Kinetics of densification by solution-reprecipitation

The difference in pressure AP between interparticle
contact regions and solid/liquid pool interfaces
causes a difference in concentration in the solid
between these two regions. This difference in
concentration can be evaluated simply if we assume,
as is generally done, that the solid phase is pure, and
that its concentration in the liquid phase is relatively
small. If we then consider the case where interfacial
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kinetics are rapid, with the implication that the rate
of densification is limited by diffusion of the solid
through the liquid, local concentration differences in
the liquid along the solid are given by:

RT In(Creer/Croors) = Vo AP, (1)
where R is the gas constant, 7 is temperature, V, is
the partial molar volume of the solid in the liquid,
and C.x and C, are concentrations of the solid
phase diffusing element in the liquid at the neck and
pool regions, respectively. Since Cuea and Cpon
generally remain close to C,, where C, is the
equilibrium solid diffusing element concentration in
the liquid at equilibrium with a flat interface (given
by the liquidus composition at temperature 7), we
can simplify equation (11) as:

AC = GV, AP(RT)™! (12)
where AC = Cyex — Cpooi- The rate of diffusion of
the solid from the necks to the remaining liquid/solid
interface regions is limited by the rate of diffusion
through the narrow liquid channels at neck regions.
Therefore, the volumetric rate of removal of the solid
phase by diffusion through the liquid trough separat-
ing particles at neck regions is given by the same
governing equations as for solid-state densification by
grain boundary diffusion, save for the fact that the
average pressure at particle contact areas in the solid
powder compact (P in the notation of Refs [10, 12])
is to be replaced with AP of equation (10).

Using the approximate expressions given in
equations (8) and (19) of Ref. [12], which are very
close to the full solution for grain-boundary diffusion
limited solid state densification, but algebraically far
simpler, we deduce:

dv

dr —

436DCoV,y (1 — Vo)V
r*RT (V= V)

AP, (13)

which becomes, after insertion of equation (10):

P+ 20
% _ 435DC|) Vo(] - st(])z o ¥
dr r*RT (Vi — Vo)

20'51 V;l
T (V= V)(I = Vo — ViV — m)} (9

An important microstructural parameter that
remains to be known for prediction of the kinetics of
liquid phase densification is the pore radius r, within
the densifying compact.

The smallest expected pore size would be derived
by assuming that, throughout densification, the num-
ber of pores remains constant with approximately
one pore per interparticle interstice. The correspond-
ing value for , can then be deduced by analogy with
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a highly dense solid particle compact, by assimilating
the solid and liquid phases combined to a solid
powder in the final stages of densification. This would
be unrealistic, however, because pores can coarsen
very rapidly in a semi-solid powder compact. If one
pore is slightly smaller than its neighbours, it will not
equalize its radius with that of other pores, but will
instead shrink to disappear at a rate limited only by
Darcian liquid flow, which is rapid across small
distances such as a few times r. Therefore, variations
in initial pore size, which must always be present in
the powder compact after melting of the liquid and
initial rearrangement, will cause the suppression of a
large number of pores early in the densification
process.

It thus seems more logical to assume that pores
rapidly become much larger and far fewer than would
be expected on the assumption that each area left
between solid particles contains one pore. This is
indeed observed in practice (see for example fig. 5-2,
p. 103 of Ref. [2}).

We therefore assume that pores in the liquid
coarsen rapidly during the initial rearrangement
stage, to reach a stable radius r, equal to the larger
spaces present between the solid particles. Unless
melting phase particles of radius significantly in
excess of the solid particle radius r are used (which
could result in the presence of large empty spaces
between bridging solid particles, and would, hence, be
unwise from a practical standpoint), r, is somewhat
smaller than, but not far from, the radius of solid
particles r. We therefore assume that r, = r/2. This
approximate value agrees for example with the
micrograph on p. 103 of Ref. [2], is the same as that
adopted by Kingery [3], agrees with the assessment by
Eremenko et al. p. 55 that r, is close to r [1], and is
well within the uncertainty inherent in other
assumptions or approximations of the present
analysis.

The sintering rate equation then becomes:

40'1\,
dV, 436DCVo(l — Vool [ Pt

dr — PRT (Vs — Vi)

204 V2
T U= V) — Vao— Vu(V— Vs,o))}' (15)

If we focus for simplicity on densification by
sintering, i.e. if we assume that P,, = 0, equation (15)
can be rewritten in terms of dimensionless numbers
as:

v, o S 2
d(kry = 860 = Vo) [(Vs — Vo)’

sVZ
T (Vo= V)1 = Vo — V(V, — V:A))):I (16)
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Fig. 2. Influence of the “sphering force” on the rate of densi-
fication by liquid phase sintering as given by equation (16),
and comparison with the model of Kingery.

with
_ 5DCO VoO’]V
K= rRT an
and
_ :
s = g (18)

Parameter s is generally smaller than unity, because
the surface energies of liquids significantly exceed
liquid/solid interfacial energies, by about an order of
magnitude. Although s will clearly vary from system
to system, it is generally expected that s < 0.2.

A plot of d¥,/d(Kt) for sintering with no applied
pressure is given in Fig. 2. Tt is seen that with s < 0.2,
the second term between brackets in equation (16),
which expresses the influence of stored capillary
energy due to shape accommodation of the solid par-
ticles, exerts only a small influence on densification
kinetics. Since applied pressure increases the driving
force for densification, this conclusion is a fortiori
valid for pressure-assisted densification by solution-
reprecipitation.

If we then neglect the second term between
brackets in equation (16), this equation can be
simplified and integrated, to yield a reasonably
accurate and algebraically very simple prediction
of densification kinetics in liquid phase sintering by
solution reprecipitation:

(Ve — Vo) = [516(1 — VoK1, (19)

If we consider a compact containing a volume ¥ of
the solid phase, the total compact volume is, at every
instant, V'V !. Calling L a given characteristic length
(e.g. the diameter or the height) of the compact at
time ¢, at every instant L is therefore proportional to
V2. The total relative sample shrinkage is, thus,
related to ¥V, and Vi, by:

%—1_ &Q 173
Lo Vs

where L, is the initial value of L. Insertion of
equation (19) in equation (20) thus yields the rate

(20)
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of densification as measured by the apparent relative
linear shrinkage.

4. DISCUSSION

4.1. Comparison with Kingery’s model and with
experimental data

Kingery’s equation, derived under the implicit
assumption that solid particles in the compact are
packed in a regular lattice, and also assuming that
r,=r/2, yields (equation (19) of Ref. [3] with
ki = 1/2):

AL

== 113
7 (12K1)'3,

1)

A comparison of the two models is given in Fig. 3
in terms of V, and, in Fig. 4, in terms of the linear
shrinkage AL/L,, this last plot reproducing the
now classical format used by Kingery. The two
expressions are relatively close, both yielding nearly
straight lines on a plot of log(AL/L,) versus log(t),
see Fig. 4. The third-root of time behaviour found
by Kingery is reproduced at small K7 in the present
model, as can be deduced analytically by inserting
equation (20) into equation (19) and taking the limit
at small 7.

0,9
Kingery Analysis \
0.8
o«
>
0,7
Present Anaiysis
0.6 T T Y T
108 10°7 1078 10°8 104 1072

Kt

Fig. 3. Rate of densification by liquid phase sintering in
terms of the volume fraction solid phase Vi, as predicted by
the present model and by the model of Kingery.

Kingery Analysis

Present Analysis

Kt

Fig. 4. Rate of densification by liquid phase sintering in
terms of the linear shrinkage rate, as predicted by the
present model and by the model of Kingery.
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At longer time and greater V;, corresponding to
Kt greater than about 10-°, the predicted rate of
sintering decreases somewhat below 1/3, but remains
above 0.25. This predicted slight downwards deviation
from the power-law of Kingery at longer sintering
times is due to the creation of new sphere-to-sphere
contacts, which in liquid phase sintering slow
densification because no added driving force is
associated with their creation (contrary to what is
obtained in solid state sintering).

The dependence of the rate of sintering on system
parameters and on particle radius r is the same in
the current analysis as in that of Kingery, since in
both analyses this dependence is embodied in the
same dimensionless quantity K¢. In particular, both
analyses predict that the sintering rate is proportional
to r~* in pressureless sintering. The effect of applied
pressure P,,, given in equation (15) by the present
derivation, is also in agreement with that found by
Kingery via consideration of two contacting particles
only (equation (3) of Ref. [3]).

The overall agreement between the present analysis
and the predictions from Kingery’s model is very
satisfactory, given the ample amount of experimental
data showing that log(AL/L,) is, indeed, proportional
to log(), with a slope equal to, or slightly below,
one-third during sintering by solution-reprecipitation
after rearrangement [1, 2, 6, 7],f and that observed
sintering rates do indeed vary proportionally with
r=% [6].

Full quantitative comparison of predicted and
measured densification rates is difficult given the
uncertainty in governing parameters, especially 3D.
Using realistic values of these parameters, Kingery
found rather good agreement between equation (21)
and sintering rates measured in the iron-copper
system, his prediction being in excess of the exper-
iment by a factor nearly two. The present analysis
improves the agreement by lowering the predicted
rates (Figs 3 and 4) by a factor indeed near two;
however, as noted by Kingery, such excellent agree-
ment is probably fortuitous given the uncertainty in
the evaluation of K. We thus conclude that agreement
between theory and published data is as good as can
be hoped for, given the uncertainty on the effective
diffusion constant éD.

4.2. Influence of coarsening

Liquid/solid materials systems in which densifica-
tion can be driven by the solution-reprecipitation
process are ones in which the solid phase coarsens as
well, because the two phenomena are caused by the
same physical process of solid phase dissolution and
redeposition. When transport of the solid through the

tWe note that, to confirm this law rigorously, experimental
data should have been plotted with ¢ = 0 and L, defined
after completion of the rearrangement rather than at
the initiation of sintering; however, this should not
invalidate this rather general observation.

liquid is limited by diffusion, as was assumed in the
previous section, the dependence of particle radius r
on time ¢ follows the well known relation:

rP=r+kt (22)

where r; is the initial solid particle radius, and & is a
constant, which varies somewhat with the volume
fraction of solid phase present (and, thus, during
sintering); however, with adequate precision, k is
roughly given by [2, 23, 24]:

~ 2DC0 Voo

e T (23)

for liquid—solid compacts of volume fraction solid
somewhat above 50% (i.e. about four times the value
predicted by the classical LSW analysis for very low
Vo).

In the presence of coarsening, the present analysis
can be extended if it is assumed that, while particles
coarsen, their distribution remains that of randomly
close-packed spheres. This assumption is necessarily
an approximation, since it requires slight rearrange-
ment of particle centres as densification progresses,
and hence that there is some slight change in neck
region shapes with time. Solid particle radii also
cannot, in the presence of coarsening, assume a single
value, but are distributed within a relatively narrow
range of sizes about the average radius value, r:
we ignore the influence of this slight spread in particle
radius on particle centre distribution.

Proceeding as above, but with a time-dependent
particle radius r and maintaining the assumption that
r, & r/2, equation (14) is replaced by:

dV,  436DCVo(l — Vo) (ry + k1)PP,, + 40y,
dt = (13 + kt)**RT (Vs — Vio)?

20'511/52
TV V(A = Ve = Voo Vs,o))} 24)

If we focus again on densification by sintering only,
and again neglect the second term between brackets
in equation (24), this equation can be simplified and
integrated to become:

3
Kry

(Vﬁ - l/5.0) = k

1548(1 — Vo)

1

k 173
<l +K_I‘3Kt)

or, after insertion of equation (23):

154801 — Vi) 1 "
(Vs - Vs,[)) = l: W (1 - (1 + WKI)I’/'])]

(26)

X [1—

25)
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Fig. 5. Predicted rate of densification in the presence of
coarsening for various values of parameter w: (a) in terms

of the volume fraction solid phase Vi; (b) in terms of the
linear shrinkage rate.

with

2rS
w==5 27

The resulting densification curves are shown in
Fig. 5 for various values of w: it is seen that for
coarsening to influence significantly the rate of
densification, w must exceed 2000.

As stated above, s is approximately of the order
of 0.2. For coarsening to influence the rate of
densification r, must, therefore, exceed 4 by at least
a factor of 5000. If, following Kingery [6], we estimate
o0 as being of the order of a nanometre, r, must then
roughly exceed Sum for coarsening to influence
significantly the kinetics of sintering.

When this is the case, coarsening reduces the rate
of densification compared with that which would be
expected based on the initial particle size (but not the
final solid particle size found in the final sintered
microstructure). It is interesting to note the a priori
somewhat counter-intuitive nature of the conclusion
that coarsening becomes important with initially
coarse solid particles. This arises because the time for
sintering is proportional to the inverse of the fourth
power of particle radius (equation (16)), so that the
acceleration in sintering kinetics caused by small r,
overrides its influence on coarsening. From a prac-
tical standpoint, therefore, the advantage inherent in
the use of fine particles to speed sintering is amplified
by the possible influence of coarsening.
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4.3. Influence of packing configuration

The influence of the initial packing density is
apparent in the term V., provided it is assumed that
when ¥, deviates from 0.64, variations in packing
coordination and average neck surface are still
appropriately described with the simplified relation-
ships derived by Arzt et al., and used here. It has been
observed [7] that inhomogeneous initial packing of
the powders exerts a strong influence on densification
kinetics: more homogeneously packed powders
densify faster. This can be rationalized within the
framework of the present analysis by noting that in-
homogeneous initial powder packing may (i) decrease
the volume fraction solid at the end of rearrange-
ment, Vo; and (ii) create a few large spaces between
solid particles, leaving sites for larger pores to be
present, in turn causing 7, to increase. Both effects
decrease the densification rate predicted by equations
(14) and (24). That increased powder homogeneity
increases Vo, has indeed been observed experimen-
tally [25].

The amount of liquid present does not affect
the rate of densification by solution-reprecipitation
according to the present analysis (although it
strongly influences the initial rearrangement stage,
and determines when solution-reprecipitation has
fully densified the powder compact). This is also in
agreement with experimental observations [2, p. 107],
[7] that the amount of liquid present does not
influence the rate of densification significantly.

4.4. Final microstructure

As densification proceeds, the total volume of
pores present in the powder compact decreases. With
a relatively constant pore size, this implies that during
densification, the pore number decreases, pores
gradually disappearing as liquid can fill more space
between densifying solid phase particles. Clearly, in
this process, surviving pores will be the largest ones
present, and r, is therefore expected to increase
somewhat with time. Significant pore coarsening of
this nature would cause further deviations in the
densification rate downwards of Kingery’s ¢'* law
for linear compact shrinkage. Experiment shows no
such gradual transition; instead, densification stops
relatively abruptly once the ¢ Jaw ceases to be
obeyed. This indicates that pores remain roughly
constant in size (as assumed here) until nearly all
pores that drive densification disappear, due to filling
by the liqud.

At the end of densification, barring any gross
microstructural defects, the density of the compact is
near one. Since the ratio of liquid to solid volumes in
the compact remains constant at all times, we have:

V_Vo_

= _N’

7. Vo 28

where V| is the volume fraction liquid in the compact,
Vip is the initial volume fraction liquid in the
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compact. In a dense compact, therefore, V; is given
by:

1

V= T+ N (29)

When densification stops, there are few or no pores
left in the powder compact, but the solid particles are
deformed. In the resulting metastable structure, the
liquid remains under hydrostatic tension; therefore,
r, does not decay to zero when densification ceases,
as pointed out previously by several authors [2,
p. 104}, [26]. If we consider a fully densified powder
compact, having densified for simplicity by sintering,
i.e. with AP,, = 0, the microstructure ceases to evolve
when AP = 0, i.e. when:

— Vo= U+N)"(1+N)"' — Vi)
(A+N)" = V) '

14 ] 3 1
N ( N)

Equation (30) provides, for a given dense compact,
the radius of curvature of liquid menisci at the free
surface of the compact (if we assume that these are
more cylindrical than spherical, their radius of
curvature is roughly equal to r,/2).

If there are any residual pores present in the
compact, their overall radius must exceed r, since for
any pore of radius less than r,, the local pressure in
the liquid is necessarily below the average (negative)
liquid pressure, so that the liquid is pulled inwards to
fill the pore. Liquid-filled regions devoid of solid par-
ticles are a feature of liquid phase sintered structures
that have, indeed, been observed experimentally
{2, p. 120].

The equilibrium r, value predicted by equation (28)
is proportional to r; this is in agreement with previous
analyses of the final stable pore size in compacts
densified by solution-reprecipitation [18, 26] (these
earlier analyses assumed spherical solid particles
packed along a regular close-packed lattice). This
conclusion also agrees with experimental data which,
furthermore, indicate that as the liquid content (and
hence N) increases, the smallest stable pore size
increases [18].

1000

1009
1

.01 T T T T
0.5 0.6 0,7 0.8 0.9 1,0

\é at full density

Fig. 6. Predicted values of (rys/r) as a function of the liquid
to solid phase volume ratio N.

A plot of (r,s/r) versus V; at full (or approximately
full) density is given in Fig. 6 for various values of
Vio. It is seen that as the amount of liquid relative
to solid increases, i.e. that as N increases, r, indeed
increases. This is because the more liquid is present
in the compact, the less solid particles are pressed
together when full density is attained. This, in turn,
implies that the negative pressure required in the
liquid to hold the particles pressed together (i.e. the
“sphering pressure” in the terminology of Park erf al.
[26]), decreases as the amount of liquid present in the
dense compact decreases; hence r,, and the diameter
of the largest unfilled pore in the final structure,
increases as N increases. It is also seen that for V; at
full density above about 0.8, (r.s/r) exceeds omne.
Knowing, as stated above, that g, is generally smaller
than o, by up to one order of magnitude, r, exceeds »
by about one order of magnitude in the fully densified
microstructure. The calculation thus predicts that
the smallest pores present in the compact after full
densification by solution/reprecipitation will be sig-
nificantly larger than the average particle diameter 7:
this conclusion is in agreement with microstructural
observations (e.g. [2, pp. 128-129], [7, 15]).

We finally note that the value given for r, by
equation (30), which in turn gives via equation (4) the
liquid pressure in a fully densified structure, provides
a quantitative prediction of the driving force for
macroscopic liquid migration in layered or graded
liquid phase sintered structures [27]. The rate of such
migration, as well as microstructural gradients caused
by gravity in liquid-phase sintered microstructures,
can also be predicted on the basis of the present
analysis.

5. CONCLUSION

Equations describing the microstructure and the
rate of densification in liquid phase sintering by
solution-reprecipitation are given for systems in
which capillary forces are isotropic, and favour
wetting of the solid by the liquid. As such, the
analysis presented here represents an extension of
Kingery’s analysis, which relieves its simplified
description of a powder compact in terms of two
particles only.

Compared with Kingery’s analysis, rates of
densification predicted by the present analysis are
lower by a factor below two, maintain approximately
the prediction of a one-third power-law dependence
of sintering rate on time in the absence of coarsening,
and feature the same functional relationship with
other parameters such as particle size. Agreement
between theory and experiment is excellent in terms
of parametric dependencies, and as good as can be
hoped for in terms of absolute densification rates,
given uncertainty in relevant parameters.

The analysis is extended to account for the
influence of coarsening on densification kinetics. It is
shown that the influence of coarsening on the rate of
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liquid phase sintering is noticeable when the width of
the liquid layer separating solid particles along their
contact regions falls below about one-thousandth
of the initial solid particle radius. The influence of
coarsening is, hence, pronounced with large solid
particles.

In a fully densified compact, deviations in the
shape of the solid particles from a sphere cause a
build-up of negative pressure in the liquid. This
pressure is predicted to provide an expression for the
smallest stable pore radius in the densified structure.
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