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a b s t r a c t

Objectives. The purpose of this study was to compare torsional strength, ductility and fracture

behaviors of Ti–6Al–7Nb, CP Ti and Co–Cr alloy castings after laser welding.

Methods. Dumbbell-shaped castings of three metal alloys (Ti–6Al–7Nb alloy, CP Ti, Co–Cr

alloy) were cut in half and laser welded with a Nd:YAG pulse laser-welding machine at either

220 V or 260 V of laser voltage. After being laser welded, all cast specimens were tested with

a multi-axial hydraulic testing machine (MTS 858 Mini Bionix®) using a torsional test. The

fracture surfaces were investigated with a scanning electron microscope.

Results. None of the laser-welded Ti–6Al–7Nb alloy and CP Ti castings was broken within

the welded joint, showing torsional strength as high as the unwelded castings. Unlike the

other groups, the laser-welded Co–Cr alloy castings exhibited brittle fracture appearance
orsional strength

racture characteristics

ental casting

and provided substantially less torsional strength.

Significance. The torsional strength of the laser-welded Ti–6Al–7Nb alloy and CP Ti castings

was as high as that of the unwelded castings while this finding could not apply to the Co–Cr

alloy castings. This indicates that the mechanical strength of the laser-welded Ti–6Al–7Nb

alloy dental casting is sufficient for clinical applications.

emy

the mechanical properties of CP Ti used for some dental pros-
© 2007 Acad

. Introduction

he applications of commercially pure titanium (CP Ti) and
itanium alloys used in medical and dental fields have

ramatically increased over the last few decades due to
heir advantageous properties. For dental applications, many
spects of CP Ti and Ti alloys have been investigated in both
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clinical and laboratory studies [1–7]. Recently, Ti–6Al–7Nb alloy
was introduced as an alternative dental casting material to CP
Ti or Ti–6Al–4V alloy, not only because of some drawbacks of
theses [3], but also because of the superior corrosion resistance
of Ti–6Al–7Nb alloy when compared to others [4,8]. However,
the reactivity and corrosion resistance of these metals are key

blished by Elsevier Ltd. All rights reserved.
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Fig. 1 – Means and standard deviations of ultimate
torsional strength and torsional strain of laser-welded and
control groups of three alloy (Ti–6Al–7Nb, CP Ti, and Co–Cr)
840 d e n t a l m a t e r i a

in making dental practitioners and technicians avoid using the
soldering technique to join titanium dental prostheses, as the
disadvantages of doing so have been well pointed out [9–11].
Instead of the conventional way, laser welding became well
accepted as being able to produce a precision welded joint with
a narrow heat-affected zone and subsequently less distortion
[12,13]. It has led to wide studies of using laser welding on
these metals [12,14–19]. Even though several studies showed
that the mechanical strength of laser-welded CP Ti or Ti alloys
were at least as high as that of unwelded ones [16,20–23], most
of them appeared to focus on the tensile property of the laser-
welded joint. Very few have studied the torsional property [24],
which is also one of the important mechanical properties for
the use of dental materials. Considering that the dental pros-
theses are subjected to different directions of stress during
function, more understanding on the mechanical properties of
laser-welded CP Ti or Ti alloys in the aspect of torsional stress
is necessary. Therefore, this study was aimed at investigat-
ing the torsional performance and fracture characteristics of
laser-welded joints of Ti–6Al–7Nb alloy castings at two differ-
ent voltages compared to CP Titanium and Co–Cr alloy dental
castings.

2. Materials and methods

Ti–6Al–7Nb alloy (T-Alloy Tough, GC, Japan), grade 2 CP Ti
(TITAN INGOT JS2, Selec, Japan), and Co–Cr alloy (Cobaltan
Clasp, Shofu, Japan) were used to fabricate ISO 6871 dumbbell-
shaped specimens, 18 mm in gauge length and 3 mm in
diameter at the parallel part, according to the manufacturer’s
instruction. Ti–6Al–7Nb alloy and CP Ti specimens were cast
in a magnesia-based investment (Selevest® CB, Selec, Japan)
with an argon gas centrifugal casting machine (Ticast Super
R, Selec, Japan), whereas Co–Cr alloy specimens were cast in a
phosphate-bonded investment (Wiroplus®N, Bego, Germany)
with a centrifugal casting machine (Denko Auto Sensor MD-
201, Denko, Japan). Five specimens of each casting metal were
prepared for each laser-welding condition group including the
unwelded control groups. All specimens were inspected with a
non-destructive X-ray instrument (DCX-100, Asahi Roentogen,
Japan) to detect any noticeable internal defects. Specimens
for laser welding were then cut at the parallel part with a
0.5-mm thick cutting wheel under water coolant. A group
of five specimens of each metal was laser welded at either
220 V or 260 V of laser voltage using a Nd:YAG laser-welding
machine (Alpha Laser ALP 50S, Yasui, Japan) under an argon
gas atmosphere. The considerations of choosing these two
laser voltages and the details of the other laser parame-
ters, including the technique of performing laser welding, are
explained in a previously published study [19].

All laser-welded specimens, including both the 220 V and
260 V of laser-welding conditions and the unwelded control
groups, were later tested with a multi-axial hydraulic testing
machine (MTS 858 Mini Bionix®, MN, USA). Torsional loading
moment was applied with a crosshead speed of 0.1 degree/s.

Torsional strength and strain were calculated with the cross-
sectional area and gauge length of the specimen. The data was
statistically analyzed by ANOVA and Tamhane’s T2 test at 95%
of significance level. The fracture surfaces from all experimen-
castings. Connecting lines above the bars indicate
statistically significant difference (p < 0.05).

tal groups, including both laser-welded and unwelded groups
after the torsional test, were observed by means of a scanning
electron microscope (JSM-6400, JEOL, Japan).

3. Results

The results of the ultimate torsional strength and strain of
both the laser-welded and the unwelded control castings
are shown in Fig. 1. The ultimate torsional strength and
strain were calculated with the cross-sectional area and gauge
length of the specimen at the maximum value of torque.
Except for the laser-welded Co–Cr alloy castings, it was found
that both 220 V and 260 V laser-welded joints of the Ti–6Al–7Nb
alloy and CP Ti castings provided ultimate torsional strength
as high as the unwelded castings. A similar tendency was
observed in the results of torsional strain of the laser-welded
Ti–6Al–7Nb alloy castings. However, although the ultimate tor-
sional strength of both groups of laser-welded CP Ti castings
was comparable to that of the unwelded castings, torsional
strain of the 220 V laser-welded CP Ti castings was noticeably
lower than that of the other two groups with no statistically
significant difference.

Regardless of laser voltage, all laser-welded Co–Cr alloy
castings were abruptly fractured within the welded joints

presenting considerably lower ultimate torsional strength
and strain than those of the unwelded Co–Cr alloy castings
(p < 0.05). Additionally, in this investigation it was found that
both ultimate torsional strength and strain of the laser-welded
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Fig. 2 – Fractographs of 220 V laser-welded Ti–6Al–7Nb alloy specimen fractured outside the welded joint. Micrographs (a–c)
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re higher-magnification views (×350) of the boxes in micro
equiaxed dimples) and (c) abraded surface.

o–Cr alloy castings were unlikely to be affected by the
ncrease in laser voltage.

All of the laser-welded Ti–6Al–7Nb alloy and CP Ti cast-
ngs were broken outside the welded joints showing ductile
racture surfaces observed by a scanning electron microscope
SEM) in Figs. 2 and 3, respectively; whereas all laser-welded
o–Cr alloy castings were abruptly broken within the welded

oints as shown in Fig. 5. Micrographs (a) from Figs. 2–4 display
hear dimple of fracture characteristics, especially the frac-
ure surface of the Ti–6Al–7Nb alloy casting showing typical
hear dimple of parabolic shape. In Figs. 2–4, micrographs (b)
xhibit the final ductile fracture while micrographs (c) exhibit
he abraded surfaces of each metal being the result of friction
etween the two broken ends during testing.

Unlike the ductile fracture characteristics of the unwelded
o–Cr alloy castings, the laser-welded Co–Cr alloy castings
ere fractured showing sharply defined plane and angles
emonstrating the brittle fracture characteristics, regardless
f laser-voltage (micrographs (a and b) in Fig. 5).

. Discussion

ecently, laser welding has been increasingly utilized to
onstruct dental prostheses among dental practitioners and

ental technicians [25–32]. This is attributed not only to the
dvantages of laser welding including a lesser possibility of
istortion due to a narrow heat-affected zone (HAZ), but also
o the increasing use of CP Ti or titanium alloys for up-to-
h 1 (×45); (a) elongated dimples, (b) final ductile fracture

date dental treatments. CP Ti and Ti alloy dental castings
have become an alternative to conventional gold alloy dental
castings because of the advantages of lower cost and excel-
lent properties. Among titanium alloys, Ti–6Al–7Nb alloy was
developed in order to replace the controversial cytotoxic effect
of vanadium in Ti–6Al–4V alloy. Although Ti–6Al–7Nb alloy has
slightly lower mechanical strength than Ti–6Al–4V alloy, it pro-
vides better percent elongation and corrosion resistance [33].
Unfortunately, when joining of CP Ti and Ti alloys is required
the soldering technique is not recommended as some disad-
vantages were reported, such as reduced mechanical strength
[11]. Therefore, laser welding was introduced for use in not
only joining the broken parts of titanium dental prosthe-
ses, but also fabricating large prostheses such as titanium
frameworks for implant superstructures [29–32]. These dental
prostheses would, nonetheless, be subjected to complex stress
in various directions under oral function. Hence, the mechan-
ical strength of laser-welded dental casting was evaluated by
the means of torsional stress.

The previous study showed that the tensile strength of
laser-welded Ti–6Al–7Nb alloy and CP Ti castings was as high
as the unwelded same alloy castings when the joint thick-
ness was completely laser welded [19]. Nevertheless, the same
laser procedure could not be successfully employed in the
Co–Cr alloy castings whose welded joints showed consider-

ably low joint strength [19,34,35]. Similarly, it was found in
this study that the joints of the Ti–6Al–7Nb alloy and CP
Ti castings that were either completely (260 V) or peripher-
ally (220 V) laser welded, provided no significant difference
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Fig. 3 – Fractographs of 220 V laser-welded CP Ti specimen fractured outside the welded joint. Micrographs (a–c) are

higher-magnification views (×350) of the boxes in micrograph 1
(equiaxed dimples) and (c) abraded surface.

Fig. 4 – Fractographs of unwelded Co–Cr alloy specimen. Microgr
boxes in micrograph 1 (×45); (a) elongated dimples, (b) final duct
(×45); (a) elongated dimples, (b) final ductile fracture

aphs (a–c) are higher-magnification views (×350) of the
ile fracture (dimples) and (c) abraded surface.
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ig. 5 – Fractographs of laser-welded Co–Cr alloy specimens
igher magnification views (a and b: ×350) of the boxes in m

n terms of joint strength under torsional stress. Although
he peripherally laser-welded joints of Ti–6Al–7Nb alloy and
P Ti castings could provide torsional strength as high as the
nwelded or completely laser-welded castings, the 220 V laser-
elded CP Ti alloy castings exhibited a noticeable decrease

n torsional strain compared to the other experimental CP Ti
roups with no significant difference. It is known that weld-
ng CP Ti or Ti alloys contributes to a decrease in the ductility
f the fusion zone of the welded metals, which is a result of
he microstructural changes after martensite transformation
36]. Not only rapid solidification of molten metals, but also
igh affinity for oxygen and impurities during welding, would

ead to increased hardness and consequently to low ductil-
ty [12,13,16,37]. These factors are thought to be some of the

ain reasons for the reduced torsional strain in laser-welded
astings.

In addition, it is of interest that the reduction in torsional
train of the laser-welded Ti–6Al–7Nb alloy castings was much
maller than that in the laser-welded CP Ti castings. It is dis-
inguishable in the peripherally laser-welded castings. In fact,
i–6Al–7Nb alloy possesses two phases (� and � phases) whose
echanical strength increases by strengthening mechanism

nlike CP Ti which has one phase at a certain temperature.
dditionally, in the pure state of titanium at a given tempera-

ure, � phase tends to be harder than � phase [38]. Therefore,
oth the transformed � microstructure in the fusion zone and

different phase ratios would affect the mechanical proper-

ies of both laser-welded metals [36]. These may explain the
ecrease and different reductions in torsional strain values
etween the laser-welded Ti–6Al–7Nb alloy and CP Ti castings.
tured within the welded joints): (1) 220 V and (2) 260 V.
raph (1 and 2, respectively: ×45) showing cleavage fracture.

Coinciding with the results of the tensile test [19], com-
pletely laser-welded Ti–6Al–7Nb alloy and CP Ti castings
exhibited ultimate torsional strength and strain as high as the
unwelded castings. In this study, regardless of laser voltage
(220 and 260 V), all casting specimens of Ti–6Al–7Nb alloy and
CP Ti were broken outside the welded joints with the duc-
tile fracture characteristics shown in the SEM fractographs
(Figs. 2a and 3a). Both Ti–6Al–7Nb alloy and CP Ti castings dis-
play the same characteristics of elongated shaped dimples in
the direction of shear on the fracture surfaces, especially the
Ti–6Al–7Nb alloy casting which shows a conspicuous parabolic
shape, whereas final fracture of both metals shows a typical
equiaxed dimple of final fracture (Figs. 2b and 3b). Since the
friction occurring when two ends rubbed against each other
could not be avoided in the torsional test, some damaged sur-
faces were observed (Figs. 2c and 3c).

In this investigation, whether the joints were completely
or peripherally laser welded, all laser-welded Co–Cr alloy
castings broke within welded joints. Markedly low ultimate
torsional strength and strain of the laser-welded Co–Cr alloy
castings compared to the unwelded castings were observed.
Cracks occurred in the welded joints of all laser-welded Co–Cr
alloy castings and several pores were also found in the welded
area after being broken, which coincided with previous studies
[19,35,39]. These defects are believed to be some of the main
causes of abrupt fracture of laser-welded Co–Cr alloy castings.

From fractographic examination, all laser-welded Co–Cr alloy
castings were fractured indicating a cleavage pattern of brit-
tle fracture characteristics (Fig. 5a and b). These findings were
similar to those tested under tensile stress [19,35]. Unlike the
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laser-welded ones, the unwelded Co–Cr alloy castings were
fractured exhibiting a typical elongated dimple of the final
fracture (Fig. 4a). Even though one study indicated that laser
welding provided higher joint strength of Co–Cr alloy than
using electric brazing, the strength was still much lower than
that of unwelded one, and this could be due to unfavorable
microstructure changes leading to residual stress and plastic
strain, in addition to grain growth, of the laser-welded joint
[34]. Furthermore, one recent study has shown that an argon
atmosphere used in the laser-welding technique could disturb
the effective welding of this alloy [40]. Laser welding may not,
therefore, be a reliable means of joining Co–Cr alloy.

The results in this investigation proved that with proper
laser procedure, laser welding can be employed on Ti–6Al–7Nb
alloy and CP Ti dental castings whose mechanical properties,
including tensile strength, torsional strength and ductility are
comparable to those of unwelded castings. Under present con-
ditions, although the peripherally laser-welded Ti–6Al–7Nb
alloy joints could tolerate the torsional stress before fracture
outside the welded joints, they fractured within the welded
joint under tensile stress [19]. Additionally, more reduced duc-
tility was found in the peripherally laser-welded joints which
fractured under tensile stress compared to ones tested under
torsional stress. These findings clinically imply that peripheral
laser welding is not suitable for clinical application due to the
reduced mechanical strength of the welded joint. Although
both completely and peripherally welded joints have high tor-
sional strength, under multi-directions of occlusal loading,
the failure of peripherally welded dental prostheses could be
caused by multi-directional stresses including tensile stress
and torsional stress.

5. Conclusions

Within the limitation of this study, the laser-welded
Ti–6Al–7Nb alloy and CP Ti dental castings could provide tor-
sional strength as high as the unwelded castings. The decrease
in ductility was negligible when the welded joint thickness
was completely laser welded. However, this high mechanical
strength could not be successfully achieved on the laser-
welded Co–Cr alloy dental castings in which the cracks and
pores were unavoidably induced by the laser-welding proce-
dure.
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