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Abstract

A procedure for evaluating the fracture mechanics parameters of a subsurface two-dimensional crack parallel to the
boundary in an elastic half plane is presented. A Weight Function (WF) with a matrix structure is proposed, to account
for the coupling effects between modes I and II, typical in non-symmetrical problems. In order to face any loading con-
dition, the WF was formulated by symmetric and anti-symmetric components and the ‘multiple reference loading’
approach was used to derive their analytical expressions. To this purpose, a parametric Finite Element (FE) analysis
was set up and the Stress Intensity Factors (SIFs) were determined for several independent loading conditions. The anal-
ysis was carried out for different ratios between crack length and in-depth position and, consequently, the dependence of
the WF on this parameter was studied. The WF accuracy was assessed by considering different loading and the method
applied for evaluating the SIFs produced by a point-like load travelling on the semi-plane surface. The results indicated
that the correct fracture mechanics analysis requires crack closure (either complete or partial) to be taken into account.
Consequently, the crack opening displacement (COD) components under general loading conditions have to be evaluated.
On the basis of the WF, the related Green Function (GF) was also derived by which the COD components can be effi-
ciently evaluated for any applied load including the contact due to crack closure.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Several mechanisms of failure in mechanical components, such as spalling or pitting in rolling contact [1–4]
or nucleation of cracks in ultra high-cycle fatigue [5–7], are characterized by the initiation and growth of sub-
surface defects. The early stages of fatigue growth of a subsurface crack are generally characterized by mixed
fracture modes. These phenomena have been studied by several authors in the framework of the fracture
mechanics and many analyses have been carried out for determining the fracture mechanics parameters
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[1–11]. If the distance of a crack like defect from the surface is sufficiently high compared to the defect dimen-
sion, the Griffith crack model can be assumed as representative. In contact fatigue, this approximation turns to
be questionable as the observed subsurface cracks they have length comparable with the distance from the
surface. The Finite Element (FE) method has been extensively applied to evaluate the Stress Intensity Factors
(SIFs) under complex loading conditions [8] and to predict the crack growth paths [9–12]. However, FE ana-
lyses, since general and accurate, are significantly time consuming, particularly when the crack growth has to
be predicted and many SIF calculations have to be performed under several loading conditions. The Weight
Function (WF) method turns out to be suitable for solving this kind of problems.

The authors [13,14] have recently proposed a method for evaluating the fracture mechanics parameter for
the two-dimensional subsurface crack under general loading based on the WF approach. A matrix like WF
was adopted in order to account for the coupling effects between modes I and II due to the asymmetry induced
by the presence of the free surface. Moreover, in order to consider the presence of the two crack tips, the WF
was separated into symmetrical and anti-symmetrical components, thus allowing for a straightforward eval-
uation of the fracture mechanics parameters under completely general loading conditions. The ‘direct adjust-
ment method’ [15] based on multiple reference loading cases was adopted to determine both diagonal and
off-diagonal WF matrix components. To this purpose a FE parametrical analysis was carried out for different
loading conditions and ratios between the crack length and its distance from the surface.

In the present paper an extended formulation of the WF is presented and assessed by comparison with SIFs
calculated by accurate FE analysis. The proposed WF is intended to encompass a broader range of ratios
between crack length and distance from the surface. The dependence of the WF on this geometrical parameter
is studied thus giving quantitative indications about the effect of the free boundary on the problem. The WF
was applied for determining the SIF histories induced at the tips of a subsurface crack by a point like load
travelling on the surface. A parametrical analysis, including several ratios between crack length, distance from
surface and inclinations of the travelling load, was carried out. This application intended to show the poten-
tiality of the method in predicting the effects of a moving body in contact on the surface under general friction
conditions.

Under this kind of mainly compressive loading, typical of the contact, complete or partial crack closure are
expected. Therefore, a method for evaluating the COD components is necessary for a correct prediction of the
FM parameters. To this purpose the Green Functions (GF) of the subsurface crack was obtained by a direct
elaboration of the proposed WF. By the GF, the COD components can be efficiently calculated by direct inte-
gration under general loading conditions, and the effect of crack closure on the SIFs can be accurately
accounted for by including the tractions between the crack faces due to closure.
2. Problem definition

An embedded 2D crack, having length 2a, parallel to the surface of an elastic semi-plane and placed at a
depth h is considered, as represented in Fig. 1. In order to provide an unambiguous definition of the fracture
mechanics parameters for both the tips (in particular regarding the sign of KII of which a general definition is
not usually adopted), a Cartesian reference system is defined for each tip L and R. The tip reference systems
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Fig. 1. Subsurface crack parallel to the semi-plane surface.
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share the y-axis while they have opposite x-axes (xL and xR respectively) each of them having the positive
direction of the crack growth for the related tip. The y-axis is the only axis of symmetry for the geometry,
its versus is chosen toward the free surface. The relative displacements of the points H+(W+) and H�(W�),
located on the upper (y+) and lower (y�) crack edge respectively, when H (or W) approaches the tip R (or
L) define the sign of the SIFs. This is a typical definition for the sign of KI, which is positive when the crack
edges open near the tip, that is when the y component of the point H+(W+) displacement is higher than the
correspondent component of point H�(W�). Similarly, KII at the tip R(L) is assumed positive if the xR (xL)
displacement component of point H+(W+) is higher than the corresponding component of the point H�(W�).

The length to depth ratio r = a/h was assumed as the (only) dimensionless parameter defining the geometry.
3. Mathematical formulation of the weight function

By considering the energy associated to a crack under linear elastic fracture mechanics hypothesis, Bueck-
ner [16] and Rice [17] showed that the WF for a symmetrical one-tip crack can be obtained from the solution
for one reference load condition. For a non-symmetrical problem, one reference load system is not enough as a
mixed mode (I + II) of fracture is expected and the energy associated to the crack depends on both KI and KII.
As discussed in [15,18,19], a matrix formulation of the WF is necessary to account the coupling effect, more-
over, for an embedded crack the WF must provide the SIFs for both the tips.

In the examined problem, for which the geometry is symmetric about the y axis, any kind of loading can be
considered as the superposition of a symmetric (S) and an anti-symmetric (A) components (see Fig. 2). After
separating the load in symmetric and anti-symmetric components, the SIFs can be obtained by simple super-
position. As a consequence, the WF domain can be restricted to one half of the crack length [0,a] for both the
tips in the related reference local system.

In the following several quantities are introduced in order to distinguish: crack loading mode (I or II), kind
of component of the nominal stress applied on the crack faces (normal or tangential: r,s), type of loading
(symmetric or anti-symmetric) and crack tip (R or L). In order to simplify the notation a sequence of four
subscripts are used as defined in Table I.

The expressions (1) were adopted for the WF where, in order to simplify the notation, it was assumed
x = xT i.e. x = xR for the tip R and x = xL for the tip L. This notation are applied also in the following:
Table
Subscr

Proper

Mode
Nomin
Symm
Crack
KIRða;rÞ
KIIRða;rÞ

� �
¼
Z a

0

hIrSðx;a;rÞ hIsSðx;a;rÞ
hIIrSðx;a;rÞ hIIsSðx;a;rÞ

� �
�

rSðxÞ
sSðxÞ

� �
þ

hIrAðx;a;rÞ hIsAðx;a;rÞ
hIIrAðx;a;rÞ hIIsAðx;a;rÞ

� �
�

rAðxÞ
sAðxÞ

� �� �
�dx

ð1aÞ
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Fig. 2. A general loading condition expressed as a superposition of symmetric and anti-symmetric components.

I
ipts definition

ty Dummy symbol Occurrence

of Fracture M I (opening mode), II (sliding mode)
al stress component l r (normal stress), s (shear stress)

etry of the load C S (symmetric), A (anti-symmetric)
tip T R (right), L (left)



430 M. Beghini et al. / Engineering Fracture Mechanics 75 (2008) 427–439
KILða;rÞ
KIILða;rÞ

� �
¼
Z a

0

hIrSðx;a;rÞ hIsSðx;a;rÞ
hIIrSðx;a;rÞ hIIsSðx;a;rÞ

� �
�

rSðxÞ
sSðxÞ

� �
�

hIrAðx;a;rÞ hIsAðx;a;rÞ
hIIrAðx;a;rÞ hIIsAðx;a;rÞ

� �
�

rAðxÞ
sAðxÞ

� �� �
�dx

ð1bÞ
It is worth noting that for the tip R(L) the anti-symmetrical terms have to be summed to (subtracted from)
the symmetrical components.

The analytical expressions of the WF components were chosen in order to fulfil the asymptotical properties,
In particular, as the r ratio approaches zero, the crack tends to behave as a Griffith crack in an infinite body
for which the coupling effects vanish and the following relationships hold:
hIrSðx; a; rÞ ¼ hIIsAðx; a; rÞ ¼
2ffiffiffiffiffiffiffiffiffi
p � ap � 1� x

a

� �2
� ��1=2

hIrAðx; a; rÞ ¼ hIIsSðx; a; rÞ ¼
2ffiffiffiffiffiffiffiffiffi
p � ap x

a
� 1� x

a

� �2
� ��1=2

hIIrSðx; a; rÞ ¼ hIsSðx; a; rÞ ¼ hIIrAðx; a; rÞ ¼ hIsAðx; a; rÞ ¼ 0

ð2Þ
Similar relationships hold for any values of r when xT! a, as the WF has uncoupled universal properties at
the crack tip.

When SIF solutions for reference conditions (left side of Eq. (1)) are known, the relationships (1) can be
considered as integral equations having the WF components as unknowns. In order to solve the integral equa-
tions, the WF components for both the tips were expressed as (for subscript notation refer to Table I):
hMlCðx; a; rÞ ¼
2ffiffiffiffiffiffiffiffiffi
p � a
p �

Xn

i¼0

CMlCiðrÞ � 1� x
a

� �2
� �i�1

2

ð3Þ
for hIrS(x,a, r), hIIrS(x,a, r), hIsA(x,a, r) and hIIsA(x,a, r), and
hMlCðx; a; rÞ ¼
2ffiffiffiffiffiffiffiffiffi
p � a
p � x

a
�
Xn

i¼0

CMlCiðrÞ � 1� x
a

� �2
� �i�1

2

ð4Þ
for hIrA(x,a, r), hIIrA(x,a, r), hIsS(x,a, r) and hIIsS(x,a, r). As anticipated, for simplicity sake, it was indicated
x = xT in both equations.

It can be observed that the expansion (3) and (4) are even functions of x for symmetrical loading and odd
functions for asymmetrical loading.

In order to fulfil the asymptotic conditions for xT! a, the functions CMlC0(r) (i.e. for i = 0) of the diagonal
and off-diagonal WF components are respectively:
CMlS0ðrÞ ¼ CMlA0ðrÞ ¼ 1 for Ml ¼ Ir or IIs ð5aÞ
CMlS0ðrÞ ¼ CMlA0ðrÞ ¼ 0 for Ml ¼ IIr or Is ð5bÞ
In order to reproduce the dependence of the other C(r) functions (with i = 1. . .n) on the r ratio, the following
expression was found the be suitable in a wide range of r:
CMlCiðrÞ ¼
raMlCi

ðbMlCiÞ
aMlCi þ raMlCi

� vMlCi � ðrÞ
dMlCi þ eMlCi � ðrÞ/MlCi ð6Þ
where the constant quantities aMlCi, bMlCi, vMlCi, dMlCi, eMlCi, /MlCi were determined by least square fitting
the SIF values calculated for reference loading conditions at several r ratios.

In order to limit the number of constants, the number of terms of the expansions (3) and (4) was limited to 3
(n = 2). The number of terms could be increased but, as demonstrated in the following, the accuracy of the
obtained results indicated that the adopted approximation is adequate for practical applications. Numerical
results are reported in Table II.



Table II
WF coefficients

Subscript a b v d e /

Symmetrical components

IrS1 1.0329 2.1269 �0.91144 1.7134 1.1303 1.6909
IrS2 �1.7199 11.4784 �0.1988 1.2798 0.4190 1.5564
IsS1 1.5454 1.39166 �0.71464 0.69075 0.03522 1.10794
IsS2 2.6194 2.1332 0.2906 0.96017 �0.05087 1.2645
IIrS1 1.7356 3.5218 �0.04137 1.6725 �0.2071 1.4280
IIrS2 2.3517 1.0382 �0.4391 1.5019 0 5.9499
IIsS1 1.2876 2.4973 1.0930 0.7873 �0.12343 1.0637
IIsS2 2.1603 3.1472 �0.3035 1.2442 0.12322 1.40591

Anti-symmetrical components

IrA1 1.7334 1.7244 1.14195 1.0485 0.06243 1.7198
IrA2 6.0063 0.90865 0.28073 1.81737 �0.03057 2.1718
IsA1 2.24873 1.84791 �0.26832 1.27526 0.17299 1.36238
IsA2 �1.98413 1.62476 0.29281 2.70492 �0.01265 1.39793
IIrA1 �1.66351 1.51638 0.51833 1.8608 �0.19715 1.52039
IIrA2 1.9993 1.2884 �0.4991 1.7098 0.1815 1.8354
IIsA1 1.2800 4.87025 1.07531 0.60087 0.01192 1.19241
IIsA2 1.62373 2.76249 �0.86390 0.80863 0.16463 0.99487
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The reference solutions were obtained by the FE method [13,14] with a model developed in order to provide
SIFs values with accuracy in the order of a few tenths of a percent. The quality of the model was assessed by
analysing the condition of r = 0 (Griffith crack) for which the theoretical solution is known.

The evaluation of the coefficients in Eq. (6) needs at least two linearly independent reference loading con-
ditions for any r ratio. Constant and linearly variable distributions of reference loading conditions were con-
sidered (as shown in Figs. 3 and 4) by applying appropriate tractions (either normal or shear) on the crack
faces. Under this loading conditions symmetric and anti-symmetric WF components could be distinguished.
A data base of SIFs values was built up by performing several FE analyses with different r ratios ranging from
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Fig. 3. Loading conditions used in the analysis for determining the symmetrical terms of the WF.



y
L R

Oσ =−1 σ =1 

y
L R

Oσ =−xL/a σ =xR/a

y
L R

Oτ =−1 τ =1

y
L R

Oτ=xL/a τ=−xR/a

Fig. 4. Loading conditions used in the analysis for determining the anti-symmetrical terms of the WF.
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r = a/h = 0.005 to include a defect so deep to be practically indistinguishable form a Griffith crack and r = 40
reproducing a shallow delamination immediately beneath the surface.

The SIFs calculated by the WF for the reference loading conditions were compared with the reference val-
ues obtained by direct FE analysis. The relative differences for both Modes generally were within 1.0% in the
whole range of r. As these differences are comparable with the estimated level of accuracy for the direct FE
SIF evaluation, the functions (6) assumed for representing the dependence to the r ratio were considered
satisfactory.
4. Applicative examples

4.1. SIFs produced by uniform tractions on the crack faces

The SIFs produced by uniform normal traction (see Fig. 3a) and uniform shear traction (see Fig. 4c) are
considered as examples to highlight the typical behaviour of the subsurface cracks as a function of r.

In Fig. 5 the values of KI produced by the symmetric normal traction distribution and the KII produced by
an anti-symmetric shear traction are plotted as a function of r. The corresponding SIFs values of the Griffith
crack were assumed as normalizing factors. The asymptotic properties of the crack as r approaches zero can be
observed. The relative difference between the effective SIFs and to asymptotic values is lower than 4% for
r < 0.5, i.e. for h > 4a, thus giving an estimate of the approximation level obtained by assuming the subsurface
crack as a Griffith crack.

In Fig. 6 both the SIFs produced by the symmetric normal traction are plotted in order to show the cou-
pling effect arising when the crack approaches the surface. For this loading condition, in which the Griffith
analysis predict only mode I, KII is nearly zero only for cracks far from the free surface, whereas when the
crack approaches the surface, the absolute value of KII becomes comparable with KI. This coupling effect is
a consequence of the loss of symmetry which is effective even as regard the x axis. Indeed, in this case, KII

is produced by the off-diagonal hIIrS(x,a, r) WF component. Similar results were obtained for any loading
conditions.
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Fig. 5. Typical curves of SIFs versus r showing the effect of the free surface.
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Fig. 6. Coupling effects as a function of r obtained for uniform normal traction applied on crack faces.

M. Beghini et al. / Engineering Fracture Mechanics 75 (2008) 427–439 433
4.2. SIFs produced by a point like load travelling on the free surface

With reference to Fig. 7, a plane body carrying a subsurface crack loaded by a force having intensity P

(force per unit thickness) is considered. The normal (Pn) and tangential (Pt) components were applied at
the position represented by the algebraic quantity d (the abscissa in the xR system). This is a simplest model
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Fig. 7. Point like load moving on the surface.
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for a travelling point-like contact, such that produced in a bearing or in a rail. Tangential component are pro-
duced by friction and inertia forces are neglected. It is worth noting that more accurate models of the contact
load could be analysed by the proposed method by introducing more loading parameters in the analysis.
Indeed, by the superposition principle, any complex pressure distribution can be approximated by a proper
sequence of point like forces. In the present paper, this analysis was not reported in order to limit the number
of parameters.

In the preliminary solution, no contact between crack edges was taken into account, and consequently
material overlapping and negative KI values are permitted, even though without physical meaning.

The analytical Boussinesq solution [20] for the stress produced either by Pn or Pt in the uncracked elastic
semi-plane provided the basis for the evaluation of the nominal stress (normal and shear) components. In
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Fig. 8. SIF produced by the normal (compressive) force Pn travelling on the surface for two r ratios.
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order to apply Eqs. (1), the nominal stress distributions were separated into symmetrical and anti-symmetrical
components.

Several calculations were performed changing load positions (d/a) and r ratio for both force components
Pn and Pt, and some results are reported in Figs. 8 and 9 together with the solutions of a complete FE
analysis of the cracked semi-plane. SIF values are normalized with the characteristic value: KO ¼ P �

ffiffi
p
a

p
.

In any analysed condition, the relative difference between FE and WF SIFs did not exceed 1%. As for this
kind of load the nominal stress components are rather complex functions of the position (particularly for a
cracks near the surface) the obtained agreement was considered a confirmation of the adequacy of the
adopted expressions for the WF (4) and, particularly, of the number of terms in the truncated expansions
(3) and (4).

When only the normal component of the load is applied, SIFs histories with KI always negative are
obtained (Fig. 8) for any load position and r ratio. Therefore, for this condition it is reasonable to predict
a completely closed crack, subjected only to varying KII during the load cycle produced by the movement
of the force on the surface. On the contrary, when only tangential force is considered, complex KI and KII

histories are obtained (Fig. 9) and conditions of partial or complete crack closure expected.
The effect produced by an inclined force travelling on the surface can be also evaluated, when neglecting

the contact between crack surfaces, by simply superimposing the SIFs produced by the normal and tan-
gential force components. The superposition is however consistent, from a physical point of view, only if
the crack is completely open. Indeed, in the case of crack closure the evaluation of the SIFs becomes a
non-linear problem, as the boundary conditions are unknown a priori and they depend on the applied
load.

The knowledge of the closed crack region is necessary for evaluating the contact stresses mutually acting
on the crack faces. If the contact stress is added to the nominal stress, the effective SIFs can be correctly
determined also by the WF. The problem can be solved if the Green Function (GF) is known by which
the COD components can be directly calculated by integration of the nominal plus contact stress on the
crack faces.
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Fig. 9. SIF produced by the tangential force Pt travelling on the surface for two r ratios.
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5. Analytical green’s function and cod evaluation

The COD components u and v, indicating the relative displacements of corresponding points H+, H� on
crack edges (Fig. 1), in the xT and y direction respectively, can be calculated by using the WF. Similarly to
the SIFs, also the COD components under any load can be calculated by adding symmetric and anti-symmet-
ric COD components. By generalizing the formulation reported in [19] the following equations hold:
vRðx; a; rÞ ¼
2

E0

Z a

x
½hIrSðx; b; rÞ � KISðb; rÞ þ hIIrSðx; b; rÞ � KIISðb; rÞ�db

þ 2

E0

Z a

x
½hIrAðx; b; rÞ � KIAðb; rÞ þ hIIrAðx; b; rÞ � KIIAðb; rÞ�db ð7aÞ

vLðx; a; rÞ ¼
2

E0

Z a

x
½hIrSðx; b; rÞ � KISðb; rÞ þ hIIrSðx; b; rÞ � KIISðb; rÞ�db

� 2

E0

Z a

x
½hIrAðx; b; rÞ � KIAðb; rÞ þ hIIrAðx; b; rÞ � KIIAðb; rÞ�db ð7bÞ

uRðx; a; rÞ ¼
2

E0

Z a

x
½hIsSðx; b; rÞ � KISðb; rÞ þ hIIsSðx; b; rÞ � KIISðb; rÞ�db

þ 2

E0

Z a

x
½hIsAðx; b; rÞ � KIAðb; rÞ þ hIIsAðx; b; rÞ � KIIAðb; rÞ�db ð7cÞ

uLðx; a; rÞ ¼
2

E0

Z a

x
½hIsSðx; b; rÞ � KISðb; rÞ þ hIIsSðx; b; rÞ � KIISðb; rÞ�db

� 2

E0

Z a

x
½hIsAðx; b; rÞ � KIAðb; rÞ þ hIIsAðx; b; rÞ � KIIAðb; rÞ�db ð7dÞ
where E 0 is equal to E (Young modulus) for plane stress and E/(1 � m2) for plane strain (m is the Poisson’s
ratio). The functions KMC(b, r) are the SIFs produced by the nominal stress components in a fictitious sub-
crack having half-length (b 6 a), that can be evaluated by Eq. (1) as follows:
KICðb; rÞ
KIICðb; rÞ

� �
¼
Z b

0

hIrCðx0; b; rÞ hIsCðx0; b; rÞ
hIIrCðx0; b; rÞ hIIsCðx0; b; rÞ

� �
�

rCðx0Þ
sCðx0Þ

� �
� dx0 ð8Þ
with x 0 = xT. It is worth noting that the sub-crack is located at the fixed depth h and, as a consequence, the
dimensionless parameter r is equal to h/a. By indicating the WF in matrix notation:
½W Cðx; b; rÞ� ¼
hIrCðx; b; rÞ hIsCðx; b; rÞ
hIIrCðx; b; rÞ hIIsCðx; b; rÞ

� �
ð9Þ
considering Eqs. (7) and (8), after changing the order of integration [14], the following expression can be
obtained:
vRðx; a; rÞ
uRðx; a; rÞ

� �
¼ 2

E0
�
Z a

0

Z a

maxðx;x0Þ
½W Sðx; b; rÞ�T � ½W Sðx0; b; rÞ�db

" #
�

rSðx0Þ
sSðx0Þ

� �
� dx0

þ 2

E0
�
Z a

0

Z a

maxðx;x0Þ
W Aðx; b; rÞ½ �T � ½W Aðx0; b; rÞ�db

" #
�

rAðx0Þ
sAðx0Þ

� �
� dx0 ð10aÞ

vLðx; a; rÞ
uLðx; a; rÞ

� �
¼ 2

E0
�
Z a

0

Z a

maxðx;x0Þ
½W Sðx; b; rÞ�T � ½W Sðx0; b; rÞ�db

" #
�

rSðx0Þ
sSðx0Þ

� �
� dx0

� 2

E0
�
Z a

0

Z a

maxðx;x0Þ
½W Aðx; b; rÞ�T � ½W Aðx0; b; rÞ�db

" #
�

rAðx0Þ
sAðx0Þ

� �
� dx0 ð10bÞ
where [ ]T is the transpose matrix. By introducing the following 2 · 2 matrices:
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GSðx; x0; rÞ ¼
GvrSðx; x0; rÞ GvsSðx; x0; rÞ
GurSðx; x0; rÞ GusSðx; x0; rÞ

� �
¼
Z a

maxðx;x0Þ
½W Sðx; b; rÞ�T � ½W Sðx0; b; rÞ�db ð11aÞ

GAðx; x0; rÞ ¼
GvrAðx; x0; rÞ GvsAðx; x0; rÞ
GurAðx; x0; rÞ GusAðx; x0; rÞ

� �
¼
Z a

maxðx;x0Þ
½W Aðx; b; rÞ�T � ½W Aðx0; b; rÞ�db ð11bÞ
Eq. (10) can be rewritten as:
vRðx; a; rÞ
uRðx; a; rÞ

� �
¼ 2

E0
�
Z a

0

½GSðx; x0; rÞ� �
rSðx0Þ
sSðx0Þ

� �
dx0 þ

Z a

0

½GAðx; x0; rÞ� �
rAðx0Þ
sAðx0Þ

� �
� dx0

	 

ð12aÞ

vLðx; a; rÞ
uLðx; a; rÞ

� �
¼ 2

E0
�
Z a

0

½GSðx; x0; rÞ� �
rSðx0Þ
sSðx0Þ

� �
dx0 �

Z a

0

½GAðx; x0; rÞ� �
rAðx0Þ
sAðx0Þ

� �
� dx0

	 

ð12bÞ
which demonstrates that [GC(x,x 0, r)] are the Green’s functions (GF) as they relate the load applied on the
crack faces to the displacement of the points of load application.

Considering the power law expansions (3) and (4) adopted for the WF and taking into account of the com-
bination between the WF components in the matrix product (11), the GF can be obtained analytically by solv-
ing 3 Æ (n + 1)2 integrals of one variable. With n = 2 the number of integrals is 27, however, considering the not
zero terms after applying the asymptotic properties, only 22 integrals have to be calculated. By adopting a
recursive procedure, the solution can be reduced to the following three classes of integrals where k,j = 0. . .n:
I1kjðx; x0Þ ¼
Z a

maxðx;x0Þ

1

b
� 1� x

b

� � k�1
2ð Þ � 1� x0

b

� � j�1
2ð Þ

db ð13aÞ

I2kjðx; x0Þ ¼
Z a

maxðx;x0Þ

1

b2
� 1� x

b

� � k�1
2ð Þ � 1� x0

b

� � j�1
2ð Þ

db ð13bÞ

I3kjðx; x0Þ ¼
Z a

maxðx;x0Þ

1

b3
� 1� x

b

� � k�1
2ð Þ � 1� x0

b

� � j�1
2ð Þ

db ð13cÞ
Integrals I1 and I3 can be expressed as combinations of elementary functions whereas I2 can be reduced to
elliptic integrals.
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By knowing the GFs, Eq. (12) can be used to obtain the COD components at any location of the crack for
any load condition when the nominal stress components r(x) and s(x) are known on the crack edge. By
extending the procedure explained in [19] to the case of a two-tip crack, the problem of crack closure can
be faced in an efficient way too. Indeed, in the region where the crack faces are in contact the mutual contact
traction (unknown) has to be added to the nominal stress, but, in this region the COD is known. This condi-
tion can be used to determine the contact stress by adopting an iterative procedure for determining the loca-
tion and extension of the contact region.

An example of complete COD evaluation by means of the GF under crack closure, is shown in Fig. 10. It
can be observed that, also in this case, the results are in good agreement with the solutions of a non-linear FE
analysis including the contact on the crack faces. It is interesting to observe the an external force inclined by an
angle of 45� produces partial closure with the left tip open. This implies that in some conditions the combined
effect of nominal stresses and contact tractions produces on the left tip a positive KI even though the KI cal-
culated by linear superposition (when neglecting the contact between the crack faces) is negative.
6. Conclusion

An analytical formulation of the WF for a crack parallel to the surface of a semi-infinite elastic plane was
proposed. The results of a Finite Element analysis carried out for several independent loading cases were used
for fitting the coefficients of a truncated power expansion. The WF reproduced the FE results with an accuracy
in the order of 1% for a wide range of length to depth ratios.

The effect of a point-like load travelling on the surface of a semi-infinite body with a subsurface crack was
studied. The conditions of partial crack closure were initially neglected and, also under this kind of loading
producing complex nominal stress distributions, the results were in very good agreement with those deter-
mined by FE analysis. In the presence of typical load applied on the surface, negative KI values were usually
obtained thus suggesting that the crack is partially or totally closed. This indicated that the correct crack ana-
lysis requires the evaluation of the COD components. The Green’s Function (GF) was deduced by the WF in
order to obtain an efficient method to evaluate the COD components and, consequently, the effects of the con-
tact stresses on the effective SIFs.
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