
Acta Materialia 53 (2005) 1179–1190

www.actamat-journals.com
Representation of misorientations in Rodrigues–Frank space:
application to the Bain, Kurdjumov–Sachs, Nishiyama–Wassermann

and Pitsch orientation relationships in the Gibeon meteorite
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Abstract

The three classical orientation relationships describing the c-to-a transformation, namely the Bain, Kurdjumov–Sachs (K–S) and

Nishiyama–Wassermann (N–W), are represented in Rodrigues–Frank (R–F) space. Two alternative reference systems are used to

highlight the differences between the three types of misorientation. Some observations obtained on the Gibeon meteorite are ana-

lyzed using the two classes of reference system to reveal features of the transformation under conditions of very slow cooling. It is

shown that the Bain correspondence relations are never satisfied, while the measurements fall in the full range of direction parallel

conditions extending from the K–S to the N–W. The crystallographic features of the Pitsch orientation relation are presented in R–F

space in Appendix A. The experimental observations conform to this type of transformation to a considerably lesser extent than to

the classical K–S and N–W relations.
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1. Introduction

Misorientation, the crystallographic orientation dif-

ference between two individual crystallites, is an impor-

tant parameter used to describe the microtexture of

materials. For instance, the grain boundary texture is

commonly specified in terms of a rotation about an axis

common to both crystallites that brings the coordinate
system of the first into coincidence with that of the

other. This is the so-called angle–axis pair description

and it provides significant information about the grain

boundary geometry. An important example is that of
1359-6454/$30.00 � 2004 Acta Materialia Inc. Published by Elsevier Ltd. A

doi:10.1016/j.actamat.2004.11.021

* Corresponding author. Tel.: +1 514 3984755x09501; fax: +1 514

3984492.

E-mail address: youliang.he@mail.mcgill.ca (Y. He).
coincident site lattice (CSL) boundaries, which are un-

iquely described by the axis and angle of misorientation

between the two neighboring grains [1].

In other cases, such as phase transformations, where

the misorientation between the initial phase and its

transformed products is the major concern, it is more

convenient to represent the misorientation between the

two phases using the Rodrigues–Frank (R–F) vector,
since the latter takes the lowest angle solution and inte-

grates the four parameters (i.e. the rotation angle and

the three components of the rotation axis) into a

three-component vector that can be readily displayed

in a three-dimensional Cartesian space (R–F space) [2].

One of the advantages of R–F parameterization is that

either the specimen or the crystal axes can be chosen

for reference; according to this system of representation,
the rotation angle and axis are directly related to a
ll rights reserved.
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vector drawn from the center of the space to the point

representing the rotation axis.

The use of R–F space to represent orientations and

misorientations is relatively new compared to that of

using rotations about three successive axes, i.e. that of

Euler space, and its advantages over the employment
of such other spaces have been addressed by several

researchers [3–5]. However, most of these investigations

were focused on the representation of orientations in

R–F space; only a few were concentrated on the repre-

sentation of misorientations [2,6,7]. In this study, the

misorientation between two crystallites, which is calcu-

lated from orientations measured by electron backscat-

ter diffraction (EBSD) techniques, is represented as an
R–F vector, taking one of the crystallites as the refer-

ence system. Specifically, the three classical correspon-

dence relationships that describe the FCC to BCC

transformation, namely the Bain [8], Kurdjumov–Sachs

[9] and Nishiyama–Wassermann [10,11], are represented

in this space. A second reference system is then intro-

duced, which has certain advantages in the present case.

The variants of the three orientation relationships are
derived directly from the parallelism conditions apply-

ing to the crystallographic planes and directions that de-

fine these relationships. Some recent results concerning

the transformation of taenite (FCC austenite) in the

Gibeon meteorite are then presented to illustrate the

advantages of the use of this space. In Appendix A,

the variants of the Pitsch [12] transformation relation-

ship are also derived from the parallelism conditions.
These are then represented in R–F space using the two

frames of reference (austenite and Bain). Their positions

on a {001} pole figure are compared with those of K–S

and N–W. Some meteorite observations are then plotted

in these two forms of representation (pole figure and

R–F space) and the extent to which the Pitsch relation

applies is evaluated.
2. Misorientation and Rodrigues–Frank space

Here, the orientation matrices for two crystallites A

and B are MA and MB, respectively. Then the misorien-

tation matrix MAB relating these crystallites, arbitrarily

taking crystallite A as the reference system, can be writ-

ten as

MAB ¼ MBM
�1
A : ð1Þ

This matrix defines a rotation that transforms the
coordinate system of the reference crystallite into coinci-

dence with that of the other crystallite. 1 The angle–axis
1 It should be noted that the matrices used here are associated with

the coordinate frame transformations that are often cited in material

science rather than the body rotations usually employed in other fields.

Moreover, the transformation is always expressed as a conversion of

the reference coordinate system into that of the product.
form associated with this misorientation matrix can

then be calculated as: h ¼ arccosð1
2
½TrðMABÞ � 1�Þ and

[u,v,w] = [m23 � m32,m31 � m13,m12 � m21] [13], where

Tr(MAB) is the trace of matrix MAB and mij

(i, j = 1,2,3) are the elements of MAB.

The four parameters can be further reduced to three
using the Rodrigues formula: R ¼ tan h

2
½u; v;w� [14],

which defines the three components (R1,R2,R3) of the

R–F vector. Each misorientation is now represented as

an R–F vector or more specifically as the endpoint of

the vector in R–F space. To avoid the singularity asso-

ciated with the R–F vector approaching infinity when

the rotation angle h reaches its upper limit p, the space

is reduced to a finite subspace called the fundamental

zone by utilizing the minimum angle–axis pair represen-

tation or disorientation. The latter is obtained by taking

the crystal symmetry into account, i.e. employing the 24

symmetry operations for cubic crystals [4,7].

The fundamental zone of R–F space for cubic sym-

metry is reproduced here in Fig. 1 since most of the dis-

cussion that follows about the four transformation

relationships will be presented in this subspace. Some
authors have reduced the fundamental zone even further

by considering only 1/48 of this space [7]. However, this

approach is not satisfactory for the present study since,

as will be evident in what follows, both the signs and or-

ders of the components of the rotation axis are of

importance.

The three points A, B and C illustrated in the dia-

gram typify the centers of the octahedral (A) and trian-
gular (B) faces of the fundamental zone, while the

vertices of the triangles are characterized by C. There

are 6, 8 and 24, respectively, such points in the funda-

mental zone. It should be emphasized that it is a prop-
Fig. 1. Fundamental zone of R–F space for cubic symmetry. The three

illustrated points correspond to the following angle–axis pairs: A: 45�
[100], B: 60� [111] and C: 62.8� ½11 ð

ffiffiffi

2
p

� 1Þ�.



Y. He et al. / Acta Materialia 53 (2005) 1179–1190 1181
erty of R–F space that points on the boundary faces

have their equivalents on the opposite faces [7]. For in-

stance, points on the octahedra (the {100} bounds) have

their equivalents on the opposite faces but these are off-

set by rotations through p/4 about the corresponding

Æ100æ axis. Similarly, points on the triangles (the
{111} bounds) have their equivalents on the opposite

faces but offset by rotations through p/3 about the

Æ111æ axis [15].
Fig. 2. Stereographic plot of {100}a poles for the Bain, K–S and N–W

variants projected onto the (111)c plane. Circled and underlined

numbers represent the Bain and N–W variants, respectively.
3. Bain, K–S and N–W relationships in R–F space

The parallelism conditions for the four orientation
relationships considered here, namely the Bain, K–S,

N–W and Pitsch, are summarized in Table 1 [16]. Also

included are the minimum angle–axis pairs and the cor-

responding R–F vectors derived from the parallelism

relationships. The pole figure representation of the three

classical c-to-a transformation relationships is shown in

Fig. 2, where the {100} poles of the product phase are

projected onto the parent (111) plane. The K–S variants
are numbered in terms of the associated c slip systems

denoted using the nomenclature of Bishop and

Hill [17,18]. The Pitsch representation is provided in

Appendix A.

It is clear from Fig. 2 that the K–S and N–W variants

are clustered around the Bain variants and that there are

eight of the K–S and four of the N–W variants around

each Bain. Each N–W variant is located between a pair
of K–S variants, e.g. N–W variant 1 is located between

K–S variants 7 and 20. These three form a set of copla-

nar variants that are characterized by having their crys-

tallographic {110}a planes parallel to the same {111}c
plane. This can be seen from Table 2, where the variants

of the Bain, K–S and N–W relationships are listed to-

gether with the detailed parallelism conditions that ap-

ply to the crystallographic planes and directions of the
two phases.

It is important to note that the direction parallelism

specified by the K–S relationship, which is that of

close-packed directions in the two phases, calls for the
Table 1

Orientation relationships between c and a

Orientation relationship Parallelism Number of

Bain {001}c//{001}a 3

Æ100æc//Æ110æa

Kurdjumov–Sachs (K–S) {111}c//{110}a 24

Æ110æc//Æ111æa

Nishiyama–Wassermann (N–W) {111}c//{110}a 12

Æ112æc//Æ110æa

Pitsch (P) {100}c//{110}a 12

Æ011æc//Æ111æa
pair of coplanar K–S variants to have their crystallo-

graphic Æ110æc directions parallel to the same Æ111æa
direction. These are 10.53� away from each other in

R–F space. Each K–S variant also has a closely spaced

non-coplanar variant, which is again 10.53� away in
R–F space. For example, K–S variants 1(aI) and 7(cI)

are closely spaced non-coplanar variants. These two

products are cross-slip related in terms of the slip sys-

tems, which means that the two variants are associated

with dislocations on intersecting slip planes [19].

If the coordinate system of the parent crystal is taken

as the reference system, which corresponds to matrix

MA in Eq. (1), the variants of the three correspondence
relationships can be illustrated in R–F space as shown in

Fig. 3. From this figure and Table 1, it can be seen that

the numbers of minimum angle–axis variants, and thus

the numbers of R–F vectors, for the Bain, N–W and

K–S relationships are 6, 24 and 24, respectively. These
variants Minimum angle–axis pairs R–F vectors

45� Æ100æ Æ0.414 0 0æ
(6 points)

42.85� Æ0.9680.1780.178æ Æ0.380 0.07 0.07æ
(24 points)

45.98� Æ0.9760.0830.201æ Æ0.414 0.035 0.085æ
(24 points)

45.98� Æ0.0830.2010.976æ Æ0.035 0.085 0.414æ
(24 points)



Table 2

The Bain, K–S and N–W variants

Bain variant Coplanar N–W and K–S

variants

{111}c//{110}a Æ110æc or Æ112æc//Æ111æa or

Æ110æa
1 N–W 5 a (111) (011) [2�1�1] [0�11]

K–S 2 (aII) (�101) [�101] [�1�1�1]

15 (�aIII) (�110) [�110]

N–W 8 b (�1�11) (0�11) [�21�1] [011]

(100)c//(100)a K–S 5 (bII) (101) [101] [11�1]

18 (�bIII) (1�10) [1�10]

N–W 11 c (�111) (011) [211] [01�1]

[010]c//[011]a K–S 8 (cII) (101) [101] [1�1�1]

21 (�cIII) (110) [110]

N–W 2 d (1�11) (0�11) [�2�11] [0�1�1]

K–S 11 (dII) (�101) [�101] [�11�1]

24 (�dIII) (�1�10) [�1�10]

2 N–W 6 a (111) (101) [�12�1] [10�1]

K–S 3 (aIII) (1�10) [1�10] [�1�1�1]

13 (�aI) (0�11) [0�11]

N–W 3 b (�1�11) (�101) [1�2�1] [�10�1]

(010)c//(010)a K–S 6 (bIII) (�110) [�110] [11�1]

16 (�bI) (011) [011]

N–W 9 c (�111) (�101) [�1�21] [101]

[001]c//[101]a K–S 9 (cIII) (�1�10) [�1�10] [1�1�1]

19 (�cI) (0�11) [0�11]

N–W 12 d (1�11) (101) [1 2 1] [�101]

K–S 12 (dIII) (110) [110] [�11�1]

22 (�dI) (011) [011]

3 N–W 4 a (111) (110) [�1�12] [�110]

K–S 1 (aI) (01�1) [01�1] [�1�1�1]

14 (�aII) (10�1) [10�1]

N–W 10 b (�1�11) (�1�10) [112] [1�10]

(001)c//(001)a K–S 4 (bI) (0�1�1) [0�1�1] [11�1]

17 (�bII) (�10�1) [�10�1]

N–W 1 c (�111) (�110) [�11�2] [�1�10]

[100]c//[110]a K–S 7 (cI) (01�1) [01�1] [1�1�1]

20 (�cII) (�10�1) [�10�1]

N–W 7 d (1�11) (1�10) [1�1�2] [110]

K–S 10 (dI) (0�1�1) [0�1�1] [�11�1]

23 (�dII) (10�1) [10�1]

The c {111} planes and K–S variants are identified using the notation of Bishop and Hill.
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should be compared with the numbers of variants that

are evident on the pole figure (3, 12 and 24, respectively).

Note that there are twice as many variants for the Bain

and N–W relationships in R–F space as in the pole fig-

ure because the endpoints of these variants in R–F space

are located on the external surfaces of the fundamental

zone; as a result, each point has its equivalent on

the opposite surface. By contrast, the endpoints of the
K–S variants are situated on the six planes located at

a normalized distance of 0.918 from the origin, with four

points on each plane (i.e. these planes are inside the fun-

damental zone).

As indicated above, the endpoints of the Bain and

N–W variants reside on the six octahedra of the fun-

damental zone. Here, one Bain variant is located at

the center of each face and four N–W variants reside
around it. These relationships are clarified in Fig. 3(b)

and (d), where all the points contained in the R–F
space of Fig. 3(b) are projected onto the bottom face

in Fig. 3(d). The two Bain variants on the top and

bottom faces are collapsed into one point in the

center.

In a similar manner, the eight K–S variants on

opposite planes in Fig. 3(a) are represented by four

overlapping points in Fig. 3(c) [1(14), 23(10), 20(7)

and 4(17)]. Note that, in contrast to the K–S case
of Fig. 3(c), the four N–W points on each of the

opposite faces of Fig. 3(b) are not superimposed. As

a result, eight N–W vectors and four K–S vectors

can be seen around each Bain axis in the two pro-

jected views, which is just the opposite of the pole fig-

ure view, where four N–W variants and eight K–S

variants can be seen around each Bain variant. The

‘‘supplementary’’ N–W variants are numbered
13,14, . . ., 24 here; these correspond to the ‘‘original’’

set of 1,2, . . ., 12, respectively. The reason for this



Fig. 3. The Bain, K–S and N–W orientation relationships represented in the fundamental zone of R–F space: (a) the Bain and K–S relationships,

(b) the Bain and N–W relationships, (c) projection of (a) onto the bottom face, (d) projection of (b) onto the bottom face. The K–S variants are

numbered according to their associated Bishop–Hill slip systems, numbers in brackets being variants on the bottom plane. Underlined numbers

represent the equivalent N–W variants induced by symmetry rotations.
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apparent redundancy will be taken up below after a

second frame of reference is introduced.

This situation is changed if one chooses one of the

Bain variants, rather than the parent c grain, as the ref-
erence system. As illustrated in Fig. 4, in this case 24

K–S and 12 N–W variants can be seen, just as in the

pole figure representation. The relation between the

K–S and N–W variants around the reference Bain vari-

ant (in the centers of Fig. 4(c) and (d)) also resembles

that of the pole figure, with one N–W variant between

pairs of K–S variants. Under such conditions, the other

two Bain variants are located at the vertices of the fun-
damental zone, which are the triple junctions of three

boundary faces (two {100} bounds and one {111}

bound). As noted above, each point on a boundary face

has an equivalent on the opposite face. Consequently,

there are four equivalent points for each of the two

remaining Bain variants, one on each of the four pairs

of opposing bounds. Therefore, in Fig. 4, there are a to-
tal of eight Bain points on the triangular faces in addi-

tion to the one located at the center of the figure (the

reference Bain variant).

The geometry of R–F space as employed here can be
summarized as follows. A point situated inside the fun-

damental zone is unique. This is the case for the 24 K–S

variants or the 12 N–W variants when a Bain variant

is taken as the frame of reference. A point that is situ-

ated on a face of the fundamental zone has one equiva-

lent on the opposite face, for a total of two points

(multiplicity of 2). These points are rotated by 45�
Æ100æ about the center of the opposite face if they lie
on an octahedron, or by 60� Æ111æ if they lie on a

triangle.

This is the case for the R–F vectors that correspond

to the Bain and N–W relationships when the austenite

is chosen as the reference frame. Similarly, a point that

lies on an edge of the fundamental zone is shared by two

faces and, therefore, has one equivalent point on each of



Fig. 4. The Bain, K–S and N–W relationships in R–F space with one of the Bain variants taken as the reference system: (a) Bain variant 1 as

reference, (b) Bain variant 3 as reference, (c) projection of (a) onto the bottom face, (d) projection of (b) onto the bottom face. Here, only 12 N–W

points can be seen. Circled and underlined numbers represent the Bain and N–W variants, respectively.
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the two opposite faces. This corresponds to two equiva-

lent points (in addition to the first) for a total of three
(multiplicity of 3). Finally, a point that resides on a ver-

tex, and is thus shared by three faces, has three equiva-

lents (multiplicity of 4) on the corresponding opposite

faces. This is the case for the remaining Bain variants

when one Bain variant is taken as the reference, as

pointed out above.

The misorientations between the Bain, K–S and N–W

variants can be readily calculated once all the variants
have been identified. Between the Bain variants, these

are 62:8� h11 ð
ffiffiffi

2
p

� 1Þi, represented as angle–axis pairs.

Thus, the misorientation between two Bain variants

takes the maximum allowable value of disorientation

angle between two cubic crystallites [20]. From Fig.
4(b), it is apparent that each K–S variant has two close

neighbors, each with an R–F misorientation angle of
10.53�. For example, the two closest neighbors of vari-

ant 1 are 14 (coplanar variant) and 7 (cross-slip related

variant), with misorientations of 10.53� [01�1]a and

10.53� [111]a, respectively. By contrast, the misorienta-

tion between two adjoining N–W variants is

13.76�; e.g. the two closest neighbors of N–W variant

1 are 4 and 10, with misorientations of 13.76�
[�0.706 0.06�0.706]a and 13.76� [0.706�0.06�0.706]a,
respectively. The misorientation between one N–W var-

iant and its two nearest K–S neighbors is 5.26� Æ110æa.
In Fig. 4, the 24 K–S and 12 N–W variants are dis-

tributed on the surfaces of four spheres (two inner and

two outer) centered on the origin. The radii of the inner
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spheres for K–S and N–W are 0.097 and 0.085, respec-

tively. These distances are calculated from misorienta-

tions of 11.07� Æ0.879 0.364 0.307æa and 9.74� Æ100æa,
respectively. There are eight K–S variants and four N–

W variants on the surfaces of these inner spheres. The

radii of the outer spheres for K–S and N–W are 0.526
and 0.538, respectively. These correspond to misorienta-

tions of 55.53� Æ0.419 0.648 0.636æa, 55.53�
Æ0.162 0.754 0.636æa for the K–S variants and 56.60�
Æ0.717 0.371 0.590æa for the N–W variants. There are

16 K–S variants and eight N–W variants on the surfaces

of these outer spheres.
4. Application to misorientations in the Gibeon meteorite

Iron meteorites have long been of interest to metal-

lurgists because of their special microstructural and

crystallographic characteristics. These materials pass

through the c-to-a phase transformation at cooling

rates of 0.1–500 �C/million years [21], which cannot

of course be reached under laboratory conditions.
Iron meteorites usually consist of two major phases,

kamacite and taenite, as well as their eutectoid mix-

ture, plessite [21]. Kamacite is the BCC a phase

known to metallurgists as ferrite, while taenite is the

FCC c phase known as austenite [22]. Plessite is an

intimate mixture of kamacite and taenite consisting

of tiny a and c grains. The most interesting feature

of iron meteorites is the very coarse Widmanstätten
structure that forms by diffusion-controlled nucleation

and growth at these extremely slow cooling rates. The

Widmanstätten pattern is developed when the individ-

ual lamellae of kamacite thicken by solid-state diffu-

sion and eventually contact one another. Some

traces of the precursor phase almost always remain

as rims or ‘‘blebs’’ between or within the kamacite

lamellae. Their presence makes it possible to deter-
mine the orientation of the prior austenite phase.

Some typical microstructures of the Gibeon meteorite

(belonging to group IVA, fine octahedrite, discovered in

Gibeon, Namibia) are illustrated in Fig. 5. In this figure,

the colors of the kamacite lamellae are associated with

crystal orientation differences. The white rims between

and within the kamacite grains consist of taenite.

Numerous Neumann bands (mechanical twins) can also
be seen across and within the individual kamacite grains.

Plessite regions are separated from kamacite lamellae by

taenite rims.

The Widmanstätten patterns in iron meteorites not

only display special microstructural features, but also

provide evidence of specific orientation relationships be-

tween the kamacite lamellae and the retained taenite

rims.These relationships have been investigated by
means of X-ray diffraction [23], TEM [24] and neutron
diffraction [25]. The results obtained have produced evi-

dence for both the K–S and N–W relationships, as well

as for intermediate orientations. More recently, Bunge

et al. [26] measured the orientation distribution of the

Widmanstätten plates in a sample of the Gibeon meteor-

ite using high-energy synchrotron radiation. Their mea-
surements revealed a continuous range of orientations

stretching out from the N–W orientation to both of

the adjoining K–S orientations. However, the orienta-

tion relationship between the taenite and kamacite in

the plessite regions was not studied intensively. Never-

theless, an investigation by Hasan and Axon [24] using

TEM indicated that there was a near- K–S relationship

between the two phases.
Some typical EBSD maps obtained from the Gibeon

meteorite are illustrated in Fig. 6. The large plate-like

grains in the upper part are kamacite (BCC) lamellae.

At the bottom of these maps, there is a plessite region

that consists of tiny kamacite plates (about 2–4 lm
wide) and taenite particles (1 lm or less in diameter).

In the 844 lm · 1068 lm scanned area, the taenite

(FCC) phase (including the tiny grains in the plessite re-
gion) shares essentially the same orientation, as shown

in Fig. 7(a). The mean orientation of the measured tae-

nite points is (u1 = 101.8�, U = 51.0�, u2 = 28.7�), with
an average deviation of 4.4�. If the taenite orientation

and its immediately neighboring kamacite orientations

are compared, orientation relationships close to both

N–W and K–S are observed, usually a few degrees away

from the exact N–W or K–S variants.
In the plessite region, the tiny kamacite (BCC) grains

are also related to the parent taenite phase by relation-

ships that are close to K–S or N–W. This is shown in

Fig. 7(b), where the variants predicted by the Bain, K–S

and N–W relationships based on the mean orientation

of the taenite phase are superimposed on the measured

kamacite orientations. It can be seen that the observed

orientations are distributed continuously along the line
of the three coplanar N–W and K–S variants. A contin-

uous spread of orientations is also observed between the

two non-coplanar but cross-slip-related K–S variants,

though with lower density. This corresponds to the

neighborhood of the Pitsch orientation, as considered

below in more detail, and resembles the orientation rela-

tionships between the kamacite lamellae and the taenite

reported by Bunge et al. [26]. It should be noted, how-
ever, that the Bain relationship is not observed.

These relationships are seen more clearly in R–F

space, as shown in Fig. 8. The measured kamacite orien-

tations are compared against the predictions obtained

from the K–S (Fig. 8(a)) and N–W (Fig. 8(b)) relation-

ships. In these cases, the axes of the average taenite ori-

entation were chosen for reference. From this figure, it is

evident that the measured kamacite orientations are
spread over both the K–S and N–W locations, which

means that both of these relationships were obeyed. It
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should be added that for the N–W relationship, all 24

R–F vectors (including the 12 equivalents induced by

the symmetry rotations) should be employed to evaluate
Fig. 6. EBSD maps for the Gibeon meteorite: (a) image quality map for th

(c) orientation map of the taenite.

Fig. 7. {001} pole figures of the taenite and kamacite phases in the plessit

predicted.

Fig. 5. Typical microstructures of the Gibeon meteorite: (a) kamacite lamella

containing 10% sodium thiosulfate and 3% potassium metabisulfite.
the experimental data since data points that are not ex-

actly on the surface will have only one reflection and

should be considered as either near one N–W variant
e kamacite and taenite, (b) inverse pole figure map of the kamacite,

e region: (a) taenite (FCC), (b) kamacite (BCC), both measured and

e (K), (b) taenite (T) and plessite (P). Etched using an aqueous solution



Fig. 8. Measured kamacite orientations in the plessite region as represented in R–F space: (a) compared with the predicted K–S variants,

(b) compared with the predicted N–W variants. The average taenite orientation is taken as the reference.

Fig. 9. Orientation relationships in R–F space referred to one of the Bain variants: (a) 3-D view of the predicted and measured variants,

(b) projection onto the bottom face.
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or near its equivalent on the opposite face. Moreover, all

24 variants predicted by both the K–S and N–W forms

of representation appear to be present and evenly dis-

tributed in R–F space. This indicates that no variant

selection occurred under the ‘‘equilibrium’’ cooling con-

ditions that applied in the present case.

In Appendix A, some further kamacite observations

are presented in R–F space, but compared with the pre-
dictions of the Pitsch correspondence relations.

Fig. 9 shows the measured taenite and kamacite ori-

entation relationships in the plessite region as referred

to one of the Bain variants. Here, the observations are

again compared with the predictions. In this case, they

indicate in more detail that both the K–S and N–W rela-
tionships are satisfied, with almost all the measured

points in the vicinities of the variants predicted by the

two sets of correspondence relations. It is of particular

note that the Bain relationship is never observed.
5. Conclusions

1. Three of the correspondence relationships (the Bain,

K–S and N–W) that describe the c-to-a transforma-
tion have been represented in R–F space with the c
crystal chosen as the reference system. The Bain

and N–W variants are seen to be symmetrically dis-

tributed on the boundary surfaces of the fundamental



Table A1

The Bain and Pitsch variants

Bain variant Pitsch variant {001}c//{110}a Æ110æc//Æ111æa
1 2 (001)//(1�10) [110]//[11�1]

5 (010)//(�10�1) [�101]//[�1�11]

(100)c//(100)a 8 (001)//(�1�10) [�110]//[�11�1]

[010]c//[011]a 11 (010)//(10�1) [101]//[1�11]

2 3 (100)//(01�1) [011]//[�111]

6 (001)//(�1�10) [1�10]//[1�1�1]

(010)c//(010)a 9 (100)//(0�1�1) [0�11]//[�1�11]

[001]c//[101]a 12 (001)//(�110) [110]//[11�1]

3 1 (010)//(�101) [101]//[1�11]

4 (100)//(0�1�1) [01�1]//[�11�1]

(001)c//(001)a 7 (010)//(�10�1) [10�1]//[1�1�1]

[100]c//[110]a 10 (100)//(0�11) [011]//[�111]
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zone. By contrast, the K–S variants are located on the

faces of an inner cube located within the fundamental

zone. The Bain, K–S and N–W relationships are asso-

ciated with 6, 24 and 24 endpoints, respectively, in the

fundamental zone.

2. When one of the Bain variants is chosen as the ref-
erence system, the neighboring K–S and N–W vari-

ants are located on the surfaces of two inner

spheres; their radii are 0.085 and 0.097 for the

N–W and K–S variants, respectively. The two

remaining Bain variants are situated at selected ver-

tices of the fundamental zone, with each variant

being represented by four equivalent points on the

boundary faces. In this case, the relationship
between the Bain, K–S and N–W variants resem-

bles that of the pole figure representation, particu-

larly when an appropriate 2D projection of R–F

space is employed.

3. Observations regarding the transformation of c to a
in the plessite region of the Gibeon meteorite were

carried out by means of an automatic EBSD tech-

nique. Analysis reveals that both the K–S and N–W
relationships are obeyed, together with all those

called for by the intermediate direction parallelism

conditions. By contrast, the Bain relationship is never

observed.

4. Most of the measured orientations are distributed

around the three coplanar K–S and N–W variants;

a smaller number are located adjacent to the two

cross-slip-related K–S variants. Essentially all the
K–S and N–W variants are observed without any

variant selection.
Fig. A1. (a) The Bain, K–S and Pitsch relationships in RF space.

(b) The Bain, N–W and Pitsch relationships in RF space. The NW and

Pitsch variants are numbered according to Tables 2 and A1,

respectively.
Appendix A. Crystallographic features of the Pitsch

relationship and applicability to the present results

The Pitsch relationship was originally proposed in

1962 [27] and can be described as follows: {100}c//

{110}a Æ0�11æc//Æ1�11æa. It applies principally to

precipitation in cubic systems, such as Cu–Cr, and

has been observed and reported by numerous

researchers [28–32]. Here, it is of interest to describe

the features of this transformation relation in R–F

space, to compare these to those of K–S and N–W,
and then to assess the present results in terms of the

degree to which the present observations satisfy the

above parallelism conditions.

The conditions themselves lead to 24 possible rota-

tion axes. However, as was the case for the N–W rela-

tionship, 12 of these are redundant, so that there are

only 12 (and not 24) physically distinct variants, see

Table A1. The locations of the P rotation axes in
R–F space are compared with those of the K–S and

N–W axes, respectively, in Fig. A1(a) and (b). These
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axes are distributed around the Bain positions in

much the same way as the N–W axes. (Note that

the rotation angle - is identical and that the compo-

nents of the R–F vector are also identical, but are

simply permuted in a different manner.) As a result,

the sets of P and N–W axes are simply related by a
rotation of 45� about the Bain axis.

This is seen to better effect in Fig. A2(a), where the

positions of the K–S, N–W and P rotation axes are pro-

jected onto the bottom face of the R–F cube using the
Fig. A2. (a) The Bain, K–S, N–W and Pitsch relationships in RF

space. Projection onto the bottom face, with the parent austenite

orientation as the reference frame. (b) The Bain, K–S, N–W and Pitsch

relationships in RF space. Projection onto the bottom face, with Bain

variant 3 taken as the reference frame.
parent austenite as the reference frame. Although the

N–W and P axes appear to be superimposed they are sit-

uated on opposite faces (upper and lower) of the cube. It

is worthy of note that the P axes are located on the sur-

face of the cube, as are the N–W axes, while the K–S

axes are slightly displaced towards the center. A similar
plot, but employing the Bain reference frame in this

case, is presented in Fig. A2(b). Here, the P axes display

a multiplicity of two around the periphery because they

are situated on the faces (octahedral faces or truncated

triangular corners).

The relative positions of the K–S, N–W and P reflec-

tions are illustrated on a {001} pole figure in Fig. A3.

As indicated above, the N–W reflections are located be-
tween two ‘‘co-planar’’ K–S reflections, while the P

reflections are situated midway between two K–S reflec-

tions that are ‘‘cross-slip’’ related (in terms of the Bishop

and Hill notation).

A {001} pole figure displaying the measured orienta-

tions of the kamacite plates within a single taenite grain

is displayed in Fig. A4(a). Here, it can be seen that the

observations are clustered around the K–S and N–W
positions, while the intensities in the neighbourhood of

the P axes are relatively low. There are no reflections

in the Bain position. The same measurements are illus-

trated on the R–F cube in Fig. A4(b), where once again

the lack of correspondence with the rotation axes that

correspond to the P parallelism conditions is readily

evident.
Fig. A3. Stereographic plot of {100}a poles for the Bain, K–S, N–W

and Pitsch variants projected onto the (111)c plane. The N–W variants

(underlined) and Pitsch variants are numbered according to Tables 2

and A1, respectively.



Fig. A4. (a) {001} pole figure for the kamacite. (b) The kamacite

orientations in R–F space; the Bain and Pitsch orientation relation-

ships are also displayed.
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Conclusions

1. The Pitsch relations can be described in terms of the

same rotation angle as the one that applies to the N–W

relationship and the magnitudes of the R–F vector

components are identical, except that they are per-

muted in a different order. This leads to considerable

similarity between the distributions of the P and N–W

reflections around the Bain position in a pole figure

(there is a rotation angle of 45� between the two sets).
2. The present observations indicate that the Bain trans-

formation is never observed, that both the K–S and

N–W correspondence relations apply to the bcc phase

in the Gibeon meteorite, but that few reflections are

located in the vicinities of the Pitsch rotation axes.
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