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Abstract

The modified cluster-site approximation (CSA) model has been used to model the f.c.c. phases (orderedL12 and
disorderedA1) in the Ni–Al system. The CSA model has the advantage over the cluster variation method (CVM) in
that the independent variables in the free energy functional are the site probabilities and not the cluster probabilities.
Unlike the zeroth approximation, however, the CSA takes short-range order into consideration, an essential requirement
for describing phases that undergo an order/disorder transition, as does the f.c.c. phase in the Ni–Al system. By using
the modified CSA model, we have been able to obtain an improved phenomenological description of this system with
the use of fewer model parameters than used in previous descriptions. The topology of the calculated metastable f.c.c.
phase diagram is similar to the one obtained using a ‘first-principles’-CVM approach, whereas the f.c.c. phase diagrams
based on the previous phenomenological descriptions are unsatisfactory.
 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The thermodynamics and phase diagram of the
Ni–Al binary system have been studied in great
detail because of the importance of this system for
understanding the behavior of Ni-based superal-
loys. In addition to a large experimental effort, sev-
eral versions of the calculated Ni–Al phase dia-
gram have been published [1–6]. In these
calculations, the energy parameters were obtained
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by either a phenomenological approach [1–4], or a
‘first principles’ approach [5,6]. The entropies of
mixing were calculated by using either the zeroth
approximation [1–3], often referred to as Bragg-
Williams approximation [7,8], or a higher order
approximation [4–6], namely, the Cluster Variation
Method (CVM) [9].

The most recent thermodynamic description by
Huang and Chang [3] was quite successful when
judged by the small number of parameters used and
the good agreement with the experimental data.
However, they described the two states of the f.c.c.
phase as two separate phases, i.e.,g for the dis-
ordered state (A1), and g� for the ordered state
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(L12). The g phase was modeled using a substi-
tutional solution model, while a two sublattice
compound energy model [10] was used for the g�
phase. The compound energy model uses the zer-
oth approximation to evaluate the entropy of mix-
ing, even though it is well known that this approxi-
mation is not suitable for describing order/disorder
transitions, such as the g� /g transition in the Ni–
Al system, due to its neglect of short-range order.
Ansara et al. [2], on the other hand, modeled both
g and g� as one phase using a two sublattice com-
pound energy model. Because of the inherent
weakness of the model, however, Ansara et al. [2]
had to use many adjustable parameters for the
liquid and f.c.c. phases in order to fit the experi-
mental data.

The CVM, which takes short-range order into
consideration, has been applied to the Ni–Al sys-
tem [4–6]. Sigli and Sanchez [4] optimized the
energy parameters using experimental data, whilst
Pasturel et al. [5] and Lechermann et al. [6]
obtained the cluster energy parameters from ‘fi rst
principles’ calculations.

Although the CVM is much better in describing
order/disorder transitions than the zeroth approxi-
mation, its application to multicomponent phase
diagram calculations is rather limited because of
the large number of non-linear equations which
must be solved simultaneously to obtain the free
energy and the equilibrium species distribution,
viz., in the order of Cn, with C being the number
of components and n being the size of the cluster,
e.g., 10000 for a 10 component system and using
a tetrahedron cluster. Because of this, its appli-
cation to technologically important systems, which
often contain more than 10 components, seems
impractical. It should also be remarked that the Ni–
Al phase diagrams calculated by Sigli and Sanchez
[4], Pasturel et al. [5], and Lechermann et al. [6]
are only qualitatively correct; they lack the accu-
racy for practical applications. This is because
other, non-configurational, contributions to the
high temperature free energy were not accounted
for with the necessary accuracy.

Although not as physically sound as the CVM,
the Cluster-Site Approximation (CSA) has the con-
siderable advantage of computational simplicity
over the CVM [11]. Its superiority in regard to

multicomponent phase diagram calculations was
pointed out by Oates and Wenzl [12], although the
crucial result used is clearly recognizable in the
work of Fowler [13] and Yang and Li [14–17].
This is that the free energy can be expressed in
terms of the site probabilities only instead of the
cluster probabilities as in the CVM. The effect of
this is to drastically reduce the number of inde-
pendent variables in the free energy functional. The
number of equations need to be solved in the CSA
is in the order of C × n, instead of the Cn required
in the CVM because the independent variables are
the site probabilities, as in the zeroth approxi-
mation, instead of the cluster probabilities. More-
over, unlike the zeroth approximation, the CSA
takes short-range order into consideration and is
thus suitable for describing order/disorder tran-
sitions. The CSA method has been discussed else-
where and has been successfully applied to the Au–
Cu, Au–Ni, and Cd–Mg systems [11,12,18,19]. In
the present paper, we show how the CSA model
can be applied successfully to describe the differ-
ent coherent states of the f.c.c. phase in the Ni–
Al system.

2. The cluster-site approximation (CSA)

The CSA is an adaptation of the generalized
quasi-chemical method, introduced many years ago
by Fowler for treating atom/molecule equilibria in
gases [13] and subsequently used for clusters in
solid solutions by Yang and Li [14–17]. The
unique feature of the CSA is that the clusters are
energetically non-interfering, i.e., they are allowed
to share only sites at the cluster corners. This clus-
ter non-interference always results in a two-term
expression for the configurational entropy, irres-
pective of the cluster size. In the original Yang and
Li’s calculations [14–17], the two-term expression
for the entropy per site Sm was written as

Sm �
z

2p
Sn�(

nz
2p

�1)S1 (1)

where z/2p is the number of non-interfering clus-
ters per site, z being the nearest-neighbor coordi-
nation number of the lattice and p the number of
nearest-neighbor pairs in the cluster of size n. The
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Sn and S1 are the cluster and point entropies,

respectively, defined as Sn � �k�
i

piln(pi), where

pi is the cluster (or site) probability of type i.
It can be seen that Eq. (1) is correct in the high

temperature limit where Sm→S1. The entropy
expression from the CSA is simpler than that
obtained from the CVM [9] in that the sub-clusters
(cluster edges, surfaces etc.) are not involved in
the calculation because of the non-interference of
clusters approximation.

In the CSA, the molar free energy Fm for a
binary system A–B is given by [11]:

Fm

RT
�

z
2p

(�n

i � 1

(yi
Ami

A�lnj))��nz
2p

(2)

�1��n

i � 1

�
q � A,B

fiyi
qlnyi

q

where the fi is the fraction of sublattices of type i
and the yi

q is the species concentration of compo-
nent q on sublattice i. The mi

As are Lagrangian mul-
tipliers associated with atom balances and, physi-
cally, are related to the species chemical potentials
of the equivalent lattice gas particles on sublat-
tice i.

The cluster partition function, j, is given by:

j � �2
n

j � 1

exp[(�n

i � 1

mi
A)j�ej] (3)

where ej is the cluster energy of a j-type cluster.
The original cluster-site approximation proposed

by Yang and Li [14–17] fell into disuse shortly
after its introduction because it was quickly super-
ceded by the more accurate CVM [9]. But it has
been demonstrated [11] that the CSA can be made
more versatile in phenomenological phase diagram
calculations by introducing a simple modification
to Eq. (2) and also by splitting the Gibbs energy
of a phase into configuration-dependent (CSA) and
configuration-independent contributions [20]. The
modified CSA equation for the Gibbs energy of
mixing, for a binary A–B alloy when a cluster con-
taining n atoms is used, is then given by:

�GM � x�Gn�(nx�1)�G1 � GE
CI(x,T) (4)

The first two terms on the right side of the equ-
ation are from Eq. (2) with

�Gn � RT(�n

i � 1

yi
Ami

A�lnj) (5)

�G1 � RT�n

i � 1

�
q � A,B

fiyi
qlnyi

q (6)

x �
z

2p
(7)

The number of non-interfering clusters per site,
z/2p, in the original CSA model is substituted by
the factor x which is an adjustable parameter, with
a value not too different from z/2p. Although the
adjustment to the mixing entropy brought about by
this modification is quite small, it is critical in mak-
ing the CSA model applicable to real alloy sys-
tems. The third term on the right-hand side of Eq.
(4) is the configuration independent term (one
which depends on molar composition, x, only and
not on the details of sublattice occupation). It is
used to take into account elastic energies due to
atomic size mismatch or changing cell relaxation
and also any excess excitation contributions. In a
phenomenological calculation it can be expressed
as a Redlich–Kister polynomial [21] of compo-
sition x, and temperature T, with coefficients L
being the model parameters:

GE
CI(x,T) � x(1�x) �

m � 0

(1�2x)m �
n � 0

L(m)
n Tn (8)

�GM in Eq. (4) is thus a functional of the geometri-
cal factor x in Eq. (7), the composition x, tempera-
ture T, and the yi

As in Eqs. (5) and (6). The geo-
metrical factor, the cluster energy parameters and
the L parameters are the model parameters whose
values are optimized using experimental data.
When the model parameters are obtained in this
way, the equilibrium species distributions (yi

As) can
be obtained as a function of temperature and com-
position by minimizing the Gibbs energy defined
by Eq. (4). Note that the mi

As in Eq. (5), being spec-
ies chemical potentials, are uniquely related to the
yi

As, so that either can be used as variables in the
minimization.

The modified CSA has significant advantages



210 F. Zhang et al. / Acta Materialia 51 (2003) 207–216

over the CVM in phenomenological calculations of
phase diagrams:

1. By using energetically non-interfering clusters,
the number of independent variables in the free
energy functional is changed from being the
cluster probabilities in the CVM to being the
point probabilities in the CSA, e.g., from 104 to
10x4 for a 10 component system with a tetra-
hedron cluster. This large reduction in the num-
ber of variables makes the CSA attractive for
application to multicomponent alloys [12].

2. By using x as an adjustable parameter and
incorporating the configuration independent
term, more flexibility is obtained in describing
the Gibbs energy-composition curves. This
point was illustrated in the calculation of the
Au–Cu ordering phase diagram [11].

On the other hand, the modified CSA also has
advantages over the zeroth approximation in
describing phases undergoing order/disorder tran-
sitions in that it takes short-range order into con-
sideration. Even though the Gibbs energy of a
phase in the CSA model is described as a function
of point probabilities, the cluster probabilities can
be calculated explicitly as follows:

pjkl… �
mI

j·mII
k ·mIII

l …
j

·exp(�ejkl…) (9)

where pjkl… is the probability of forming jkl type
of cluster, ejkl… the energy of such a cluster, and
j is defined in Eq. (3). The mi

qs are defined as:

�mi
q � mi

A if q � A

mi
q � 1 if q � B

(10)

their values are obtained by the minimization of
the Gibbs energy defined in Eq. (4). Similarly, the
probability of a sub-cluster can also be calculated
using the probabilities of the corresponding clus-
ters. For example,

pijk � �
l � A,B

pijkl (11)

3. Application of the CSA to the Ni–Al system

The phases considered in the Ni–Al system are:
liquid, Al3Ni, Al3Ni5, B2–NiAl, Al3Ni2, and f.c.c..
The f.c.c. phase is present in two stable states in
this binary system, i.e., the disordered state (A1),
represented by g in the stable phase diagram, and
the ordered state (L12), represented by g�. Since the
principal purpose of the present study was to
explore the use of the modified CSA for describing
an order/disorder transition in a real alloy system,
only the f.c.c. phase has been described by the
CSA model. The thermodynamic models normally
used in phenomenological modeling, as used by
Huang and Chang [3] in this particular case, have
been used to describe the other five phases.

To describe the f.c.c. structure, the nearest
neighbor tetrahedron cluster, shown in Fig. 1, was
chosen in this study. The cluster size is thus four,
and a total of 16 different types of tetrahedron clus-
ters are possible in a binary system. This means a
total of 16 energy parameters are needed in the
calculation. In order to reduce the number of clus-
ter energies involved, we have related the cluster
energies to the nearest neighbor pair interaction
energies. From Fig. 1, the following relations are
obtained:

Fig. 1. A tetrahedron cluster taken from a face-centered cubic
lattice containing four sites.
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eAAAA � oGyA

eAAAB � eAABA � eABAA � eBAAA

� eA3B �
3
4

oGyA �
1
4

oGyB � 3wAB

eAABB � eABAB � eABBA � eBAAB � eBABA

� eBBAA � eA2B2
�

1
2

oGyA �
1
2

oGyB � 4wAB

eABBB � eBABB � eBBAB � eBBBA

� eAB3
�

1
4

oGyA �
3
4

oGyB � 3wAB

eBBBB � oGyB

(12)

where eijkl represents the cluster energy of the clus-
ter ijkl, oGyp is the Gibbs energy of the pure compo-
nent p with structure y and wAB is the A-B pair
exchange energy. The number of parameters
required to be optimized is greatly reduced by
doing this. In addition to the pair exchange energy,
the other model parameters are the geometrical fac-
tor x and the L parameters in the configuration
independent term as shown in Eq. (8).

The two ordered intermetallic phases, B2–NiAl
and D513–Al3Ni2 have been described by a cluster
energy model in the zeroth approximation (also
known as the compound energy model [10]) as has
been done in previous thermodynamic descriptions
of this system [1–3]. The liquid phase has been
described by a substitutional solution model, whilst
the Al3Ni and Al3Ni5 phases have been treated as
stoichiometric compounds. The Gibbs energies of
the pure elements given by Dinsdale [22] have
been used in this study. The model parameters used
for the f.c.c. phase as well as those for all the other
phases are listed in Table 1. Note that since NiAl3

(L12) is not a stable phase in this binary system,
the relevant cluster energies have been given an
arbitrary less negative value (�20 kJ/mol), as
listed in Table 1. This value is very close to what
has been calculated by using a ‘fi rst principles’
approach, which is –21.754 kJ/mol [5].

4. Results and discussion

The model parameter optimizations and the pro-
perty and phase diagram calculations have been

carried out using the Winphad software package
[23]. The calculated stable Ni–Al phase diagram is
shown in Fig. 2, where it can be seen that the
agreement between the calculated phase diagram
and the experimental data [24–27] is excellent. Fig.
3 is an enlarged diagram of the region near the
peritectic formation of the g� from the liquid and
the g phases. The Al–Ni pair ordering is so strong
that the g� phase, the ordered state (L12), melts
before there is a complete order/disorder transition.

As can be seen, the modified CSA is capable of
calculating phase diagrams similar to those from
other phenomenological calculations with the
accuracy required for practical applications, which
is not the case for those calculations [4–6] which
use a ‘fi rst-principles’ -CVM method. It also has
the advantage over the zeroth approximation in that
it takes short-range order into consideration which
makes it more suitable for describing an
order/disorder transition. These points can be illus-
trated by calculating the metastable phase diagram
for the f.c.c. phases only. Fig. 4 shows such a dia-
gram calculated by the model parameters
developed in this study using the modified CSA
model, while Fig. 5 is the one obtained from a ‘fi rst
principles’ calculation of the energies and the use
of the CVM for the entropies [5].

These two figures have identical topologies with
the L12 and L10 states being seen to be stable at
low temperature and the disordered A1 stable at
high temperatures. The miscibility gap on the Al-
rich side of the A1 state is caused by an elastic
instability as discussed by Carlsson and Sanchez
[28] and Pasturel et al. [5]. The calculated phase
transformation temperatures between L12 and A1,
and L10 and A1 states are much higher in the ‘fi rst
principles’ calculation than those calculated in the
present work, an indication that the ‘fi rst prin-
ciples’ calculated energy values are too large. A
similar situation was found for the Cd-Mg system,
where we found that a phenomenonlogical calcu-
lation in which the CSA was used, agreed with the
experimental data much better than that from a
‘fi rst principles’ energy calculation in which the
CVM was used for the entropy [19].

It is for this reason that we believe the meta-
stable f.c.c. phase diagram for the Ni–Al system
calculated and shown in Fig. 4 is better than that
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Table 1
The model parameters for the Ni–Al system developed by this study

Phase Model Parameters
name

Liquid Disorder solution 0Lliq
Al,Ni � �197088 � 30.353·T

(Al, Ni) 1Lliq
Al,Ni � 5438

2Lliq
Al,Ni � 64642�15·T

B2 Compound energy GB2
Al:Ni � oGb.c.c.

Al � oGb.c.c.
Ni �150000 � 22.38·T

(Al, Ni):(Ni, Va) GB2
Al:Va � oGb.c.c.

Al � 10000�T
GB2

Ni:Ni � 2·oGb.c.c.
Ni

GB2
Ni:Va � oGb.c.c.

Ni � 162508�24.705·T
0LB2

(Al,Ni):∗ � �58360 � 12·T
0LB2

∗:(Ni,Va) � �69948 � 36·T
Al3Ni2 Compound energy GAl

3

Ni
2Al:Al:Ni � 5·Gb.c.c.

Al � Gb.c.c.
Ni �40477 � 1.734·T

3(Al):2(Al,Ni):(Ni, Va) GAl
3

Ni
2Al:Al:Va � 5·Gb.c.c.

Al � 30000�3·T
GAl

3

Ni
2Al:Ni:Ni � 3·Gb.c.c.

Al � 3·Gb.c.c.
Ni �420000 � 70·T

GAl
3

Ni
2Al:Ni:Va � 3·Gb.c.c.

Al � 2·Gb.c.c.
Ni �353500 � 65·T

0LAl
3

Ni
2Al:(Al,Ni):∗ � �40000

0LAl
3

Ni
2Al:∗:(Ni,Va) � �23317

Al3Ni Line compound GAl
3

Ni
Al:Ni � 0.75·oGf.c.c.

Al � 0.25·oGf.c.c.
Ni �39200 � 4.5·T

0.75(Al):0.25(Ni)
Al3Ni5 Line compound GAl

3

Ni
5Al:Ni � 0.375·oGf.c.c.

Al � 0.625·oGf.c.c.
Ni �53955 � 5·T

0.375(Al):0.625(Ni)
f.c.c. CSA wAl:Ni � �16615 � 1.6333·T

0.25(Al, Ni):0.25(Al, eNi3Al � 0.75·oGf.c.c.
Ni � 0.25·oGf.c.c.

Al � 3·wAl:Ni

Ni):0.25(Al, Ni):0.25(Al, eNi2Al2
� 0.5·oGf.c.c.

Ni � 0.5·oGf.c.c.
Al � 4·wAl:Ni

Ni) eNiAl3
� 0.25·oGf.c.c.

Ni � 0.75·oGf.c.c.
Al �20000

0L � 13500 � 10·T
1L � �24460 � 7.484·T
2L � 6600�4·T
x � 1.35

shown in Fig. 5. The same metastable f.c.c. phase
diagram has also been calculated using the para-
meters published by Huang and Chang [3] and
Ansara et al. [2] and are shown in Figs. 6 and 7.
Huang and Chang [3] treated g, the disordered state
(A1), and g�, the ordered state (L12) of the f.c.c.
phase as two separate phases and described them
by using two different models. The Gibbs energy
of g� in its disordered state is different from that
of the g phase, therefore, g� cannot be disordered
to g based on their description. The metastable
f.c.c. diagram shows equilibria between g and dis-
ordered g� at the upper right corner as shown in
Fig. 6. Even though Ansara et al. [2] treated the
g and g� as one phase using a two sublattice com-
pound energy model, the order/disorder transition
between g� and g cannot be correctly described as
shown in Fig. 7 because short-range order was

ignored in the model. This limitation is even more
apparent when a four sublattice model is con-
sidered. As indicated by Ansara et al. [2], their two
sublattice compound energy model used for the
f.c.c. phase was simplified from a four sublattice
format because only one ordered state (L12) was
considered in their description. This makes it poss-
ible to adapt the parameters of their two-sublattice
model to the four-sublattice case. A more complete
f.c.c. metastable phase diagram is then calculated
using the four sublattice compound energy model
as shown in Fig. 8.

This metastable f.c.c. phase diagram is very
similar to the classic one calculated by Shockley
[29], who used a constant pairwise energy calcu-
lation in the same zeroth approximation. The slight
difference between Fig. 8 and Shockley’s diagram
stems from the asymmetry of the cluster
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Fig. 2. Comparison between the calculated Ni–Al phase dia-
gram and the experimental data: 87Hil [24], 37Ale [25], 91Ver
[26], and 90Jia [27], excellent agreement is achieved.

Fig. 3. Enlarged diagram of the region near the peritectic for-
mation of the g� from the liquid and the g phases.

(compound) energies. The important point is that
neither show the splitting in composition for the
order/disorder transitions at the Ni3Al, NiAl and
NiAl3 compositions. This is a result of the point
approximation models not taking short range order
into account.

Recently, however, Sundman et al. [30] and

Fig. 4. The topology of the metastable f.c.c. phase diagram
calculated by this work using the CSA model.

Fig. 5. The topology of the metastable f.c.c. phase diagram
calculated by Pasturel et al. [5], using a ‘fi rst-principles’ -
CVM approach.

Kusoffsky and Sundman [31] have attempted to
address this shortcoming of the compound energy
model. In the first of the above papers, reciprocal
sublattice L parameters were successful in splitting
the order/disorder transitions for Au3Cu, AuCu and
AuCu3 in the Au–Cu system. Higher order
approximations achieve the same splitting by
incorporating SRO. In the work of Sundman et al.
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Fig. 6. The topology of the metastable f.c.c. phase diagram
calculated by using the model parameters of Huang and
Chang [3].

Fig. 7. The topology of the metastable f.c.c. phase diagram
calculated by using the model parameters of Ansara et al. [2].
Two sublattice model.

[30] the configurational entropy is still given by
the point approximation, i.e., there is no SRO. The
total entropy of mixing is, however, modified by
the use of a temperature co-efficient in the recipro-
cal sublattice L parameters and it is this which per-
mits the ordered phase splitting to occur. The tech-
nique entails the use of extra model parameters in
order to achieve the desired
temperature/composition variation of the mixing
entropy and it can only be descriptive. It could not

Fig. 8. The topology of the metastable f.c.c. phase diagram
calculated by using the model parameters of Ansara et al. [2].
Four sublattice model.

be used in the calculation of a metastable f.c.c.
phase diagram for the Al–Ni system, as was done
in the case of Au–Cu, because the f.c.c. phase dia-
gram, being metastable, is not known. In the
second paper by Kusoffsky and Sundman [31] an
attempt was made to reduce the number of inde-
pendent variables in the CVM approximation by
expressing the cluster probabilities in terms of their
random values, as in the compound energy model,
plus some internal parameters which are included
in the free energy functional. It turned out that this
worked satisfactorily for the disordered phase, giv-
ing results identical to those obtained with the
CVM but with the same number of independent
variables. The method failed, however, for ordered
phases, where there are necessarily more cluster
probabilities to consider.

In addition to the phase diagram, good agree-
ment between the calculated and experimental
results [32–35] is also found for the thermodyn-
amic properties using the present description. This
is illustrated in Fig. 9, which shows a comparison
of calculated and experimental enthalpies of for-
mation.

5. Conclusions

The CSA model has been used in obtaining a
thermodynamic description of the f.c.c. phases in
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Fig. 9. Comparison between the calculated enthalpy of forma-
tion at 298 and 1100 K and the experimental data: 37Oel [32],
58Kub [33], 74Dan [34], and 75Hen [35], excellent agreement
is achieved.

the Ni–Al system. The use of this model, where
short-range order is taken into consideration, gives
a superior description to those obtained previously
where the zeroth approximation has been
employed [1–3]. The calculated order/disorder
transition between the g and g� phases, as well as
the metastable f.c.c. phase diagram for this system,
are much more plausible. Moreover, fewer model
parameters than used in the previous studies [1–
3] are required, whilst the calculated Ni–Al phase
diagram and thermodynamic properties are as good
as or better than those obtained in the previous
work. The calculated Ni–Al phase diagram using
the phenomenologically obtained energy para-
meters in conjunction with the modified CSA
model reached the accuracy of practical appli-
cation, which is not yet the case for those calcu-
lated from ‘fi rst principles’ energy calculations in
conjunction with the use of the CVM [4–6]. Even
though not as physically sound as the CVM, the
modified CSA model has the considerable advan-
tage of computational simplicity over the CVM
and, unlike the latter, seems very promising for the
calculation of phase diagrams in multicomponent
systems.
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