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Abstract

A recently presented single plastic-potential, microstructure-based model of poly-crystal plasticity
by the authors considers a globally regularized Schmid law (RSL) as the slip flow criterion of a
homogeneous equivalent super-crystal. The homogenization scheme that is taken of affine type is
specialized to the transformation field analysis (TFA) framework. The relevancy of the TFA here
results from a description of intra-crystalline slip in terms of hierarchical multi-laminate (HML)
structures that ensure the request of piece-wise homogeneous plasticity. This RSL–TFA–HML mod-
eling has been shown efficient for heterogeneous intra-crystalline plastic slip in terms of overall
stiffness estimates when laminates are parallel to slip planes or normal to slip directions. It is also
suitable for twinning modes of crystal plasticity as stressed in this paper. The performed superposi-
tion of all possible HML plastic strain modes makes the TFA of the non-uniform (NTFA) and
coupled type proposed by Michel and Suquet [Michel, J.C., Suquet, P., 2003. Non-uniform transfor-
mation field analysis. International Journal of Solids and Structures 40, 6937–6955; Michel, J.C.,
Suquet, P., 2004. Computational analysis of nonlinear composite structures using the non-uniform
transformation field analysis. Computer Methods in Applied Mechanics and Engineering 193, 5477–
5502]. In this new contribution, we investigate further our extension of this modeling to poly-crys-
tals. It is interpreted as based on a description of the aggregate morphology in terms of the distri-
bution of the crystallographic orientations of the grain boundary and sub-boundary facets, rather
than in terms of a mean grain or domain shape. In its initial form, our extension amounted to assum-
ing all these facets oriented either parallel to slip planes or normal to slip directions, what is proved
convenient for large enough grains. In order to extend the relevancy of the modeling down to ultra-
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fine grains, we introduce a graded form of the modeling that is made grain size dependent from spec-
ifying the conditions for which the TFA accommodation hardening is negligible according to the
range of the physical one. Some numerical stiffness comparisons from this graded RSL–TFA–
HML modeling are provided.
� 2007 Elsevier Ltd. All rights reserved.
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material; C. Homogenization

1. Introduction

In order to describe the plastic flow of single crystals under the rate-independent
hypothesis, a regularized form of the Schmid law for slip has been proposed (Arminjon,
1991; Gambin, 1991, 1992; Imbault and Arminjon, 1998). This description was introduced
to eliminate the Schmid law singularities on the crystal yield surface and to consequently
suppress the related solution uniqueness problem (Franciosi and Zaoui, 1991). Such a sin-
gle plastic-potential, microstructure-based model provides obvious advantages in theoret-
ical and computational modeling, as for instance in finite element codes devoted to metal
forming simulations. This is the reason why the extension of this regularized Schmid law
(RSL) from single crystal to poly-crystal plastic flow has been considered by different
authors (Darrieulat and Piot, 1996; Kowalczyk and Gambin, 2004), but mostly under
the severe assumptions of stress or of strain uniformity.

This extension has been reconsidered in Berbenni and Franciosi (2004) and Franciosi
and Berbenni (2007) within a more general homogenization framework of the affine type
(Ponte-Castaneda and Suquet, 1998; Masson et al., 2000) which enables to satisfactorily
account for both stress and strain heterogeneities from grain to grain as well as in the
grains. A difference with earlier works is that the RSL is globally applied to a homoge-
neous equivalent super-crystal of the aggregate. In counterpart to this introduced new
complexity, the required conditions to make use of the transformation field analysis
(TFA) framework (Dvorak, 1992; Dvorak and Benveniste, 1992) have been fulfilled.
Namely, the prerequisite of a partition of the material into plastically homogeneous
domains (Suquet, 1997; Chaboche et al., 2001) has been satisfied by assuming that
intra-crystalline slip arranges into multi-laminate structures, in which the layers have
‘‘almost everywhere” uniform strain and stress fields. However, relevant and manageable
arrangements of slip remained to be proposed.

Many theoretical works have been devoted to multi-laminate structures in various elastic
or elastic–plastic contexts (see Francfort and Murat, 1986; Quintanilla and Torquato, 1996;
El Omri et al., 2000; Debotton and Hariton, 2002). In the particular context of crystal plas-
ticity, Ortiz and Repetto (1999) show how multi-laminate descriptions rapidly face complex-
ity for restituting the corresponding microstructural evolutions. In comparison, the main
interest of the proposed RSL–TFA–HML modeling, with ‘‘HML” standing for ‘‘Hierarchi-
cal-Multi-Laminate”, is based on an orthogonality property that has been pointed out in
Franciosi and Berbenni (2007): for laminate layers that are taken parallel to one slip plane
orientation, the corresponding contributions to the TFA-due over-stiffness cancel.

This property results from the relative expressions of the modified Green operator inte-
gral associated to one laminate orientation and of the Schmid tensors of the slip systems
whose slip plane is parallel to the laminate layers. Hence, a slip organization which
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assumes successive laminate orientations to be parallel to those of the P slip planes of the
considered crystal lattice yields rank-(P � 1) laminate structures, here called (P � 1)-HML
structures. The number of possible (P � 1)-HML structures for a given set P of slip planes
is the number P! of their permutations. The superposition of these P! slip arrangements,
weighted by their respective occurrence probabilities, yields an effective crystal plastic
behavior with no or negligible TFA-due over-stiffness. This weighted superposition of pos-
sible plastic ‘‘modes” makes the TFA modeling with HML structures for slip to be of the
non-uniform (NTFA) and coupled type that has been proposed by Michel and Suquet
(2003, 2004). They proved that this type of modeling yields accurate estimates of overall
behavior in nonlinear heterogeneous plasticity, provided the identification of appropriate
elementary modes to be coupled and superimposed. This is what has been done here, with
a physically based introduction of such modes at the slip system scale.

Beyond the objective to derive a suitable heterogeneous description of crystal plasticity in
the TFA framework, the introduction of HML structures to describe crystallographic slip
enabled as expected an extension of the proposed modeling to poly-crystals, through their
homogeneous equivalent super-crystal. This extension has been introduced by simple anal-
ogy with the heterogeneous crystal case in Franciosi and Berbenni (2007) where it was
pointed out that the modified Green operator integral representative of a poly-crystal grain
was similar, in discrete forms of its so-called polar decomposition, to the one of a HML
structure.

But this analogy does not hold for an interpretation and the main purpose of the pres-
ent paper is to investigate further the extension of this RSL–TFA–HML modeling to poly-
crystal in terms of physical interpretation and relevancy. In Section 2, we briefly recall the
constitutive equations of the RSL–TFA framework. Section 3 summarizes the character-
istics of the HML description of slip organization and the conditions for which contribu-
tions to the TFA-due over-stiffness can be cancelled, including the consideration of
possible twinning shear modes. The application of the RSL–TFA–HML modeling to
poly-crystals is addressed in Section 4. An interpretation is given in terms of the distribu-
tion of the crystallographic orientations of the facets that constitute the grain boundaries
and sub-boundaries down to the cell structure. From this viewpoint, the RSL–TFA–HML
modeling amounts to assuming all these facets oriented either parallel to slip planes or
normal to slip directions. This interpretation appearing convenient for large enough grains
but quite excessive for small ones, special attention is paid to the conditions for which the
TFA accommodation hardening is negligible according to the range of the physical hard-
ening. This leads us to propose a ‘‘graded” RSL–TFA–HML modeling that is made grain
size dependent and consistent with the proposed interpretation down to ultra-fine grained
poly-crystals. Some numerical simulations that illustrate the capabilities of this modeling
are reported in Section 5.

2. The TFA framework applied to a regularized poly-crystal plasticity modeling

We consider homogeneous crystalline domains in which plastic flow results from crys-
tallographic glide on N slip systems defined by a pair of orthogonal unit vectors ng and mg,
respectively normal to the slip plane and parallel to the slip direction. In the simplest case,
all N slip systems and therefore all P slip planes are crystallographically identical with
same p = N/P sets of coplanar systems on them. For example, P = 4 and p = 3 in FCC
structures with (111) slip planes and <1 10> slip directions, and P = 6, p = 2 in BCC
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crystals when slip is restricted to the (110) planes and to the h1 11i directions. More gen-
erally, several types t of slip systems coexist, for N ðtÞ ¼

Pt
i¼1N i systems, corresponding to

different (Pi,pi), i 2 (1, t) plane and coplanar system numbers (for example the association
of basal, prismatic and pyramidal slip in HCP crystals, or slip on (110) and on other (1
x�1 x) planes, with x = 2, 3, . . .) planes, with x = 2, 3, . . .) for BCC crystals. All the system
types are therefore defined by a pair (ng(t), mg(t)) of orthogonal unit vectors, but the super-
script ‘‘t” will be omitted in the following.

Generally, real crystals are imperfect because they are not totally free from lattice dis-
orientations which are either grown (mosaic) or to plastic strain due. A homogeneous
equivalent medium for an imperfect crystal would be a super-crystal of same volume V

that superimposes at every point all the slip systems g(I) of all perfect sub-domains I of
V, as far as they are countable. Like imperfectly grown (mosaic) crystals, grown polycrys-
talline aggregates are spatial assemblages of disoriented grain-like perfect domains but
with broader distributions of disorientations between them. When intra-crystalline
heterogeneities result from heterogeneous plastic strain history, the self-organization of
the sub-domains becomes more complex. The accessible characteristics are orientation
or disorientation distributions of the domains and orientation distribution of their bound-
aries. Pole figures or orientation distribution functions allow to defining a homogeneous
equivalent super-crystal for imperfect crystals and for any poly-crystal as well. In the
poly-crystal case, the super-lattice is defined by its crystallographic texture.

For any perfect crystalline domain I in imperfect crystals as well as in poly-crystals, we
introduce the slip system Schmid tensors defined by R

�
gðIÞ ¼ fmgðIÞ � ngðIÞg ¼ R

�
tgðIÞ, with

‘‘{}” standing for ‘‘symmetric part of”, and R
�

t for the transpose of R
�

. Thus, perfect lattice
domains are characterized by uniform Schmid tensors for all slip systems. It is noteworthy
that the twinning modes of plastic straining that may be involved with slip in crystal plas-
ticity are also crystallographically characterized by a pair (ng, mg) of orthogonal unit vec-
tors and a Schmid tensor R

�
g ¼ fmg � ngg.

In the following, the mean (volume average) of x(r) in R3 is denoted �x ¼ 1
V

R
V xðrÞdr and T,

g = oT/og. The following Sections 2.1 and 2.2 briefly present the considered extension to
poly-crystal plasticity of the regularized Schmid law respectively in a general affine formula-
tion and in the TFA framework. This formalism has been introduced by Franciosi and Berb-
enni (2007) at first for the case of heterogeneous intra-crystalline slip. Specific features that
would concern twinning modes whenever some may contribute are addressed in Section 2.3.

2.1. The extension to poly-crystals of the regularized Schmid law (RSL) as plastic flow

criterion

When the regularized Schmid law (RSL) is globally applied to the homogeneous equiv-
alent super-crystal of an aggregate, the heterogeneities of plastic behavior are accounted
for through the chosen homogenization/localization scheme. Let us a priori consider
aggregates of possibly heterogeneous grains with an interior morphology not necessarily
similar to the aggregate one. In this case the global single plastic potential F that is given
by the RSL can be written under the form:

F ¼
X

I

fI

X
aðIÞ

faðIÞ
X

gðaðIÞÞ

sgðaðIÞÞ

sgðaðIÞÞ
c

� �n
" # !1

n

� 1

0@ 1Ascref ¼ F 0scref ¼ 0: ð1Þ
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In Eq. (1), if ‘‘I” represents a sum over grains in concentration fI and if the interior sum-
mation over g(a(I)) runs over a slip system set, the intermediate sum over a(I) can stand for
different descriptions of grain partition or of intra-crystalline heterogeneous plasticity, as
the proposed HML description of intra-crystalline slip. If these intra-crystalline heteroge-
neities of slip are disregarded, Eq. (1) can be considered as adapted to the possibility of
twinning in the grains, with a(I) standing for twinned sub-domains in domain I.

Whatever the specific morphologies of these two levels of heterogeneity are, we consider
an affine approximation for the homogenization of the nonlinear behavior of the aggregate
of concern (Masson et al., 2000). Disregarding specific features of finite rate-independent
crystal plasticity (Mc Ginty and Mc Dowell, 2006), the stress r

�
aðIÞ in the sub-domain a(I)

can be written as

r
�

aðIÞ ¼ B
�

aðIÞ
� : B

�
I
� : R
�
þ
X

J

F
�

IJ
� : e

_

�
�J

 !
þ
X
bðIÞ

F
�

aðIÞbðIÞ
� : e

�
�bðIÞ ¼ B

�
aI
� : R

�

þ
X
bJ

F
�

aI bJ
� : e

�
�bJ ¼ r

�
aI ; ð2Þ

with r
�

I ¼ B
�

I
� : R
�
þ
P

J fJ F
�

IJ
� : e

_

�
�J ¼ B

�
I
� : R
�
þ
P

J F
�

IJ
� : e

_

�
�J and e

_

�
�J ¼

P
bðJÞfbðJÞB�

tbðJÞ
� : e

�
�bðJÞ

respectively the effective stress and the effective eigen-strain in the heterogeneous domains
I and J. In Eq. (2) we have introduced the notations:

B
�

aI
� ¼ B

�
aðIÞ
� : B

�
I
�; F

�

aI bJ
� ¼ 1

fbJ

F
�

aI bJ
� ¼ B

�
aðIÞ
� : F

�

IJ
� : B

�
tbðJÞ
� þ dIJ

fJ
F
�

aðIÞbðIÞ
� ; f bJ

¼ fJ fbðJÞ;

ð3Þ
that allow to simplify double summations

P
I

P
aðIÞX�

aðIÞ into single ones
P

aI
X
�

aI . The
asterisks indicate that the affine approximation refers, in each homogeneous nonlinear

sub-domain a(I), to a linear comparison material of moduli C
�

aðIÞ
� . With e

�
aðIÞ denoting

the mean total strain over sub-domain a(I), and with r
�

aðIÞðe
�

aðIÞÞ ¼ r
�

aðIÞ the corresponding

mean stress, the linearization procedure results from the first order Taylor’s expansion:

r
�

aðIÞðe
�

aðIÞÞ ¼ r
�

aðIÞ
0 þ ðe

�
aðIÞ � e

�
aðIÞ
0 Þ :

or
�

aðIÞ

oe
�

aðIÞ

������
e
�

aðIÞ
0

¼ C
�

aðIÞ
� : ðe

�
aðIÞ � e

�
�aðIÞÞ;

where r
�

aðIÞ
0 ¼ r

�
aðIÞðe

�
aðIÞ
0 Þ, C

�
aðIÞ
� ¼

or
�

aðIÞ

oe
�

aðIÞ

����
e
�

aðIÞ
0

¼ ðS
�

aðIÞ
� Þ

�1 and e
�
�aðIÞ ¼ e

�
aðIÞ
0 � S

�
aðIÞ
� : r

�
aðIÞ
0 .

The stress concentration tensors ðB
�

aðIÞ
� ;B

�
I
�Þ and the stress influence tensors ðF

�

aðIÞbðIÞ
� ;F

�

IJ
� Þ

in Eqs. (2) and (3) depend on the current effective tangent elastic–plastic moduli of the
material C

�
eff
� ¼ ð

P
I

P
aðIÞS�

aðIÞ
� : B

�
aðIÞ
� Þ

�1 according to the implicit self-consistent scheme

(Hill, 1965). Let us then denote sgðaðIÞÞ ¼ sgðaI Þ ¼ ngðaI Þr
�

aI mgðaI Þ ¼ R
�

gðaI Þ : r
�

aI P 0 the current

applied resolved shear stress (ARSS) on a slip system g in a domain a(I). It is positive by
definition of slip directions and, as given by Eq. (2), it takes the form:

sgðaI Þ ¼ R
�

gðaI Þ : B
�

aI
� : R

�
þ
X
bJ

R
�

gðaI Þ : F
�

aI bJ
� : e

�
�bJ ¼M

�
gðaI Þ
� : R

�
þ
X
bJ

fbJ
R
�

gðaI Þ : F
�

aI bJ
� : e

�
�bJ :

ð4Þ
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The tensors M
�

gðaI Þ
� are (i, j) symmetric due to the symmetry of R

�
. According to Eq. (1), the

consistency condition for the plastic flow reads:

dF 0 ¼ ðF 0;R
�
Þd R
�
þ
X
bJ

X
kðbJ Þ
ðF 0;�ckðbJ ÞÞd�ckðbJ Þ ¼ 0; ð5Þ

with d�ckðJÞ ¼ fJ dckðJÞ being the average slip increments over V and with

F 0;R
�
¼
X
aI

X
gðaI Þ

faI

sgðaI Þ

sgðaI Þ
c

� �n�1 M
�

gðaI Þ
�

sgðaI Þ
c

¼
X
aI

X
gðaI Þ

faI P0gðaI ÞM
�

gðaI Þ
� ¼

X
aI

X
gðaI Þ

P0gðaI ÞM
�

gðaI Þ
� ¼ N

�
0�; ð6aÞ

F 0;�ckðbJ Þ ¼
X
aI

X
gðaI Þ

faI

sgðaI Þ

sgðaI Þ
c

� �n�1
sgðaI Þ

sgðaI Þ
c

;�ckðbJ Þ
� �

¼ �
X
aI

X
gðaI Þ

P0gðaI Þ eH gðaI ÞkðbJ Þ
R : ð6bÞ

In Eq. (6b), the modulus eH gðaI ÞkðbJ Þ
R takes the form:

eH gðaI ÞkðbJ Þ
R ¼ hgðaI ÞkðbJ Þ sgðaI Þ

sgðaI Þ
c

� �
� /gðaI ÞkðbJ Þ

�

� �
� ðR

�
gðaI Þ : F

�

aI bJ
� : R

�
kðbJ Þ
� þ UgðaI ÞkðbJ Þ

� Þ; ð7Þ

with

hgðaI ÞkðbJÞ ¼ sgðaI Þ
c ;�ckðbJ Þ; /gðaI ÞkðbJ Þ

� ¼ ðR
�

gðaI Þ;�ckðbJ ÞÞ : r
�

aI ; ð8aÞ

R
�

kðbJ Þ
� ¼ e

�
�bJ ;�ckðbJ Þ ð8bÞ

and

UgðaI ÞkðbJ Þ
� ¼ R

�
gðaI Þ : ððB

�
aI
� ;�c

kðbJ ÞÞ : R
�
þ
X
gL

fgL
ðF
�

aI gL
� ;�ckðbJ ÞÞ : e

�
�gLÞ: ð8cÞ

The evolution of the critical resolved shear stress (CRSS) sgðaI Þ
c on each slip system g of

each sub-domain a(I) results from a physical hardening law based on dislocation multipli-
cations and interactions (Franciosi, 1988; Kocks et al., 1991). We here take it directly at
the slip system scale of the form:

dsgðaI Þ
c ¼

X
bJ

XN ðtÞ
kðbJ Þ

hgðaI ÞkðbJ ÞdckðbJ Þ ¼
X
bJ

XN ðtÞ
kðbJ Þ

hgðaI ÞkðbJ Þd�ckðbJ Þ; ð9Þ

such that sgðaI Þ
c P s0 > 0 at any instant of the load, while slip systems of different kinds t

possibly have different initial thresholds sðtÞ0 . When considering a local hardening law
rather than a non-local one (Berveiller et al., 1993), the only non-zero terms in the hard-
ening matrix [h] are for a(I) = b(J). For a totally homogeneous medium, one has
B
�

aI
� ¼ I

�
8aI and F

�
aI bJ
� ¼ 0

�
8aI ; bJ , what corresponds to no summation over domains

a(I), such that eH gðaI ÞkðbJ Þ
R ¼ eH gk

R . In the simplest case where the parameters are updated

after each iteration, /gðaI ÞkðbJ Þ
� and UgðaI ÞkðbJ Þ

� can be neglected in Eq. (7) which simplifies
into:

eH gðaI ÞkðbJ Þ
R ¼ hgðaI ÞkðbJ Þ sgðaI Þ

sgðaI Þ
c

� �� �
� R

�
gðaI Þ : F

�

aI bJ
� : R

�
kðbJ Þ
�

� �
: ð10Þ
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However, this formulation of the affine type remains of complex use for aggregates since in
addition to the iterative self-consistent procedure that provides the effective moduli, a sec-
ond iteration is needed in each calculation step to obtain the current linear comparison

moduli C
�

aðIÞ
� of each phase a(I) = aI. In comparison, a possible current partition of the

material into plastically homogeneous domains would allow the simplifying use of the
transformation field analysis (TFA) framework (Dvorak and Bahei-El-Din, 1997; Suquet,
1997). Slightly anticipating the next sections, it is worth to precise from now what we here
mean by ‘‘partition”. Suquet (1997) stressed that in general the TFA would only be exact
in the limit where each point of the medium is considered a sub-domain. Therefore, in
practice, such a spatial partition, which furthermore is step-wise evolving, is not achievable
in a fully deterministic way. As a relevant alternative, Michel and Suquet (2003, 2004) con-
sidered partitions defined as some superimpositions of identified elementary heterogeneous
(non-uniform) solutions. They established that when conveniently coupling such elemen-
tary ‘‘modes”, accurate overall estimates were obtained. However, both the classic TFA
and the non-uniform (NTFA) frameworks can be similarly associated to the RSL, as
now summarized prior to specializing.

2.2. The transformation field analysis (TFA) framework in the RSL for poly-crystals

If the plastic field can be currently specified in the material, we can use the TFA method
of homogenization that amounts to considering the local Hooke’s elastic law as the cur-
rent linear comparison material at r. Then, in plastically homogeneous domains
a(I) = aI of uniform elasticity moduli C

�
aI and with uniform plastic strain e

�
PaI , the mean

stress r
�

aI over V aI ¼ faI V reads:

r
�

aI ¼ C
�

aI : ðe
�

aI � e
�

PaI Þ ¼ B
�

aI : R
�
þ
X
bJ

fbJ
F
�

aI bJ : e
�

PbJ : ð11Þ

In this TFA framework, the plastic strains e
�

PbJ of the domains b(J) = bJ are the uniform
eigen-strains e

�
�bJ of Eq. (2), the stress concentration and influence tensors without asterisk

in Eq. (11) correspond to C
�

aI
� ¼ C

�
aI and Eq. (8b) becomes R

�
kðbJÞ
� ¼ e

�
PbJ ;�ckðbJ Þ ¼ R

�
kðbJ Þ. Eq.

(3) still holds (without asterisks) when at the two different levels, the influence operators do
not correspond to same phase arrangements or morphologies. According to these two lev-
els, the two contributions of the stress influence operators F

�
aI bJ from Eq. (3) read:

F
�

IJ ¼ H
�

IdIJ � fJ L
�

IJ ; ð12aÞ

F
�

aðIÞbðIÞ ¼ H
�

aðIÞdaðIÞbðIÞ � fbðIÞL�
aðIÞbðIÞ: ð12bÞ

The operators H
�

I and L
�

IJ in Eq. (12a) are obtained from the strain modified Green oper-
ator integral of congruent ellipsoidal grains denoted t

�
I ¼ t

�
i and from its dual stress coun-

terpart t
�
0i ¼ C

�
eff � C

�
eff : t

�
i : C
�

eff as

H
�

I ¼ H
�

tI ¼ �t
�
0i : B

�
tI ¼ �B

�
I : t
�
0i ¼ �t

�
0i : Y

�
I : t
�
0i < 0; ð13aÞ

L
�

IJ ¼ H
�

I : B
�

tJ ¼ B
�

I : H
�

J ¼ B
�

I : t
�
0i : B

�
tJ ; ð13bÞ

with Y
�

I ¼ Y
�

tI ¼ ðt
�
0i � t

�
0i : DS

�
I : t
�
0iÞ�1

> 0, DS
�

I ¼ S
�

eff � S
�

I . It thus comes:

F
�

IJ
i ¼ fJ F

�

IJ
i ¼ �B

�
I : t
�
0idIJ þ fJ B

�
I : t
�
0i : B

�
tJ ¼ �t

�
0i : B

�
tIdIJ þ fJ B

�
I : t
�
0i : B

�
tJ : ð14aÞ
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For homogeneous elasticity ðDS
�

I ¼ 0; B
�

I ¼ I
�
8IÞ;L

�
IJ ¼ H

�
I ¼ H

�
J ¼ �t

�
0i and:

F
�

IJ
i ¼ fJ F

�

IJ
i ¼ ðfJ � dIJ Þt

�
0i: ð14bÞ

Similar relations hold for F
�

aðIÞbðIÞ in Eq. (12b), if it is a heterogeneity level where all the

sub-domains are congruent and ellipsoidal, what includes laminate layers as equivalent
to infinitely flat (oblate) spheroids. Similar relations otherwise hold at any heterogeneity
sub-level with congruent ellipsoidal sub-domains, including laminate structures.

The incremental macroscopic stress d R
�

versus strain d E
�

relation reads:

d R
�
¼ C
�

eff : d E
�
�
X
bJ

XN ðtÞ
kðbJ Þ¼1

ðfbJ
B
�

tbJ : R
�

kðbJ ÞdckðbJ ÞÞ
 !

¼ C
�

eff : d E
�
�
X
bJ

XN ðtÞ
kðbJ Þ¼1

M
�

kðbJ Þd�ckðbJ Þ

 !
; ð15Þ

where dE
�

P ¼
P

bJ

PN ðtÞ

kðbJ Þ¼1M
�

kðbJ Þd�ckðbJ Þ ¼ ðF 0;R
�
Þdk0 ¼ N

�
0dk0, and:

d�ckðbJ Þ ¼ ðF 0; skðbJ ÞÞdk0 ¼ fJ P0kðbJ Þdk0 ¼ P0kðbJ Þdk0: ð16Þ
Solving Eq. (5) for a fully applied incremental stress tensor d R

�
, the tangent plastic com-

pliance tensor L
�

P in dE
�

P ¼ L
�

P : d R
�

takes the form:

L
�

P ¼
N
�

0�N
�

0

H0R
¼ ðH0RÞ�1

X
aI ;bJ

X
gðaI Þ;kðbJ Þ

ðP0gðaI ÞðM
�

gðaI Þ �M
�

kðbJ ÞÞP0kðbJ ÞÞ; ð17aÞ

with, from Eqs. (6), (7) and (10):

H0R ¼
X
aI ;bJ

X
gðaI Þ;kðbJ Þ

P0gðaI Þ eH gðaI ÞkðbJ Þ
R P0kðbJ Þ: ð17bÞ

The dual case of a fully prescribed incremental strain tensor d E
�

leads to the corresponding
matrix ½ eH E� ¼ ½ eH R þM

�
: C
�

eff : M
�
�. As for ½ eH E�, all ‘‘intermediate matrices” corresponding

to intermediate complementary mixed loading conditions ðdRab; dEa0b0 Þ where P stress
increments and 6 � P strain increments are prescribed1 are the sum of an applied strain
component with ½ eH R�. Due to the ½R

�
: F
�

: R
�
� contribution in the matrix ½ eH R�, this matrix

½ eH R� is always non-local and so are the matrix ½ eH E� and all intermediate matrices. The

two-terms decomposition of the moduli eH gðaI ÞkðbJ Þ
R from Eqs. (7) and (10) results in a re-

lated decomposition of the modulus H0R in Eq. (17b) as H0R = H0(h,/) + H0(RFR,U)where
H0

(RFR,U)

= H0TFA � H0(RFR) and:

H0ðRFRÞ ¼ �
X
aI ;bJ

X
gðaI Þ;kðbJ Þ

P0gðaI ÞðR
�

gðaI Þ : F
�

aI bJ : R
�

kðbJ ÞÞP0kðbJ Þ

¼ �
X
aI ;bJ

X
gðaI Þ;kðbJ Þ

ðP0gðaI ÞðR
�

gðaI Þ � R
�

kðbJ ÞÞP0kðbJ ÞÞ :: F
�

aI bJ : ð18Þ
1 Three additional conditions on the total rotation are also to be specified, as recalled in Franciosi and Zaoui
(1991).
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The TFA-due over-stiffness that results from H0TFA in H0R, for ½F
�
� 6¼ 0

�
is mostly given by

H0(RFR) in Eq. (18). Due to ½F
�
� operators of the range of the elasticity moduli tensors C

�
aI

of the phases a(I), one has for usual materials ½ eH R� � ½h� R
�

: F
�

: R
�
� � ½h�. But more pre-

cisely, the relative contributions to ½ eH R� of the physical hardening [h] and of the accommo-
dation hardening ½�R

�
: F
�

: R
�
� will depend on features of the material morphology, namely

the sub-domain definitions, shapes and arrangements, that may affect both terms, as it will
be discussed in Section 4.

2.3. The case of twinning mechanisms with homogeneous intra-crystalline slip

For the two-level heterogeneity description considered from Eq. (3), the TFA-due part
H0(RFR) of the effective stiffness reads, with Eqs. (11) and (12):

H0ðRFRÞ ¼ �
X
I;J

X
aðIÞ;bðJÞ

X
gðaðIÞÞ;kðbðJÞÞ

ðP0gðaðIÞÞR
�

gðaðIÞÞ � R
�

kðbðJÞÞP0kðbðJÞÞÞ
 !

:: F
�

IJ þ dIJ

fJ
F
�

aðIÞbðJÞ
� �

: ð19Þ

It shares into a contribution from the inter granular influence operators F
�

IJ and a contri-

bution from the intra-crystalline ones F
�

aðIÞbðJÞ (with P0gðaðIÞÞ ¼ fIfaðIÞP0gðaðIÞÞ ¼ faI P0gðaI ÞÞ.
While the former operators F

�

IJ usually derive from the characteristic of the mean grain

shape, taking the form given in Eqs. (14) for congruent ellipsoids with the particular sim-
ple expression of Eq. (14b) for homogeneous elasticity (alternative forms will be discussed
in Section 4), the latter operators F

�
aðIÞbðJÞ are issued from the description given to the intra-

crystalline plasticity. They vanish when the crystals are treated as plastically homoge-
neous, as it is allowed in first approximation when plastic strain results from slip. They
do not vanish if twinning enters the process since twinned grains are no longer plastically
homogeneous. With regard to twinning modes of plastic straining, it is noteworthy that
almost all of the formalism of Sections 2.1 and 2.2 still holds. In particular, Eq. (9) can
still be used to formally describe evolutions for the critical twinning shear stresses,
although the appropriate inter-twinning or mixed slip-twin hgk moduli are to be specified
from microstructural arguments (Tranchant et al., 1993; Franciosi et al., 1993; Salem
et al., 2005). If one considers that the a(I) partition of a grain I represents twinning, each
domain a(I) corresponds to a single twinning system. The associated shear strain is still
given by Eq. (16) that must be recast as

d�cT ðaI Þ ¼ c0 dfaI ¼ ðF 0; sT ðaI ÞÞdk0 ¼ fJ P0T ðaI Þ dk0 ¼ P0T ðaI Þ dk0; ð20Þ
with c0 > 0 the elementary shear that results from the (geometrically specified) unit twin on the
twinning system type. Eq. (20) is the positive evolution law for the volume fraction of the
twinned crystal parta(I), the condition being that

P
aI
ðfaI þ dfaI Þ 6 1. During each increment,

while the existing volume fraction faI of twinned crystal can undergo slip, the twinning incre-
mental activity dfaI corresponds to a newly twinned part of lattice that is not allowed to slip.

As for the case of slip plasticity, the number of new twinned domains can increase
at each calculation step, yielding to multiplicative branching that is difficult to track.
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Formally, the effective plastic strain and stiffness for a twinned crystal can be obtained fol-
lowing the here proposed HML description of intra-crystalline slip. But since twinned
crystal can hardly be reduced to an equivalent homogeneous single crystal of some mean
orientation as it has been proposed for slip, a specific scenario should be considered. This
will be commented later on. The next section recalls the characteristics of the intra-crys-
talline influence operators when slip (or twinning shear) is described in terms of multi-lam-
inate structures.

3. A description of crystal plasticity into a hierarchical multi-laminate (HML) structure

Here, we briefly reconsider the HML structure that has been defined for slip only in Fran-
ciosi and Berbenni (2007) and we extend it to the case of twinning modes of crystal plasticity.

3.1. Definition of intra-crystalline HML structures for slip and no twinning

Assumption (a): the successive laminates are parallel to the different crystallographic
orientations of the slip planes, disregarding the details of compatibility and equilibrium
restrictions. As far as a single slip plane orientation, ‘‘A” say, is currently active in some
domain, the plastic strain is considered as homogeneous in the domain.2 Permutations
between the P crystallographic slip planes A, B, C,. . . form a number P! of hierarchical
multi-laminate (HML) structures for slip, of rank (P � 1), that we denote
(P � 1) � HML. For (111) octahedral slip planes in FCC crystals for example, P = 4
and P! = 4! = 24 is the number of possible (3)-HML structures for slip. In BCC crystals
with (110)h11 1isystems, P = 6 and the number of possible (5) � HML structures for
slip is P! = 6! = 720, etc. Conversely, pure basal slip in HCP crystals would remain
homogeneous;
Assumption (b): at any point r of the crystal, each possible (P � 1) � HML structure
h = IjJjKj 	 	 	 j(P) for slip, h 2 (1, P!), has the occurrence probability:

pðhÞ ¼ pðIjJ jKj			jðPÞÞ ¼ pðIÞ pðJÞ
1� pðIÞ

� �
pðKÞ

1� ðpðIÞ þ pðJÞÞ

� �
	 	 	 ¼

YP�1

U¼1

pðUÞ
1�

PU�1
V¼1 pðV Þ

 !
;

ð21aÞ
where p(I) denotes the probability that the slip plane I defines the primary laminate ori-
entation A. The connection of p(I) to the relative incremental slip activity on the slip
planes is taken of the form:

pðIÞ ¼ dcIP
I dcI
¼

P
gðIÞdcgðIÞP

I

P
gðIÞdcgðIÞ ¼

P
gðIÞP0gðIÞP

I

P
gðIÞP0gðIÞ : ð21bÞ

According to Eq. (21b), special cases of importance are the symmetric loading situa-
tions with several equally active planes, for which several HML structures will be
equally probable. But in general, because n� 1 in the flow criterion of Eq. (1), even
for small differences of applied resolved shear stresses between the slip systems of dif-
2 The laminate nature of planar slip where elastic layers of material separate bands of concentrated slip is here
disregarded, for sake of simplicity, but it could be entered in the description if of interest.
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ferent slip planes, the different (P � 1) � HML structures (h) for slip will be ordered in
terms of their occurrence probability p(h) from one dominant ‘‘mode” to a majority of
negligible ones, in proportion of their relative incremental slip activities. Compared
occurrence probability distributions p(h) for P = 4 slip planes p with a single slip system
g(p)on each are reported for n = 2 and n = 20 in Fig. 1, for arbitrary relative applied
resolved shear stresses sg(p) for the Primary (P), Secondary (S), Ternary (T) and Qua-
ternary (Q) planes. The ARSSs sg(p) are taken in proportion with the values (9, 8, 7,
6) while a same CRSS value s0 is assumed for all the P0g(p)coefficients introduced in
Eqs. (6). These coefficients fix the slip increments from Eq. (16) and the occurrence
probabilities of the (P � 1) � HML structures for slip from Eq. (21b). The dominant
(3) � HML structure for n = 20 is clearly by far the h = 1j2j3j(4) = PjSjTj(Q) hierarchy
for which dc1� dc2 > dc3 > dc4;
Assumption (c): a statistically homogeneous (P � 1) � HML structure for slip can be
defined from the superposition of the P! heterogeneous plastic modes (h), weighted
by their occurrence probabilities p(h). This superposition also removes or at least
smoothes out the length-scale hierarchy limitations between each lamination rank
as well as the compatibility and equilibrium restrictions for the individual
(P � 1) � HML structures for slip which have been disregarded so far. Once this
superposition of the P! possible modes is achieved for the increment, the heteroge-
neous description of the crystal plasticity reduces to a P-partition of the crystal I,
whose sub-domains a(I) support different plastic strains. This statistically defined
P-partition finally corresponds to a morphology that is described by a P 
 P matrix
of mean stress (resp. strain) influence operators. In each crystal I, these mean stress
influence tensors take the form hF

�
aðIÞbðIÞi ¼

PP !
h¼1pðhÞF

�
ðhÞaðIÞbðIÞ, where each (P � 1) �

HML solution (h) contributes for one operator F
�
ðhÞaðIÞbðIÞ. Note that in practice, the

triggering of heterogeneous intra-crystalline slip without a non-local behavior law
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Fig. 1. Compared sets, for n = 2 and n = 20 in Eq. (1), of the h = P! = 24 occurrence probability values p(h) for
the (3)-HML structures realizable with P = 4 slip planes p. We consider one single slip system per plane g(p), all
of same CRSS s0, and we take ARSS values sg(p) proportional to (9,8,7,6) such that from Eq. (16)
P0g(p) � (sg(p))(n�1).
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needs some initial lattice disorientation (mosaic), or spatial fluctuation in the critical
resolved shear stresses.

3.2. Relevancy of HML structures for twinning

Difficulties to mix slip and twinning mechanisms are avoided when dissociating incre-
mental twinning events from slip ones as pointed in Section 2.3. We consequently need
to consider the relevancy of HML structures for the description of twinning modes alone.
Twinning planes (resp. directions) may or may not coincide with slip planes (resp. direc-
tions), but twinning systems never are slip systems as well and conversely.

The main differences between slip and twinning systems in the present context are:

– coplanar twinning systems need to be treated as individuals and they make possible
one-layered structures of more than two phases;

– twinning systems are always not symmetric with regard to the twin direction, as is for
example the case for (111)h112i systems in FCC crystals;3

– disregarding lattice mismatches, the disorientation of twinned domains with regard to
an initial grain is a fixed non-zero value while it is zero for slip. Starting from one crys-
tal orientation, the set of twinned disorientations is finite but successive (hierarchical)
twinning operations generally do not create a closed finite set of orientations;

– a single active twinning system is enough to create a heterogeneous crystalline structure,
what is also true for a single active slip plane at small enough scale (slip bands separated
by slip-free layers) but in contrast with slip this heterogeneity cannot be disregarded;

As a consequence, if the proposed HML incremental description for heterogeneous
multi-planar slip is formally applicable to multiple twinning, step-wise averaging cannot
be performed as for slip. At each step the number of crystalline orientations in the homo-
geneous equivalent super crystal is potentially multiplied by P, even if each new sub-level
contributes decreasingly enough to allow a finite (truncated) branching. However, since a
twinned crystal is definitely a multi-crystal, the case of twinning plastic modes can be more
naturally reconsidered in the context of the extension of the RSL–TFA–HML modeling to
poly-crystals of homogeneous domains, to be discussed later on.

3.3. Constitutive equations for intra-crystalline HML structures for slip or twinning

For short, regardless of the slip or twinning nature of the P plastic strain mechanisms
that are to be accounted for, one can write for each possible (P � 1) � HML structure
(omitting the superscript ‘‘h”) the stress increments of the P phases in terms of the plastic
strain ones as

dr
�

p ¼ ðB
�

pÞ : d R
�
þ
X

p0
ðF
�

pp0 Þ : de
�

Pp0 ¼ ðB
�

pÞ : d R
�
þ
X

p0
fp0 ðF

�

pp0 Þ : de
�

Pp0 : ð22Þ

The involved operators ðB
�

pÞ and ðF
�

pp0 Þ, for p, p
0 2 (1,P), are special cases of the operators

ðB
�

aðIÞÞ and ðF
�

aðIÞbðIÞÞ of Eq. (11) for a crystal-like sub-domain I. In order to establish key
3 Slip systems may also be asymmetric, like (112)h111i slip systems in BCC crystals for example.
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characteristics, their general forms need to be explicated. For each of the (P � 1) � HML
structures among P! ones, each one of the P stress concentration tensors ðB

�
pÞ in Eq. (22) is

a product ðB
�

p
k=k�1 : B

�
pg
k�1=k�2 : 	 	 	 : B

�
pg.../
1=0 Þ of k stress concentration tensors that links the

level k 2 (1, P � 1) where the phase p is located to the macroscopic level (0). Similarly,
the P 
 P stress influence tensors ðF

�
pp0 Þ are linear combinations of (P � 1) elementary

influence tensors F
�

jj0
l , one for each lamination level l 2 (1,P � 1), that are characterized

by the laminate operator as given in Eqs. (13) and (14). Each of these operators are also
a sum of several contributions which have the general form that links the level l of a lam-
inate to the level k of the phase p on the left ‘‘stress” side of Eq. (22) and to the level k0 of
the phase p0 on the right ‘‘strain” side of Eq. (22) as

ðB
�

pg			j
k=k�1 : B

�
g			j
k�1=k�2 : 	 	 	 : B

�
j
lþ1=lÞ : F

�

jj0

l : ðB
�

tj0

l=lþ1 : 	 	 	 : B
�

tj0 			g0
k0�2=k0�1

: B
�

tj0 			g0p0
k0�1=k0 Þ

¼ ðB
�

p
k Þ : F

�

jj0

l : ðB
�

p0

k0 Þ:

The phase p referring to the slip on plane p, these products can be expressed more sim-
ply when laminate levels also correspond to slip planes p00. Furthermore, from Eqs. (13)
and (14), the elementary influence operators F

�

pp0
p00 at each level are either of the form of a

product fp0B�
p
p00 : t0

�
p0 0
Cp00 : B

�
p0
p00 , when p 6¼ p

0
, or of minus a sum

P
j 6¼p0fjB

�
j
p00 : t0

�
p0 0
Cp00 : B

�
p0
p00 of such

products when p = p
0

(from using I
�
¼
P

p0fp0B�
p0 Þ, where the laminate operator t0

�
p0 0
Cp00 de-

pends on the moduli tensor C
�

p00 . It is therefore enough for the present purpose to point

that each operator ðF
�

pp0 Þ can be written as a sum:

ðF
�

pp0 Þ ¼
XP�1

p00¼1

npp0

p00 ðB�
pÞ : F

�

pp0

p00 : ðB
�

p0 Þ ¼
XP�1

p00¼1

npp0

p00 ðB�
pÞ :

X
j

fjB
�

j
p00 : t0

�
p00

Cp00 : B
�

p0

p00

 !
: ðB
�

p0 Þ;

ð23Þ
where each term takes the form ðB

�
p
p00 Þ : t0

�
p00
Cp00 : ðB

�
p0
p00 Þ, withðB

�
p
pÞ ¼ ðB�

p0
p0 Þ ¼ I

�
.

From Eq. (22), neglecting the partial derivatives with respect to the plastic slip or twin-
ning shear ckðp0Þ of the terms that correspond to the [/] and [U] matrix terms in Eq. (7), the
ARSSs on the g(p) mechanism can be expressed as

dsgðpÞ ¼ R
�

gðpÞ : dr
�

p ¼ R
�

gðpÞ : ðB
�

pÞ : d R
�
þ
X

p0

X
kðp0Þ

fp0R�
gðpÞ : ðF

�

pp0 Þ : R
�

kðp0Þdckðp0Þ: ð24Þ

According to the form of ðF
�

pp0 Þ from Eq. (23), in each product R
�

gðpÞ : ðB
�

p
p00 Þ : t0

�
p00
Cp00 :

ðB
�

p0
p00 Þ : R

�
kðp0Þ the equalities R

�
gðpÞ : ðB

�
p
p00 Þ ¼ ðB�

tp
p00 Þ : R

�
gðpÞ ¼ ðM

�
gðpÞ
p00 Þ hold such that the individ-

ual terms of the operators R
�

gðpÞ : ðF
�

pp0 Þ : R
�

kðp0Þ can be also expressed as ðM
�

gðpÞ
p00 Þ : t0

�
p00
Cp00 :

ðM
�

kðp0Þ
p00 Þ.
Among the general properties of these stress influence tensors ðF

�
pp0 Þ, coming first are the

dependency conditions:P
p0 ðF�

pp0 Þ ¼
P
p0

fp0 ðF
�

pp0 Þ ¼ 0 8p;P
pfpðF�

pp0 Þ ¼
P
p

fpfp0 ðF
�

pp0 Þ ¼ 0 8p0;

8><>: ð25Þ
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respectively because equal plastic strain increments yield equal stress ones and because the
mean stress increment equals d R

�
. More specialized properties are recalled and examined

further in the next sections.

3.4. Main characteristics of the F
�

pp0 stress influence operators of HML structures

For homogeneous elasticity, what excludes twinning possibilities unless elasticity is iso-
tropic, all stress concentration tensors reduce to the identity tensor and all the stress influ-
ence tensors ðF

�
pp0 Þ ¼ fp0 ðF

�

pp0 Þ of any (P � 1) � HML structure among P! are simple linear

combinations of independent elementary operators t0
�

p
Cp; p ¼ A;B;C; . . .. Then, these influ-

ence operators for each different considered laminate hierarchy (h) can be written
ðF
�

pp0 ÞðhÞ ¼ fp0 ðF
�

pp0 ÞðhÞ ¼ �
P

p00/
ðhÞpp0

p00 t0
�

p00
Cp00 , p00 ¼ A;B;C; . . . ; ðP � 1Þ. The negative sign can

be ignored in the discussion since it is compensated by the one present in Eq. (19). Simi-
larly, any weighted superposition of the P! different operators in terms of the occurrence
probabilities of the corresponding (P � 1) � HML structure remains a linear combination
of the same elementary operators, to be denoted hF

�
pp0 i ¼ �

P
p00 h/

pp0

p00 it0�
p00
Cp00 ¼ �

P
p00
PP !

h¼1

pðhÞ/ðhÞpp0

p00 t0
�

p00
Cp00 . In the case of a two-level homogenization scheme for each intra-crystalline

contribution I, that also reads from Eq. (19), fp0ðIÞhF
�

pðIÞp0ðIÞi ¼ �
P

p00Ih/
pIp0I
p00I it0�

p00I
Cp00I .

These operators t0
�

p00
Cp00 or t0

�
p00I
Cp00I appearing in the terms ½R

�
: F
�

: R
�
� of the part H0(RFR) part

of the modulus H0R, when considering a HML intra-crystalline structure, are the modified
stress Green operator integrals for platelet domains (infinitely flat spheroids) respectively
oriented as the A, B, C, . . . laminate layers (of each grain or domain I). According to Eqs.

(25), the weights /ðhÞpp0

p00 of the decompositions of the operators ðF
�

pp0 ÞðhÞ, for each laminate

hierarchy (h), fulfill the relations:P
p0/
ðhÞpp0

p00 ¼ 0 8p 8p00;P
pfp/

ðhÞpp0

p00 ¼ 0 8p0 8p00

(
ð26Þ

and so does their average h/pp0

p00 i.
For anisotropic heterogeneous elasticity, what is the general situation, especially when

twinning occurs, because the HML structure corresponds to congruent domains (parallel
layers) at each sub-level of heterogeneity, Eqs. (14) apply and the stress influence tensors
issued from Eq. (24) can be expressed as a sum of terms ðM

�
gðpÞ
p00 Þ : t0

�
p00
Cp00 : ðM

�
kðp0Þ
p00 Þ.

Then, when visiting the properties of these operators and the specific conditions for
which the TFA accommodation contributions to the material stiffness may be reduced
or may possibly cancel, it is noteworthy that the TFA excessive stiffness can generally
be lowered down to realistic values for highly symmetric multiple plastic strain modes.
This is due to the conditions of Eqs. (25) and (26) that yield to globally cancel terms
P0gðpÞR

�
gðpÞ : ðF

�
pp0 Þ : R

�
kðp0ÞP0kðp0Þ of the double sum in H0TFA from Eqs. (18) and (19). Com-

monly to all morphology descriptions including laminate structures, this corresponds to
triggering excessive multiple interactions and consequently excessive material hardening
to reduce the accommodation stiffness. Here, enforced excessive (homogeneous) multiple
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slip to reduce elastic accommodation appears to be the reason, not specifically to lami-
nates, for the TFA over-stiffness.

The main specific property of the laminate structures that similarly results in a signif-
icant decrease of the TFA-due accommodation stiffness as pointed out in Franciosi and
Berbenni (2007), is the so-called ‘‘orthogonality property”, that is reconsidered in the next
section from a more exhaustive viewpoint.

3.5. Orthogonality property of influence operators in HML structures

We here question how, specifically for laminate structures and not as a consequence of
Eqs. (25), (26) only, can the products ðP0gðpÞR

�
gðpÞ � R

�
kðp0ÞP0kðp0ÞÞ :: ðF

�
pp0 Þ be individually or

collectively cancelled for particular orientations of laminates with regard to those of slip
systems. Individual situations which cancel some of the components ðM

�
gðpÞ
p00 Þ : t0

�
p00
Cp00 :

ðM
�

kðp0Þ
p00 Þ correspond either to a null global product, involving a system pair (g(p), k(p0)) =

(g,k), of the form:

ðM
�

gðpÞ
p00 Þ : t0

�
p00

Cp00 : ðM
�

kðp0Þ
p00 Þ ¼ t0

�
p00

Cp00 :: ððM
�

gðpÞ
p00 Þ � ðM�

kðp0Þ
p00 ÞÞ ¼ 0 ð27aÞ

or to null products with regard to a single involved system g or k, such as (see Eq. (26)):

ðM
�

gðpÞ
p00 Þ : t0

�
p00

Cp00 ¼ 0 or t0
�

p00

Cp00 : ðM
�

kðp0Þ
p00 Þ ¼ 0: ð27bÞ

We exclude from the solutions of Eq. (27a) those which are the solutions of Eq. (27b).
Particular system groups can also collectively cancel double sums of terms

ðM
�

gðpÞ
p00 Þ : t0

�
p00
Cp00 : ðM

�
kðp0Þ
p00 Þ, or simple sums of terms ðM

�
gðpÞ
p00 Þ : t0

�
p00
Cp00 or t0

�
p00
Cp00 : ðM

�
kðp0Þ
p00 Þ. For homo-

geneous elasticity (no twinning cases), Eqs. (27) respectively simplify into:

R
�

gðpÞ : t0
�

p00

Cp00 : R
�

kðp0Þ ¼ t0
�

p00

Cp00 :: ðR
�

gðpÞ � R
�

kðp0ÞÞ ¼ 0; ð28aÞ

R
�

gðpÞ : t0
�

p00

Cp00 ¼ 0 or t0
�

p00

Cp00 : R
�

kðp0Þ ¼ 0; ð28bÞ

while double sums of terms R
�

gðpÞ : t0
�

p00
Cp00 : R

�
kðp0Þ or simple sums of terms R

�
gðpÞ : t0

�
p00
Cp00 or

t0
�

p00
Cp00 : R

�
kðp0Þ can collectively be cancelled for given groups of systems.

In the laminate frame, the laminate p is taken normal to the x3 axis. Then, the non-zero
terms of the modified strain Green platelet operator t

�
p
Cp are for (i, j) 6¼ 1,2,6, using the con-

tracted 6 
 6 notation for four-rank symmetric tensors, i.e. (1, 2, 3, 4, 5, 6) = (11, 22, 33,
23, 31, 12). Correspondingly, the non-zero terms of its dual stress operator
t0
�

p
Cp ¼ Cp

�
�C
�

p : t
�

p
Cp : C

�
p which appears in the tensors ½F

�
� are for (i, j) 6¼ 3,4,5. In the

operator t0
�

p
Cp, the elasticity moduli are expressed in the laminate frame. For general elas-

ticity anisotropy, they can therefore have any elasticity symmetry depending on the lam-
inate’s crystallographic orientation within the crystal structure. For an identically oriented
lattice frame in all platelet local frames, what is the case for all laminate orientations of
same (hkl) crystallographic family, all the involved platelet operators t0

�
p
Cp are identical,

up to a rotation, and can be denoted t0
�

p. This investigation is summarized in Appendix,
addressing separately homogeneous and heterogeneous elasticity. It mainly shows that,
whether or not the material elasticity is isotropic, the only laminate orientations, always
ensured to exist, that fulfill the orthogonality property for some set of slip systems inde-



1564 P. Franciosi, S. Berbenni / International Journal of Plasticity 24 (2008) 1549–1580
pendently on their current slip activity are either those parallel to a slip plane or those nor-
mal to a slip direction. This holds for respectively any group of coplanar systems in that
plane or any group of collinear systems in that direction. Following the LEDs theory
(Kulhmann-Wilsdorf, 2002), such laminate structures for slip that result from dislocation
gliding can be viewed as dislocation ‘‘carpets” and dislocation ‘‘walls” respectively, both
arrangements being identified as main dislocation arrays of lowest possible energy result-
ing from crystal slip activity.

These solutions for the orthogonality property that have the remarkable characteristic
of being independent from the slip activity on the concerned slip planes, are consistent
with global strain compatibility in the sense provided by the homogenization procedure.
They are not necessarily consistent in terms of individual strain compatibility conditions
between laminate layers that hold in general for particular slip combinations from the
simultaneously involved systems (Freidin et al., 2002). Strain compatibility conditions
between laminates have been thoroughly investigated for FCC crystals in Ortiz and Rep-
etto (1999). They have shown that the (1, 1,w) slip planes, with w = 0, 1, 2, 3, and 1 for
the (00 1) cube planes allow strain compatible laminate orientations between slip system
pairs for particular combinations of octahedral slip activity.

It is noteworthy that the orthogonality property here discussed can also be fulfilled
for particular combinations of slip that are neither parallel nor perpendicular to a given
laminate orientation. Some of such combinations can be independent on the relative
activities on the involved systems, as pointed in Appendix. But most of them depend
on these relative activities. An example is reported in Appendix for octahedral multiple
slip in laminates parallel to cube planes (which can become easy glide planes of FCC
structures at high temperatures or in some FCC superalloys (Estevez et al., 1995)). Such
particular solutions may remain stable in particular loading situations, as during low
amplitude fatigue for example.

Laminates parallel to twinning planes or normal to a twinning direction will also pro-
vide increments of twinning shear without related TFA-due contribution to the overall
current stiffness. But a partly twinned domain is no longer crystallographically homoge-
neous, although it may still be elastically isotropic. If the case of twinning is to be specif-
ically addressed in papers to come, it is noteworthy that most of the forthcoming
discussion on the description of the poly-crystal morphology within the TFA context is
valid for both slip and twinning shear.

4. Poly-crystal stiffness resulting from the TFA–HML description

In Franciosi and Berbenni (2007), the RSL–TFA–HML modeling first introduced for
heterogeneous intra-crystalline plasticity has been extended to poly-crystals, based on
an analogy that was let to be justified through a physical interpretation. This analogy
results from the polar decomposition of the modified Green operator integral for a
grain-like inclusion whose discrete forms are identical to the operator of a multi-lami-
nate structure. Here, we examine more closely the extension of the modeling to poly-
crystals, in terms of its interpretation and of its relevancy. We first recall the pointed
operator analogy and the formerly proposed extension of the modeling. We develop
a physical interpretation and we examine the limits within which this interpretation
makes sense. Then, we consider more closely the conditions that make the TFA contri-
butions negligible compared to the physical hardening when the latter is allowed to
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vary over several orders of magnitude as for example it does from large to ultra-fine or
nanometric grains (here, ‘‘nanometric” stands for grain sizes of a few tens of nanome-
ters). This yields to specify a description of the poly-crystal morphology that is able to
realize the established conditions. The result is the modification of our former modeling
into a graded RSL–TFA–HML modeling that makes the stiffness response of the poly-
crystal grain size dependent. This graded form of the modeling is consistent with the
proposed physical interpretation in which the characteristics of the grain boundary
and sub-boundary orientation distribution predominates on the ones of the mean grain
shape.

4.1. Discrete polar decomposition of the inter-granular influence operators

Whether plastic strain is pure slip or combines slip and twinning, a poly-crystal is here
treated as an assemblage of crystalline domains where incremental plastic straining only
results from slip, while twinning generates microstructural changes between successive
loading steps in the form of nucleated volume fractions of new domain orientations. While
such new domains are generally treated like ordinary grains for convenience, the introduc-
tion of the HML structures for slip in poly-crystals will partly recover their laminate nat-
ure as shown in the following.

According to Sections 3.4 and 3.5, for crystal domains I with P (crystallographically
identical) slip planes, assuming homogeneous elasticity and in-plane isotropy for the lam-
inates, the P 
 P intra-crystalline operators �hF

�
pðIÞp0ðIÞi ¼ �fp0ðIÞhF

�
pðIÞp0ðIÞi in H0TFA-HML

from Eq. (18) take the form of the sum
P

p00ðIÞh/
pðIÞp0ðIÞ
p00ðIÞ it0�

p00ðIÞ for p(I),p
0
(I) 2 (1, P). The

related intra-crystalline stiffness contributions read:

H0TFA–HML¼
X
p00ðIÞ

X
pðIÞ;p0ðIÞ

X
gðpðIÞÞ;kðp0ðIÞÞ

P0gðpðIÞÞR
�

gðpðIÞÞ �R
�

kðp0ðIÞÞP0kðp0ðIÞÞ

 !
:: h/pðIÞp0ðIÞ

p00ðIÞ it
0
�

p00ðIÞ:

ð29Þ
These contributions vanish if, "I, all the P0gph/p00

pp0 iP0kp0 coefficients (no sum over repeated
indices) are zero for the cases where the tensor products R

�
gðpÞ : t0

�
p00 : R

�
kðp0Þ ¼

ðR
�

gðpÞ � R
�

kðp0ÞÞ :: t0p
00

��
are not cancelled by the orthogonality property (i.e. zero coefficients

for the tensor products in which p 6¼ p
0 6¼ p

00
). This is nearly achieved in the defined HML

structures for intra-crystalline slip since the cancelled TFA terms correspond to the slip
planes of dominant incremental activity, i.e. those associated with the largest
P0gph/p00

pp0 iP0kp0 coefficients. This remains true as well for shear contributions that result
from twinning.

In comparison, the inter-granular influence operators F
�

IJ present in the expression of

H0TFA (Eq. (19)) depend on a unique operator t0
�

G that characterizes the common shape
attributed to the grains, as F

�
IJ ¼ ð1� dIJ

fJ
Þt0
�

G. Considering an ellipsoidal grain shape makes

t0
�

G uniform over the grain volume (Eshelby, 1957). This operator t0
�

G can be decomposed
into elementary operators as

t0
�

G ¼
Z

X
WG
ðxÞt

0
�

P ðxÞdx; ð30aÞ
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where dx = sinhdhd/ runs over the unit sphere X in R3;WG
ðxÞ P 0 is a characteristic

weight function4 such that
R

X WG
ðxÞdx ¼ 1, and t0

�
P ðxÞ is the laminate operator of x-ori-

ented normal in R3 (Franciosi and Lormand, 2004). From this polar decomposition, we
can immediately notice that the tensor products ðR

�
gðpðIÞÞ � R

�
kðp0ðJÞÞÞ :: ð

R
X WG

ðxÞt
0
�

P ðxÞdxÞ
partly vanish thanks to the orthogonality property discussed in Section 3.5. Thus, a
straightforward extension of the HML scheme to poly-crystals is the replacement of the
continuous decomposition of t0

�
G in the inter-granular operators F

�

IJ in Eq. (30a) by a dis-

crete decomposition t0
�
ðGÞ defined as

t0
�
ðGÞ ¼

P
I fI
P

pðIÞfpðIÞW
G
pðIÞt

0
�

pðIÞP
I fI
P
pðIÞ

fpðIÞW
G
pðIÞ

: ð30bÞ

This discrete decomposition only involves platelets that are favorably oriented in terms of
their contribution to the material overall stiffness, i.e. those of no stiffness contributions
thanks to the orthogonality property. Physically, the ‘‘favorable platelets” for all crystal-
lographic structures are those parallel to the slip planes (or to the twinning planes) of high
activity in the aggregate, complemented with the platelets that are normal to the slip (or to
the twinning) directions. As defined in Eq. (30b) and disregarding twinning, each platelet
operator in t0

�
ðGÞ is supposed to contribute in proportion to both the slip activity intensity

on the associated slip plane and the grain’s concentration which this slip plane belongs to.
Furthermore, it remains dependent on the grain shape through the use of a discrete part of
the grain shape characteristic weight function ðWG

ðxÞÞ. It is noteworthy that t0
�
ðGÞ is by def-

inition a weighted sum of all the laminate components that participate in the intra-crystal-
line heterogeneities, such that in first approximation these intra-crystalline contributions
are also accounted for, in average manner, by t0

�
ðGÞ. Then, disregarding the terms that spe-

cifically represent the intra-crystalline heterogeneities recalled by Eq. (29), a one-level
TFA–HML modeling for poly-crystals results only from substituting t0

�
ðGÞ for t0

�
G. This

modification, which amounts to removing a part of t0
�

G, has been conjectured in our pre-
vious work as resulting from a new way to describe the overall poly-crystal morphology, in
terms of a HML structure rather than in terms of a granular aggregate. Actually, this way,
in a classical TFA framework, appears to be more relevant than representing grains or
sub-domains by ellipsoids. We next develop further on this tentative interpretation.

4.2. Tentative physical interpretation of the TFA–HML scheme for poly-crystals

In aggregates, although the grains are the most often approximated as ellipsoidal for
calculation simplicity, they much likely look like convex polyhedrons. Furthermore,
intra-crystalline sub-structures building up during plastic deformation result in cellular
partitions which are more likely polyhedral than ellipsoidal as well. It must be here
stressed that whereas t0

�
G is exactly the stress modified Green operator integral over a

grain-representative ellipsoidal domain, the operator t0
�
ðGÞ as defined in Eq. (30b) is not.

In general, it is not either the mean modified Green operator integral over some other type

of geometrical domain (G). However, t0
�
ðGÞ do is, as defined, the exact operator of some
4 In the peculiar case of a spherical grain: WSPHERE
ðxÞ ¼ 1=4p 8x.
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hierarchical multi-laminate structure that is here assumed to well characterize the poly-
crystal current morphological microstructure. This is also true for t0

�
G in Eq. (30a) that,

prior to being representative of a reference ellipsoidal grain, represents a heterogeneous
– possibly HML – morphology of ellipsoidal overall symmetry.

This tentative interpretation for t0
�
ðGÞ, as the representative operator of some structure

(G) described as a HML one, can be supported by statistical considerations: let (G) be a
multi-phase material (the crystalline orientations), with all phases of same statistically
homogeneous characteristics function denoted X(G)(r). The phase covariance at the origin
of the covariance space reads by definition of the Radon inversion formula in this context
(Franciosi and Lormand, 2004):

CovðGÞðr0 ¼ 0Þ ¼ lim
r0!0

Z
R3

X ðGÞðrÞX ðGÞðrþ r0Þdr

� �
¼
Z

R3
X ðGÞðrÞX ðGÞðrÞdr

¼ 1

8p2

Z
x2X

Z
zðxÞ

osðGÞðz;xÞ
oz

� �2

dz

 !
dx ¼ vðGÞ: ð31Þ

In Eq. (31), s(G)(z,x) is the area of the section of (G) cut by the plane of equation z = x 	 r
and v(G) is the volume of (G). Therefore, the shape characteristic for this structure (G) is the
shape of its covariance iso-contours near the origin. From this shape (G), Eq. (30b) defines a
mean weight function WðGÞðxÞ that also specifies a characteristic mean operator �t0

�
ðGÞ

for (G).
Taking each term of WðGÞðxÞ as a probability to meet a grain or sub-grain boundary normal

to a x direction, this mean weight function is representative of some statistically defined
anisotropy of the orientation distribution of grain or sub-grain boundary facets in the
aggregate. Thus, it can also be the interpretation given to the weight function introduced
in Eq. (30b).

In this interpretation of the TFA–HML association in the modeling, the fact that the
selected elementary laminate operators in t0

�
ðGÞ are only those parallel to slip (or twinning)

planes in the structure, or normal to slip (or twinning) directions, corresponds to assuming
that grain or sub-grain boundary facets are mostly dense crystallographic planes (i.e. gen-
erally at first the planes of easiest glide). For sub-boundaries, dislocation ‘‘carpets” and
dislocation ‘‘walls” (Kulhmann-Wilsdorf, 2002) make reasonable this assumption of poly-
hedral cellular sub-structures for which the crystallography defines the orientations of fac-
ets. Furthermore, it is now well supported (Mishra et al., 2007) that large plastic straining
makes gradually intra-granular cell boundaries gaining a grain boundary character and so
becoming impenetrable to dislocations. About grain boundary crystallography, the very
many recent experimental and theoretical studies concerning Coincidence Site Lattices
or DSC-lattices5 (Davies and Randle, 2002; Schuh et al., 2005; Couzinié et al., 2005),
do not make this assumption unreasonable. Indeed, the most frequently encountered grain
boundaries in FCC crystals are the so-called ‘‘twin boundaries”, parallel to the (111)
planes, which are also frequent in hexagonal crystals. Grain boundaries between two
grains tend to step-wise align with such planes of low energy. But totally suppressing
the unfavorably oriented platelets as done in Eq. (30b) is certainly excessive for many
materials if not for all, according to the details of their morphology. It is probably often
unnecessary as well, with regard to the goal of making the TFA-due stiffness negligible
compared to the hardening one.
5 ‘‘Displacement Shift Complete” or ‘‘Displacements which are Symmetry Conserving”.
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It is not in the present scope to enter grain or sub-grain boundary analyses. But it is
noteworthy that grain size and shape have a strong influence on the boundary crystallog-
raphy, especially for ultra-fine and nanometric grains where the motion of only a few
atoms can noticeably modify interface geometry (Bording et al., 2003; Zhu et al., 2007).
The smaller the grain size, the more rounded their boundaries and the fewer their sub-
boundaries become. Therefore, for small grain sizes, favorable boundary facets with
regard to the orthogonality property would be less predominant, what tends to restrict
the validity of this proposed extension of the RSL–TFA–HML modeling to poly-crystals
with coarse grains. These physically founded remarks and limitations bring us to develop
some grain size dependent gradation of the initial extension of the modeling to poly-crys-
tals, in order to also make it relevant down to ultra-fine grains. This is addressed next.

4.3. Grain size dependency through a graded form of the RSL–TFA–HML modeling

With regard to the physical hardening, the decomposition of the modulus H0R as
H0R = H0(h,/) + H0(RFR, U) in Eq. (18), yields:

H0ðh;/Þ ¼
X
I ;J

X
gðIÞ;kðJÞ

P0gðIÞ hgðIÞkðJÞ sgðIÞ

sgðIÞ
c

� �
� /gðIÞkðJÞ

� �
P0kðJÞ

�
X
I ;J

X
gðIÞ;kðJÞ

P0gðIÞ hgðIÞkðJÞ sgðIÞ

sgðIÞ
c

� �� �
P0kðJÞ:

By setting H0ðh;/Þ ¼ l
k, with k > 1, the TFA contributions would become negligible enough

for H0ðRFR;UÞ

l � 1
k < 1. For metallic poly-crystals with grain size in the lm range, the physical

hardening level is typically l/300, such that k � 300� 1. In comparison with the usual
TFA contributions that can reach the value of l/3, a reduction by more than three orders
of magnitude of H0(RFR,U) would be needed to make it negligible compared to l/k. This is
quite equivalent to cancel it, as H0TFA–HML nearly does. In contrast, for poly-crystals with
ultra-fine grains, whose hardening can reach a few tens of the elasticity moduli (Billard
et al., 2005; Capolungo et al., 2007), the TFA contributions would not need to be reduced
that much to become negligible. The exact knowledge of the relevant physical mechanisms
(inherent to interfacial plasticity) at the origin of this high physical hardening in small
crystals is not needed for our interpretation. It can suit with any description of the com-
plex behavior of fine-grained metallic aggregates, whether it be a micromechanical ap-
proach (Jiang and Weng, 2004; Capolungo et al., 2007) or an atomistic modeling of
grain boundaries (Warner et al., 2006; Spearot et al., 2007), provided a physical internal
length scale being introduced to quantify grain size effects, as also used in different con-
texts (Franciosi et al., 1998; Berbenni et al., 2007a,b,c).

Let us consequently consider a modification of the TFA modeling where, rather than
arbitrarily suppressing the unfavorable part of t0

�
G in terms of effective stiffness, this part

can be more or less reduced according to realistic microstructural considerations on
boundary orientation distributions that may in particular be grain size dependent. From

setting t0
�
ðGÞ ¼

R
X WðGÞðxÞt

0
�

P ðxÞdx in Eq. (30b) with WðGÞðxÞ ¼
fI fpðIÞW

G
pðIÞP

I 0
P

pðI0 Þ
fI0 fpðI 0ÞW

G
pðI0 Þ

when x = p(I)

or equals zero otherwise, we introduce the ‘‘a-graded operator” t0
�
hGi of the form:
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t0
�
hGi ¼

R
XðW

G
ðxÞ þ aðWðGÞðxÞ �WG

ðxÞÞÞt0�
P ðxÞdxR

XðW
G
ðxÞ þ aðWðGÞðxÞ �WG

ðxÞÞÞdx

¼
Z

X
ðaWðGÞðxÞ þ ð1� aÞWG

ðxÞÞt0�
P ðxÞdx; ð32aÞ

where 0 6 a 6 1, what is simply:

t0
�
hGi ¼ t0

�
G þ aðt0

�
ðGÞ � t0

�
GÞ ¼ at0

�
ðGÞ þ ð1� aÞt0

�
G: ð32bÞ

Thus, the so defined modulus H0(RFR,U) = H0TFA–HML(a) depends on the weight a given to
the ‘‘favorable contribution” ðt0

�
ðGÞ � t0

�
GÞ in the operator t0

�
hGi and varies with increasing a

from the usual TFA framework with t0
�
hGi ¼ t0

�
G (when a = 0) to its TFA–HML modifica-

tion with t0
�
hGi ¼ t0

�
ðGÞ (when a = 1). As required, the situation of coarse grains with a large

contribution of favorably oriented sub-boundaries is consistent with a high a value and
justifies the TFA–HML association in the modeling that is necessary to nearly cancel
the TFA-due over-stiffness when the physical hardening is low. Conversely, for fine and
ultra-fine grains, a not totally suppressed TFA-due inter-granular accommodation (be-
cause of prohibited high a values in this case) remains nevertheless negligible enough com-
pared to a high physical hardening. Regardless of the dependency of k and of a with the
grain size, this a-graded form of the RSL–TFA–HML modeling is made consistent with
the proposed ‘‘boundary-based” interpretation of the poly-crystal morphology description
by t0

�
hGi as introduced in Eqs. (32) for any grain size from coarse grains (a = 1) down to the

nanometric range (a ? 0). The formerly introduced RSL–TFA–HML modeling that cor-
responds to a = 1 is consistent with this interpretation for coarse grains. The next section
reports some numerical illustrations.
5. Compared stiffness and hardening for TFA and TFA–HML modeling of poly-crystals

Here, we report some simple simulations as original illustrations to compare poly-
crystalline stiffness estimates from the graded TFA–HML(a) modeling with 0 6 a 6 1,
using the globally regularized Schmid law, Eq. (1), as plastic flow criterion. For sake of
simplicity, we have considered aggregates of homogeneous and shape-invariant spherical
domains or ‘‘grains”, with only two non-coplanar slip systems in each grain (N = P = 2,
p = 1) and no twinning. The number of grain orientations is limited to four, with respec-
tive grain volume fractions f1, f2, f3, f4. For each grain I, the two (P! = 2) permitted rank-
one HML structures correspond to laminates that are parallel either to the primary or to
the secondary slip plane. They correspond to the hierarchies Pj(S)I and Sj(P)I according to
the notations in Section 3.1. From Eqs. (21), the occurrence probabilities read pðpðIÞÞ ¼
fpðIÞ ¼ P0pðIÞ

P01ðIÞþP02ðIÞ for p = (P, S) = (1,2). For spherical grains, we have t0
�

G ¼ t0
�

SPH ¼
1

4p

R
X t0
�

xdx as explicated in Section 4.1 and following section 4.3, the operator t0
�

SPH

is replaced by the graded form t0
�
hSPHi ¼ t0

�
SPH þ aðt0

�
ðSPHÞ � t0

�
SPHÞ with t0

�
ðSPHÞ ¼P

I fIðf1ðIÞt
0
�

1ðIÞ þ f2ðIÞt
0
�

2ðIÞÞ and 0 6 a 6 1. We consider crystal orientations such that for

all of them (see Fig. 2) both slip planes contain the x3 axis while all the slip directions
are in the x1–x2 plane. Fig. 3a reports the tensile stress–strain curves of single crystals with



0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

  A

 B

S

Total strain E

Σ
M

P
a  C

0

0.25

0.5

0.75

1

1.25

1.5

0 0.2 0.4 0.6 0.8 1

Total strain E

γ

γp(A)

γp(B)

γp(C)

γs(A)

γs(B)

γs(C)

γp(S)=γs(S)

a b

Fig. 3. (a) Stress–strain curves, (b) Primary and secondary slip, versus total strain for the A, B, C, S single crystals
obeying the hardening law of Eq. (33) with hardening modulus h0 from Table 2 that corresponds to hardening
range g = 1.
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Fig. 2. Relative orientations of the two slip systems (n1,m1) and (n2,m2) in the pseudo crystals used for numerical
simulations. The thin lines represent a second orientation of the same pseudo crystal. Both ‘‘single crystals” only
rotate around the x3 axis that is normal to the figure plane.
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four different crystallographic orientations – denoted A, B, C, S – from which will be
created the exemplified poly-crystals. The loading axis is x1 and the considered slip system
orientations hg(a (I)) = (x1, ng(a(I))), /g (a(I)) = (x1, mg(a(I))), are listed in Table 1. The crystal
S is a symmetric crystal with regard to its two slip systems. Crystal C is the closest to S and
crystal A is the farthest. Tensile stress–strain curves are obtained either under the mixed
loading conditions dE11 = de, dRij = 0 "ij 6¼ 11, or, under the stress loading condition
dR11 = dr, dRij = 0 "ij 6¼ 11. For all grains, we have assumed a zero total rotation rate
so that, with a non-zero plastic rotation rate around the x3 axis only, dx

�
el
aðIÞ ¼

�dx
�

pl
aðIÞ ¼ ð0; 0; ðdc1ðaðIÞÞ � dc2ðaðIÞÞÞ=2Þ. The crystallographic orientations are step-wise

updated using the relations dngðaðIÞÞ ¼ dx
�

el
aðIÞ ^ ngðaðIÞÞ (resp. dmg(a(I))). The simulations

make use of a realistic nonlinear and non-convex crystal hardening law taken in a local
form as follows:

dsg
c ¼

X
k¼1;2

hgk dck ¼
X
k¼1;2

2h0ð1� RÞ ða� ða� 1ÞdgkÞ þ ccMax þ qðC� cMaxÞ
sg

c þ sk
c

� �
dck

for g ¼ 1; 2; ð33Þ

with

C ¼
X

k

ck; cMax ¼ maxðckÞ; R ¼
0 for hsci < s0II ;

hsci�s0II
ss�s0II

� �
if hsci 2 ðs0II ; ssÞ:

(
ð34Þ

Further assumptions on hardening parameters are c � a and q� a. The coefficient a > 1
introduces an initial hardening anisotropy which decreases, first slowly during a stage I

of single slip (C = cMax = c), then rapidly during a stage II where multiple slip operates
(C > cMax). Furthermore, the ‘‘recovery function” R gradually reduces the stage-II hard-
ening according to a Voce-type law with a saturation shear stress ss, and, taking
hsci ¼

P
gfgsg

c . In this analysis, we have disregarded late re-hardening stages, such as
for example stage IV and subsequent ones in FCC crystals observed at large enough
strains or high enough temperature (Franciosi, 1994; Mecif et al., 1997). The elasticity
and hardening moduli values used in the simulations are reported in Table 2. The
reference (R,E) curves of Fig. 3a exhibit for the crystals A, B and C the successive
Table 1
Orientations of the A, B, C, S pseudo single crystals that are used for the simulations

h(x1,n1) /(x1,m1) h(x1,n2) /(x1,m2)

Crystal A 0.8p 0.8p + 0.5p 0.4666666666p 0.4666666666p � 0.5p
Crystal B 0.75 + p 0.75p + 0.5p 0.4166666666p 0.4166666666p � 0.5p
Crystal C 0.7p 0.7p + 0.5p 0.3666666666p 0.3666666666p � 0.5p
Crystal S 2p/3 2p/3 + 0.5p p/3 p/3 � 0.5p

Table 2
The elasticity and hardening parameters that are used for the simulations

Elasticity and yield l = 30 GPa m = 0,3 sc0 = 2 MPa sc0II = 35 MPa ss = 45 MPa
Hardening h0 = 2 A = 4 c = 2 q = 900 n = 20
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hardening stages I and II that are typically observed in FCC crystals for example. The
slope of the stage I hardening that is observed on these curves well reproduces the exper-
imental range of l/10,000. The farther the crystal orientation from the symmetric one S,
the more important this hardening stage I is (Fig. 3a). In the case of the crystal S of
symmetric orientation, the missing stage I (Fig. 3a) corresponds to stable equally double
slip from the onset of plasticity. Fig. 3b displays the evolutions versus the tensile strain
of the primary and secondary slip for the crystals A, B, C and S, respectively denoted
‘‘cp” and ‘‘cs”. For the crystal S, equal double slip and no rotation yield a unique
straight line. Applying Eq. (33) to the stage II (R = 0) and using the parameter values
of Table 2 yields:

sg
c ¼ sk

c ¼ Rg;kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

0 þ 2h0ðð1þ aÞcþ ðcþ qÞc2Þ
q

! c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h0ðcþ qÞ

p
� 60c ¼ l

500
c

¼ 10�3 l

Rg;k ep;

where the Schmid factors Rg,k are equal to 0.448. This (asymptotic) value of l/500 for the
stage II hardening modulus r � l

200
e


 �
is slightly lower than experimental data ranging

around l/300. As discussed in Section 4.3, that corresponds to a physical hardening level
H0(h,/) = l/k, with k � 500. The recovery stage III appears slightly faster than the exper-
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Fig. 4a. Hardening modulus H0R for the A, B, C, S single crystals and for the RSL–TFA–HML estimate (a = 1)
of the A [ B [ C [ S poly-crystal with its H0TFA–HML part.
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imentally observed ones. These minor discrepancies with experimental evidences do not
induce any loss of generality for the reported observations.

The evolutions of the hardening modulus H0R = H0(h,/) + H0(RFR,U) for the four crys-
tals A, B, C, S along the successive hardening stages are plotted in Fig. 4a as a function of
scref = hsci. On this figure, we have also reported the RSL–TFA–HML(a) estimate of H0R

when a = 1 for the poly-crystal (A [ B [ C [ S) constituted of the four grain orientations
with equal volume fractions fI = 0.25. As also shown on Fig. 4a, the part of H0R due to
H0TFA–HML(a=1) = H0(RFR,U) is clearly negligible. Fig. 4b compares the RSL–TFA–
HML(a) estimates, for respectively a = 0, a = 0.999, a = 0.9999 and a = 1 (0 6 a 6 1) that
are obtained for the stress–strain curve of the poly-crystal (A [ B [ C [ S). On Fig. 4b, we
have also reported the corresponding estimates arising from the assumptions of uniform
stress and of uniform axial strain (respectively denoted ‘‘ref(R)” and ‘‘ref(L)”) and we have
recalled the reference curves of the single crystals S and A (from Fig. 3a). First, we can
observe that the high TFA stiffness obtained when a ? 0 makes the calculations unstable
going towards the RSL–TFA modeling, but the relevant values of a for poly-crystals with
coarse grains are close to 1.

For a = 1, the RSL–TFA–HML estimate of the poly-crystal stiffness as shown in
Fig. 4b is well in between the curves for the hardest S and the softest A single crystals,
all along the successive hardening stages. Furthermore, it also remains in between the
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ref(L) and ref(R) reference curves even when these ones cross each other.6 For approxi-
mately a 2 (1 � 10�5,1) there is no significant effect of the TFA-due stiffness compared
to the predominant physical hardening term H0(h,/) � l/500, and the results are conver-
gent towards the curve obtained with a = 1.

For a < 1 � 10�5, the effect of the TFA-due stiffness is no more negligible and it
increases with decreasing a, as shown on Fig. 4b for a = 1 � 10�4 = 0.9999 and for
a = 1 � 10�3 = 0.999. The RSL–TFA estimate (a = 0) is much stiffer than the response
of the hardest constitutive grain (S orientation). Theoretically, the RSL–TFA modeling
is expected to predict a very high value of the modulus H0�R H0ðTFAÞ, of the range of l/
10. According to the plotted curve (of slope �l/3) that is reported on Fig. 4a for a Schmid
factor near 0.45, we can check that the obtained value for H0�R H0ðTFAÞ is approximately l/
15, what corresponds, for k = 500, to H0ðTFAÞ

H0ðh;/Þ
� 100

3
. The a range of no TFA stiffness effect

for that hardening value corresponds to 0 6 1� a < 1
105 � 1

200k, what means that the ratio
H0ðTFAÞ

H0ðh;/Þ
� 102

3
needs to be reduced to 10�3

3
(i.e. more than three orders of magnitude as pointed

in Section 4.3). Conversely, according to the hardening law form in Eq. (33), increasing
the H0(h,/) = l/k modulus to the level of the H0(TFA) � l/15 one, needs to multiply
6 The TFA–HML estimate passes through the crossing point that is due to the non-convex hardening law of Eq.
(33). The TFA–HML estimate closely follows the upper part of the ref(L) curve.
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H0(h, /) by a factor g = k/15 and the h0 modulus by g2. For k � 500 that gives

g2 � 102

3

� �2

� 103. Figs. 5a and b report several RSL–TFA–HML(a) estimates for

0 6 a 6 1, respectively for g ¼ 10 < 102

3
and g ¼ 100 > 102

3
. The related reference curves

for single crystal S are also reported. In a first approximation from these few comparisons,
the a domain of no TFA effect that was a 2 (1 � 10�5,1) for g = 1 becomes
a 2 (1 � 10�3,1) for g = 10 and a 2 (1 � 10�1,1) for g = 100. It so appears a critical value
(1 � ac) that grossly scales with g2, say with (H0(h,/))2, over which the TFA-due accom-
modation hardening is a negligible part of H0R.
6. Conclusion

This work deals with the heterogeneous plastic deformation of crystals and poly-
crystals that is modeled using a homogenization framework based on the transforma-
tion field analysis (TFA) and a globally regularized Schmid law (RSL) at the scale of
the Homogeneous Equivalent Super-crystal. In Franciosi and Berbenni (2007), we have
first shown that the TFA framework becomes more relevant by introducing a descrip-
tion of heterogeneous intra-crystalline slip activity in terms of hierarchical multi-lam-
inate (HML) structures. We have demonstrated that this relevancy is due to an
orthogonality property between influence operators and Schmid tensors in HML struc-
tures. This property makes most of the over-stiffness due to the TFA contributions to
vanish when laminate layers are either parallel to slip planes or normal to slip direc-
tions. As treated by superposing all possible plastic strain modes of HML structure,
the TFA–HML association is a particular case of non-uniform TFA (NTFA) modeling
of the coupled type introduced by Michel and Suquet (2003, 2004). In the present
paper, the extension of the RSL–TFA–HML modeling to poly-crystals that was pre-
viously introduced by analogy is examined in details and a physical interpretation is
given. This extension amounts to describing the aggregate morphology from the orien-
tation distribution of its boundary and sub-boundary facets rather than from its mean
grain shape. In the proposed description, the favorable facet orientations that allow to
lower the TFA accommodation hardening are those parallel to most active slip (or
twinning) planes or normal to slip (or twinning) directions. The initial modeling exten-
sion to poly-crystals was therefore based on the strong assumption that all unfavor-
ably oriented boundary and sub-boundary facets were absent. Since the larger the
grain size, the larger the number of favorably oriented facets is (that includes sub-
boundaries down to the cell structure scale), this strong assumption only holds for
coarse grains. For ultra-fine grains, only a reduction of the contribution of the unfa-
vorably oriented boundary facets is acceptable in this interpretation. But since the
physical hardening in ultra-fine or nanometric grains is much higher, such a reduction
is shown sufficient to still make the corresponding TFA accommodation negligible
compared to the intra-crystalline hardening. Therefore, a graded form of the RSL–
TFA–HML modeling has been proposed for poly-crystals that accounts for this grain
size dependency of the effective stiffness in the context of the given interpretation.
Simple applications to aggregates with realistic physical strain-hardening laws give
successful results in terms of the stiffness estimates obtained from this graded RSL–
TFA–HML modeling.
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Appendix. Slip system orientations that fulfill the orthogonality property

A.1. Homogeneous elasticity (no twinning unless isotropy)

– When Eq. (28a) is expressed in the frame of the p laminate, it reads:

t0
�

p
Cp :: ðR

�
g � R

�
kÞ ¼ t011a

gk
11 þ t012a

gk
12 þ t016a

gk
16 þ t022a

gk
22 þ t026a

gk
26 þ t066a

gk
66 ¼ 0; ðA1aÞ

with

agk
ii ¼ mg

i ng
i mk

i nk
i ; a

gk
i6 ¼ mg

i ng
i ðmk

1nk
2 þ mk

2nk
1Þ þ ðm

g
1ng

2 þ mg
2ng

1Þmk
i nk

i ði ¼ 1; 2Þ;

agk
66 ¼ ðm

g
1ng

2 þ mg
2ng

1Þðmk
1nk

2 þ mk
2nk

1Þ=2; agk
12 ¼ mg

1ng
1mk

2nk
2 þ mg

2ng
2mk

1nk
1:

The weakest elasticity symmetry corresponds to all six different and not necessarily zero t0ij
components for the laminate operator while the highest in-plane transversal isotropy
(with regard to the x3 laminate axis) corresponds to only two different non-zero t0ij com-
ponents: t011 ¼ t022 ¼ C11 � ðC13Þ2

C33
and t012 ¼ t021 ¼ C12 � ðC13Þ2

C33
(with t066 ¼ t011 � t012 ¼ 2C66),

such that Eq. (A1a) becomes t011ða
gk
11 þ agk

22 þ agk
66Þ þ t012ða

gk
12 � agk

66Þ ¼ 0. But any system pair
(g,k) among the N2 possible ones in the considered structure also satisfies the ten con-
straints ng	mg = 0, jngj = jmgj = 1 (resp. k) and ng.nk = ai, ng 	 mk = bi, mg 	 nk = ci,

mg 	 mk = di, i 2 (1, N2). Solutions of Eq. (28a) that are not solution of Eq. (28b) exist,
as for example any two vector pairs (ng, mg) and (nk, mk) that define orthogonal planes
(G) and (K) both orthogonal to the laminate plane. Such vector pairs do not necessarily
define two slip systems for the considered structure.7 Admissible such solutions are expect-
edly more numerous in structures with more than two coplanar and/or collinear slip sys-
tems since for such groups a same plastic strain increment can be performed from
contributions of a set of coplanar (resp. collinear) slip systems. But they do not always
exist.

– When Eq. (28b) is expressed in the frame of the p laminate, it reads:

t01im
g
1ng

1 þ t02im
g
2ng

2 þ t06iðm
g
1ng

2 þ mg
2ng

1Þ ¼ 0; i ¼ 1; 2; 6 ðresp 	 kÞ: ðA1bÞ
The solutions fulfilling the three conditions of Eq. (A1b) for any elasticity symmetry
applying on the three ‘‘free” components of the unit vectors (ng, mg) or (nk, mk) that also
obey to ng 	 mg = 0, jngj = jmgj = 1 (resp.k), obviously correspond to one of the two in-
volved Schmid tensors R

�
g;k of the form ð0; 0; 0;Rg;k

23 ;R
g;k
31 ; 0Þ in the laminate frame. That

defines, whatever the considered crystal structure, a slip system g or k either with a slip
plane parallel to the laminate (ng,k = (0, 0,1) and mg;k ¼ ðmg;k

1 ;mg;k
2 ; 0ÞÞ or with a slip direc-

tion normal to the laminate (mg,k = (0, 0,1) and ng;k ¼ ðng;k
1 ; ng;k

2 ; 0Þ). In the case of the octa-
hedral systems (111)h110i of the FCC structure, these two laminate orientations
correspond to the crystallographic planes (111) and (110). The same two types of lami-
nate orientations result for BCC crystals when plastic strain is restricted to slip on systems
(110)h111i, as well as for basal slip in HCP crystals. These types of solutions always exist.

– An example, in FCC crystals, of vanishing TFA-due over-stiffness for octahedral mul-
tiple slip in (001) laminates. Regarding a (00 1) plane, for equal double slip for example,
7 Examples are in BCC crystals the slip systems ð112Þh�1�11i and ð1�12Þh�111i with regard to (001)-oriented
laminates.
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Eq. (23) reduces to a 2 
 2 / weight matrix where /i1 = �/i2, i = 1,2 from Eq. (26), such
that slip system pairs with all equal coefficients make the TFA-due stiffness to globally
vanish for a laminate orientation. For symmetry reason with regard to the (001) plane,
the N = 12 FCC octahedral slip systems separate into two groups: group I of eight systems
with slip direction at p/4 from the x3 = h001i axis and group II of four systems with slip
direction orthogonal to x3 = h001i. Considering the slip system B4 ¼ h�101ið111Þ in group
I and B5 ¼ h1�10ið111Þ in group II respectively as the reference system for the group, the
computed four coefficients of Eq. (29a) in the cubic form t011ða

gk
11 þ agk

22Þ þ t012ða
gk
12Þþ

t066ða
gk
66Þ ¼ 0 are collected for the 12 slip systems in Tables A1 and A2 where the Schmid

and Boas notation is used (Tranchant et al., 1993). For cubic elasticity symmetry, system
pairs (g,k) such that agk

11 þ agk
22 ¼ agk

12 ¼ agk
66 ¼ 0 do not show up. For transversally isotropic

elasticity, system pairs (g,k) allowing agk
11 þ agk

22 þ agk
66 ¼ agk

12 � agk
66 ¼ 0, need

t0
11

t0
12
¼ kþ2l

k ¼
agk

12
�agk

66

agk
11
þagk

22
þagk

66

¼ 1þ 1
m (or equivalently m ¼ � agk

11
þagk

22
þagk

66

agk
11
þagk

22
þagk

12

). Incompressible isotropic
Table A1
Equivalent octahedral slip systems of group 1 for FCC crystals and the parameter values involved in the
orthogonality property (Eqs. (A1)) with regard to a h001i-oriented laminate

m n agk
11 agk

22 agk
12 agk

66 S–B m

1 0, �1, 1 �1, 1, 1 0 0 1/6 �1/12 A2 1/2
2 1, 0, 1 �1, 1, 1 1/6 0 0 �1/12 A3 –
3 1, 1, 0 �1, 1, 1 1/6 0 �1/6 0 A6 –
4 0, �1, 1 1, 1, 1 0 0 1/6 1/12 B2 –

5(g) �1, 0, 1 1, 1, 1 1/6 0 0 1/12 B4 –
6 1, �1, 0 1, 1, 1 �1/6 0 1/6 0 B5 –
7 0, 1, 1 �1, �1,1 0 0 1/6 1/12 C1 –
8 1, 0, 1 �1, �1,1 1/6 0 0 1/12 C3 –
9 1, �1, 0 �1, �1,1 1/6 0 �1/6 0 C5 –

10 0, 1, 1 1, �1, 1 0 0 1/6 �1/12 D1 1/2
11 �1, 0, 1 1, �1, 1 1/6 0 0 �1/12 D4 –
12 1, 1, 0 1, �1, 1 �1/6 0 1/6 0 D6 –

Typical multiple slip solutions, if any, include system no. 5 (B4) as system g.

Table A2
Equivalent octahedral slip systems of group 2 for FCC crystals and the parameter values involved in the
orthogonality property (Eqs. (A1)) with regard to a h001i-oriented laminate

m n agk
11 agk

22 agk
12 agk

66 S–B m

1 0, �1, 1 �1, 1, 1 0 1/6 �1/6 0 A2 –
2 1, 0, 1 �1, 1, 1 �1/6 0 �1/6 0 A3 –
3 1, 1, 0 �1, 1, 1 �1/6 �1/6 0 0 A6 0
4 0, �1, 1 1, 1, 1 0 1/6 �1/6 0 B2 –
5 �1, 0, 1 1, 1, 1 �1/6 0 �1/6 0 B4 –

6(g) 1, �1, 0 1, 1, 1 1/6 1/6 0 0 B5 0

7 0, 1, 1 �1, �1, 1 0 1/6 �1/6 0 C1 –
8 1, 0, 1 �1, �1, 1 �1/6 0 �1/6 0 C3 –
9 1, �1, 0 �1, �1, 1 �1/6 �1/6 0 0 C5 0

10 0, 1, 1 1, �1, 1 0 1/6 �1/6 0 D1 –
11 �1, 0, 1 1, �1, 1 �1/6 0 �1/6 0 D4 –
12 1, 1, 0 1, �1, 1 1/6 1/6 0 0 D6 0

Typical multiple slip solutions, if any, include system no. 6 (B5) as system g.
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materials thus admit (B4, A2) and (B4, D1) pairs. Next, we consider the B4 reference
system as active (Table A1) and we prospect for slip dependent solutions. For general elas-
ticity anisotropy, equal slip on the (B4, C3) system pair is consistent with a globally van-
ishing TFA stiffness with a lamination orientation of (001) normal axis. So it is for
multiple slip on larger system sets involving pairs of equally active systems such as
(B2,C1), (A2,D1), (D4, A3), together with the (B4,C3) one (for example during axial-sym-
metric loading along the h00 1i direction). For the B5 reference system assumed active
(Table A2), equal slip on the (B5, D6) system pair, or multi-slip involving pairs of equally
active systems such as (B5, D6) and (C5, A6) (resulting from some appropriate loading),
would also be consistent with a globally vanishing TFA stiffness.

A.2. Heterogeneous elasticity

For sub-domains possibly of different lattice orientations, the number of situations to
be considered in the homogeneous equivalent super-crystal is increased. The larger the
number of elementary mechanisms, the larger the pairs or groups of mechanisms that
may fulfill the orthogonality property for particular relative activities are. But according
to the general form given by Eqs. (27) to the terms of the stress influence tensors, and
thanks to the symmetry R

�
gðpÞ : ðB

�
p
p00 Þ ¼ ðB�

tp
p00 Þ : R

�
gðpÞ ¼ ðM

�
gðpÞ
p00 Þ, Eqs. (27) can be written:

ðB
�

tp
p00 Þ : R

�
gðpÞ : t0

�
p00

Cp00 : R
�

kðp0Þ : ðB
�

p0

p00 Þ ¼ 0; ðA2aÞ

ðB
�

tp
p00 Þ : R

�
gðpÞ : t0

�
p00

Cp00 ¼ 0 or t0
�

p00

Cp00 : R
�

kðp0Þ : ðB
�

p0

p00 Þ ¼ 0: ðA2bÞ

If we focus our interest on solutions that do not depend on the relative slip or shear activ-
ities on the involved planes, the solution of Eq. (28b) are solutions of Eq. (A2a), (A2b).
Same conditions will hold for twinning systems.

This can also be established from noticing that in the frame of a platelet p”, the non-
zero terms of the tensor H

�
p
p00 , which can be written �t0

�
p00 : B

�
tp ¼ �B

�
p : t0
�

p00 using Eq.
(13a) are still those for which (i, j) 6¼ 3,4,5 (as for t0

�
p00
Cp00). Consequently, the form of H

�
p
p00 still

gives a zero product with R
�

gðpÞ in the cases when either ng(p) or mg(p) is in the laminate
plane p”. Thus, the conditions of Eqs. (27b), that can also be written
M
�

gðpÞ
p00 : H

�
p
p00 ¼ R

�
gðpÞ : ðB

�
p
p00 Þ : H

�
p
p00 ¼ 0 or H

�
p0
p00 : M

�
kðp0Þ
p00 ¼ H

�
p0
p00 : ðB

�
tp0
p00 Þ : R

�
kðp0Þ ¼ 0, and by sym-

metry of M
�

gðpÞ
p00 , and/or of M

�
kðp0Þ
p00 , as R

�
gðpÞ : H

�
p
p00 : ðB

�
tp
p00 Þ ¼ 0 or ðB

�
p0
p00 Þ : H

�
p0
p00 : R

�
kðp0Þ ¼ 0, are

fulfilled.
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