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bstract

Our recent literature survey has revealed several crystal field parameter (CFP) datasets for rare-earth ions at orthorhombic, monoclinic, and
riclinic symmetry sites in various hosts. Often CFP datasets are not directly comparable, even for the same ion-host system, whereas the low
ymmetry effects observed may be either actual or apparent. Careful considerations are required to distinguish the nature of the low symmetry
ffects and extract useful structural information inherent in the low symmetry CFPs. For this purpose, we propose a comprehensive approach
omprising three methods. First method consists in finding the principal values of the second-rank CFPs and the orientation of their principal axis
ystem w.r.t. the original or crystallographic axis system. Second method consists in extending the cubic/axial pseudosymmetry axes method to
ower symmetry cases. Third method consists in considering for quantitative comparison of CFP datasets of the closeness factors Cp and the norms
atios Rp = NA/NB for the respective HCF terms: p = k = 2, 4, and 6, and the global (p = gl) ones. Usefulness of the various physically equivalent CFP
atasets generated by the first and second method as initial sets for the multiple correlated fitting technique is also discussed. This study benefits
rom cross-fertilization between the spin Hamiltonian theory used in the EMR area and the CF theory, since these methods have been used before
n the EMR area. As an application of this approach, for the first time in the CF theory area, we reanalyze the triclinic-like CFPs and the low

ymmetry effects involved therein as well as the cubic CFPs for Pr4+ in BaPrO3.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The crystal field parameter (CFP) datasets for rare-earth ions
t orthorhombic, monoclinic, and triclinic symmetry sites in var-
ous hosts, revealed by our recent literature survey, are often
isparate and thus not directly comparable even for the same
on-host system. Each symmetry case presents specific intri-
acies, which are often not realized by experimentalists [1].
mong others, it appears that upon appropriate transformations
uch datasets may turn out to be either physically equivalent
r completely inconsistent. For rare-earth ions at triclinic sites,
he symbolic CFPs [1], i.e. those used in the CF Hamiltonian,
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xpressed in their original axis systems include for a given rank
= 2, 4, 6, all components, −k ≤ q ≤ +k, admissible by group

heory. Using all 27 symbolic CFPs for fitting the experimental
pectra, i.e. the ‘complete’ C-approach, yields the experimen-
ally fitted CFPs that shall be considered as expressed in an
ndefined ‘nominal’ axis system [1]. The C-approach does not
tilize fully the information inherent in the CFP datasets. The-
retical calculations of CFPs based on various models, which
ost commonly employ the crystallographic axis system cen-

ered at rare-earth ion, may also yield triclinic-like CFP datasets.
owever, ‘triclinicity’ of the model CFPs turns out to be appar-

nt in the cases when (i) the local site symmetry is actually

igher than triclinic or (ii) the crystallographic axis system
oes not coincide with the symmetry-adapted axis system. Care-
ul considerations are required to distinguish the nature of the
ow symmetry effects and extract useful structural information
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Alloys

i
c
d
h
i
c

n
W
o
d
f
l
a
d
s
d
c
o
r
a
p
o
T
b
c
t
p
m
a
c
a
m
t
c
l
u
d
a
o
X
b
P
R
a
l

2

B
f
g
i
u
o
o

o
f
i
[
l
c
0
[

[
C

H

w
r
t
i
n
t
t
r
e

H

w
(
f
e
t
l
a
c
v
q
d

t
d
e
y
C
i
t
t
t
e
s
o
f
s

C. Rudowicz, P. Gnutek / Journal of

nherent in the CFPs for the symmetry cases in question. Such
onsiderations are carried out here using as an example the CFP
atasets for Pr4+ ion in BaPrO3 [2] and utilizing the compre-
ensive approach comprising three methods described in details
n Refs. [3–5]. Preliminary results have been presented at a
onference [6].

Preliminary results have been presented at the 6th Inter-
ational Conference on f-elements, 4–9 September 2006,
rocław, Poland [6]. In this paper we provide the full results

f analysis of the triclinic-like crystal field parameter (CFP) [2]
ataset as well as the cubic ones obtained by various authors
or Pr4+ ion in BaPrO3. The triclinic-like CFPs were calcu-
ated using the exchange charge model (ECM) by Popova et
l. [2]. Our comprehensive approach comprises three recently
eveloped methods: (i) the procedure for diagonalization of the
econd-rank CFPs [3], (ii) an extension of the cubic/axial pseu-
osymmetry axes method of Bacquet et al. [4] to lower symmetry
ases [5], and (iii) quantitative comparison of CFP datasets and
ther quantities based on the closeness factors Cp and the norms
atios Rp = NA/NB for the respective HCF terms: p = k = 2, 4, 6,
nd the global (p = gl) ones [1,7]. The method (i) provides the
rincipal values of the second-rank CFPs and the orientation
f their principal axis systems w.r.t. the original axis system.
he method (ii) provides the pseudosymmetry axis systems that
est reflect the approximation to a selected higher symmetry
ase. This is achieved by minimizing an appropriate combina-
ion of the CFPs w.r.t. the Euler angles, which define the resulting
seudosymmetry axis system. So obtained CFP sets exhibit the
aximal and minimal values of the given higher symmetry CFPs

nd the out-of-given symmetry ones, respectively. This enables
omparison with the experimental CFPs fitted using higher albeit
pproximated symmetry, e.g. cubic. The method (iii) provides
eans for quantitative comparison of various sets of N quan-

ities of the same nature, e.g. the CFPs or the energy levels,
onsidered as N-dimensional ‘vectors’. Comparison and corre-
ation of various axis systems considered here enable to extract
seful structural information inherent in the low symmetry CFP
atasets but not hitherto utilized. Our three-method approach and
nalysis of the respective results may facilitate correlation of the
ptical spectroscopy data with the structural data obtained from
-ray studies. In Section 2 we discuss thoroughly the aspects
earing on the reliability of the triclinic-like and cubic CFPs for
r4+ ion in BaPrO3 as well as some inconsistencies revealed in
ef. [2]. In Section 3 we apply the three-method approach to
nalyze the triclinic-like CFPs and consider the nature of the
ow symmetry effects involved.

. Crystal field parameters for Pr4+ ion in BaPrO3

The first observation of the optical spectrum of Pr4+ in
aPrO3 was reported in Ref. [8]. The local site symmetry of the

our-fold coordinated Pr4+ ions in BaPrO3 (orthorhombic space
roup Pbnm) is considered as Ci due to distortion of the approx-

mated octahedral Oh symmetry [2]. The cubic symmetry was
sed as a first approximation in the optical spectroscopy studies
f Pr4+ in BaPrO3 [2,8–11]. The unit cell of BaPrO3 drawn based
n the crystallographic data [12] for T = 300 K and the definition
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f the crystallographic axis system (x||a, y||b, z||c) as well as the
our adjacent Pr–O6 octahedra obtained from these data indicat-
ng the buckling of octahedra were presented in Fig. 1 of Ref.
6]. The BaPrO3 unit cell contains four magnetically inequiva-
ent Pr4+ sites at positions given in terms of the units vectors (a, b,
) as (0.5, 0, 0)—Pr1, (0, 0.5, 0)—Pr2, (0.5, 0, 0.5)—Pr3 and (0,
.5, 0.5)—Pr4. These sites are related by symmetry operations
2].

Based on the ECM [13] and using the crystallographic data
12] for T = 300 K, Popova et al. [2] calculated theoretically the
FPs originally defined by the CF Hamiltonian [13]:

CF = BpqηpOq
p (1)

here O
q
p and ηp were termed as “the Stevens operators and the

educed matrix elements” without providing any references for
heir definitions. In their Table 2 [2] another symbol Bpk appears
ndicating explicitly p as the rank and k as the component. The
otation [13,2] in Eq. (1) differs from the well-established nota-
ions for the usual and extended Stevens operators [14–18] and
he associated CFPs (as well as the zero-field splitting ones)
eviewed in Refs. [14,15]. As discussed in Ref. [19], HCF (1) is
quivalent to the prevailing [14–17,20] one:

CF =
∑
k,q

B
q
kO

q
k(J or L) =

∑
k,q

A
q
k

〈
rk

〉
θkO

q
k =

∑
k,q

C
q
kθkO

q
k

(2)

here k denotes the rank and q the component, whereas θk
=ηp) = α, β, and γ for k = 2, 4, and 6, respectively, are the Stevens
actors [16]. Note that different Stevens factors apply for the
xcited multiplet 2F7/2 than for the ground one 2F5/2, whereas
he two types of the Stevens factors 〈J|θk|J〉 and 〈J|θk|J + 1〉 are
isted in Ref. [16]. Hence, doubts arise which factors have been
ctually used in Ref. [2]. Therefore, in order to avoid further
onfusion, for data presentation below we use the original CFP
alues of Table 2 in Ref. [2] denoted as Bkq (k as the rank and
as the component) without converting them to the CFPs C

q
k

efined in Eq. (2).
Under the combined action of the spin-orbit coupling and

he octahedral CF, the f1 configuration splits into three Kramers
oublets and two quartets yielding four possible transitions; see,
.g. [2,9,11]. At the lower symmetry CF only the quartets splits,
ielding total six transitions, which can be used for fitting the
FPs. Hence, it is impossible to fit all 27 CFPs required for Pr4+

ons at triclinic symmetry sites. The ECM [2] employed instead
hree dimensionless parameters of the model Gk, k = 2, 4, and 6,
ogether with the spin-orbit coupling constant λ. The values of
hese four parameters were obtained by matching the theoretical
nergy levels with the optical data. The interplay between the
pin-orbit coupling and CF is important since adjusting the value
f λ affects the resulting values of the CFPs. This is due to the
act that the splitting between the multiplets 2F5/2 and 2F7/2 by
pin-orbit coupling is about 3000 cm−1, i.e. comparable with

plitting of 2F5/2 by CF of about 2000 cm−1.

Concerning the cubic CFPs determined by various authors for
r4+ in BaPrO3, the following comments are pertinent. Doubts
rise concerning the numerical conversion in Ref. [2] of the
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ubic CFPs for Pr4+ in BaCeO3 [10] used for comparison with
heir CFPs for Pr4+ in BaPrO3. The prevailing cubic HCF form
xpressed in the tetragonal fourfold axes in the notation of Eq.
2) [14,16]:

CF = C0
4β(O0

4 + 5O4
4) + C0

6γ(O0
6 − 21O4

6) (3)

ields the relations for the cubic CFPs: C4
4 = 5C0

4 and C4
6 =

21C0
6. Note that a rotation of the coordinate system by 45◦

round the z-axis parallel to the four-fold symmetry axis, with
he x- and y-axis taken as the two-fold symmetry axis, yields
nstead of Eq. (3) the form:

CF = C0
4β(O0

4 − 5O4
4) + C0

6γ(O0
6 + 21O4

6). (4)

It appears the authors [2] implicitly use the relations for
he cubic CFPs: C4

4 = −5C0
4 and C4

6 = 21C0
6, which differ in

igns from those in Eq. (3). It is not clear if such rotation
as been implicitly implemented in Ref. [2] or the signs of
he two cubic CFPs have been changed inadvertently. Note
hat the sign convention for the two parameters in question
s completely arbitrary, since -replacing C4

4 and C4
6 by −C4

4
nd −C4

6 does not change any predicted energy level. How-
ver, it should be kept in mind that this convention applies
nly for cubic and tetragonal cases. For orthorhombic or lower
ymmetry case we have to consider other orthorhombic-like
arameters C2

k and C6
k , which transform under the 45◦/Oz rota-

ion into −C−2
k and −C−6

k , respectively. Thus for symmetry
ower than cubic or tetragonal, meaningful comparison of all
FPs requires consideration implications of the 45◦/Oz rotation
lso for the orthorhombic and/or lower symmetry CFPs [21]. The
igns of the cubic CFPs have structural implications discussed
n Section 3. The CFPs in Ref. [10] were expressed in terms
f the energy differences: Δ = E(Γ 5) − E(Γ 2) = 1686 cm−1 and
= E(Γ 4) − E(Γ 5) = 2521 cm−1, where Γ i denote the cubic

rreps for the f1 configuration. Assuming Ak〈rk〉 = C0
k and using

he expressions 7R = Δ, 7Q = Θ, C0
4 = 21(3Q + 2R)/32, and

0
6 = 39(5Q − 4R)/640 [9], we obtain C0

4 = 1025 cm−1 and
0
6 = 51 cm−1. According to the prevailing conventions, these
alues would yield C4

4 = 5125 cm−1 and C4
6 = −1071 cm−1,

nstead of the values listed in Ref. [2]: C4
4 = −5075 cm−1 (this

alue may be misprinted in Ref. [2] for −5125 cm−1) and
4
6 = 1071 cm−1.

In the neutron scattering study [11] indicates the excited
evel Γ 8 = (255 ± 10) meV (2056.7 ± 80.6 cm−1), which yields
he cubic experimental CFP V4 = (119 ± 4) meV (959.8 ±
2.3 cm−1), whereas the CFP V6 was approximately esti-
ated as the ratio V6/V4 ≈ 0.05. Hence, we obtain: C0

4 =
4 = 959.8, C4

4 = 5V4 = 4799.0, C0
6 = V6 = 0.05V4 = 48.0,

4
6 = −21V6 = −1007.8 (cm−1). The magnetic susceptibility

tudy [9] of Pr4+ in BaPrO3 provided two sets of the cubic
FPs [7R, 7Q]: (1) [1562, 2881], and (2) [1562, 1267] (cm−1),
hich yield correspondingly [C0

4, C
0
6, C

4
4, C

4
6, C

0
6/C0

4] as: (1)

1103, 71, 5516, 1491, 0.05] and (2) [649, 0.76, 3245, 15.96,
.001] (cm−1). Set (1) was considered as more reliable, since
t yielded better description of the values |μeff| = 0.7(1)μB,
pin-orbit coupling constant ξf = 865 cm−1, and the excited level

i
u
t
d
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8 = 2057 ± 81 cm−1 [11]. The set (2) arises from an attempt
o fit the experimental magnetic susceptibility data in Fig. 4
n Ref. [9] using the values Γ 8 = 1550 cm−1, 7R = 1562 cm−1,
nd ξf = 865 cm−1, which yield 7Q = 1267 cm−1. The so
ecalculated values of C0

4 and the ratio C0
6/C0

4 for set (1)
orrespond better than those for set (2) to the values obtained
n Ref. [9]. The authors [9] provide also explicitly the values

0
4 = 1100 cm−1 and C0

6 = 71 cm−1, which correspond to their
et (1) and agree well with those recalculated by us above based
n the cubic CFPs [9]. In view of the disagreement in signs of
he cubic CFPs in Ref. [2] and the other literature data [8–11],
he cubic, and thus by implication the triclinic-like CFPs [2],
hould be treated with caution.

. Analysis of the CFPs for Pr4+ ion in BaPrO3

For this study we have developed computer package DPC
omprises three modules [6]: (i) module 3DD—for diagonaliza-
ion of the second-rank CFPs, (ii) module PAM—for extension
f the pseudosymmetry axes method to lower symmetry cases
hat enables finding the pseudosymmetry axis system for the
ourth-rank CFPs, and (iii) module CFNR—for calculations of
he closeness factors and the norms ratios for quantitative com-
arison of CFP datasets and other quantities. The module 3DD
ased on diagonalization of the second-rank CFPs provides the
rincipal values of the second-rank CFPs and the orientation
f their principal axis systems w.r.t. the original axis system
3]. The module PAM based on an extension of the cubic/axial
seudosymmetry axes method [4] to monoclinic, orthorhombic
OR), tetragonal I (TEI), and trigonal I (TGI) approximations
rovides the pseudosymmetry axes that best reflect the approxi-
ation to a selected higher symmetry case [5]. This is achieved

y minimizing an appropriate combination of the CFPs w.r.t.
he Euler angles (α, β, γ), which define the axes determined by
he pseudosymmetry axes method. For this purpose the module
AM calculates the 3D surface of the function εsym w.r.t. the
ngles α and β as well as the contours of εsym representing its
inima. So obtained CFP sets exhibit the maximal and minimal

alues of the given higher symmetry CFPs and the out-of-given
ymmetry ones, respectively. This enables comparison with the
xperimental CFPs fitted using higher albeit approximated sym-
etry, e.g. cubic. The closeness factors Cp and the norms ratios
p provide means for quantitative comparison of various sets of
quantities of the same nature, e.g. the CFPs or the energy levels,
onsidered as n-dimensional (nD) ‘vectors’ [1,7]. The principal
xis systems and pseudosymmetry axes may be compared with
he axis systems commonly used in the CF area. For theoretical

odel calculations, e.g. the ECM ones [2], generally the crys-
allographic axis system is adopted, which may differ from the
are-earth for a given transition ion. Any experimentally fitted
FPs shall be considered as expressed in an undefined ‘nomi-
al’ axis system [1]. Comparison and correlation of various axes
onsidered here enable to extract useful structural information,

nherent in the low symmetry CFP datasets, and not hitherto
tilized. Our three-method approach and analysis of the respec-
ive results may facilitate correlation of the optical spectroscopy
ata with the structural data obtained from X-ray studies. This is
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Table 1
The CFP in the extended Stevens notation C

q

k
sets (cm−1) and the respective Euler angles (defined in text; in degrees) for Pr4+ in BaPrO3: set #1—ECM calculated

triclinic set [2], sets #2–#7—after diagonalization of the second-rank CFPs using the module 3DD

α 0 0.433 0.433 90.649 90.649 1.854 1.854
β 0 67.081 67.081 89.490 89.490 157.075 157.075
γ 0 0.553 90.553 −22.920 67.080 91.308 1.308
Si – S1 S3 S2 S5 S4 S6

k, q Set #

1 2 3 4 5 6 7

2, 2 130.3 57.2 −57.2 −86.2 86.2 −143.4 143.4
2, 1 123.7 0 0 0 0 0 0
2, 0 3.4 76.5 76.5 −66.9 −66.9 −9.7 −9.7
2, −1 −1.1 0 0 0 0 0 0
2, −2 2.4 0 0 0 0 0 0

λ′ = C2
2/C0

2 – 0.747 −0.747 1.289 −1.289 14.831 −14.831

4, 4 −4707.6 3347.1 3347.1 2758.9 2758.9 −4802.1 −4802.1
4, 3 −4183.7 −9566.6 1774.9 1053.8 1014.7 1146.0 3874.6
4, 2 307.4 −4320.5 4320.5 −4656.7 4656.7 −336.1 336.1
4, 1 −3838.5 1885.9 −1340.5 203.2 −1449.1 111.1 3806.1
4, 0 830.3 −329.1 −329.1 −245.1 −245.1 835.0 835.0
4, −1 −341.5 −1340.5 −1885.9 −1449.1 −203.2 −3806.1 111.1
4, −2 60.9 −314.3 314.3 −1920.2 1920.2 −108.6 108.6
4, −3 −1075.4 −1774.9 −9566.6 −1014.7 1053.8 3874.6 −1146.0
4, −4 −1601.9 −46.1 −46.1 2846.0 2846.0 1394.8 1394.8
6, 6 −30.9 820.6 −820.6 254.5 −254.5 45.4 −45.4
6, 5 −2419.0 309.1 850.6 −771.8 543.9 −649.7 2369.7
6, 4 819.0 632.8 632.8 546.4 546.4 882.8 882.8
6, 3 960.0 −361.6 −242.6 −256.9 −391.3 −312.4 −856.0
6, 2 270.2 76.5 −76.5 412.2 −412.2 −275.9 275.9
6, 1 −290.2 −834.2 −150.0 58.8 −103.5 36.6 347.1
6, 0 40.5 −50.9 −50.9 −79.7 −79.7 32.4 32.4
6, −1 −36.8 −150.0 834.2 −103.5 −58.8 −347.1 36.6
6, −2 51.2 −183.7 183.7 183.7 −183.7 41.2 −41.2
6, −3 240.3 242.6 −361.6 391.3 −256.9 −856.0 312.4
6
6
6

e
b

(
4
t
fi
v
i
t
[
0

C
i
s
p
h
p
t
0

t
t
d
λ

l
r
s
t
a
f
e
b
t

f
p
f

, −4 282.3 22.2 22.2
, −5 −1062.0 850.6 −309.1
, −6 −15.0 124.8 −124.8

videnced by our consideration of the CFPs for Pr4+ in BaPrO3
elow.

The original triclinic-like CFPs for Pr1 [2] are listed in Table 1
set #1). The set #1 yields the rotational invariants [1]: Sk = 37.28,
52.00, and 44.48 (cm−1) for k = 2, 4, and 6, respectively. All
ransformed CFP sets in Tables 1–3 yield the same Sk, thus con-
rming correctness of the respective transformations. The above
alues of S4 and S6 are close to the cubic approximation ones
n Refs. [10,11] and for set (1) in Ref. [9], whereas differ from
hat for set (2) in Ref. [9]; [S4, S6] (cm−1) = [447.35, 40.01] and
418.98, 37.65] for Refs. [10,11] [481.39, 55.70] and [283.25,
.60], for set (1) and (2) in Ref. [9], respectively.

First we determine the principal values of the second-rank
FP ‘tensor’ and the respective Euler angles (α, β, γ) apply-

ng the module 3DD [3] to set #1 in Table 1. The fourth- and
ixth-rank CFPs can be transformed accordingly using the CST
ackage [22], so for convenience the transformation expressions

ave been incorporated into the module 3DD. In Table 1 we
rovide the six orthorhombic-like sets (#2–#7) corresponding
o the original triclinic set #1 for the angles α and β in the range
–π. The set #2 is chosen as the standard one (S1), whereas

S

o
a
w

487.1 487.1 −253.5 −253.5
543.9 771.8 −2369.7 −649.7
726.3 −726.3 −44.7 44.7

he remaining sets #3–#7 represent the transformed sets using
he orthorhombic standardization transformations Si (S2–S6)
efined in Refs. [23,24]. The respective values of the ratio
′ = C2

2/C0
2 are also provided in Table 1. For the orthorhombic-

ike datasets the ratio λ′ describes the ‘rhombicity’ of the second
ank CFPs [23,24], so it is not meaningful in this sense for lower
ymmetry cases including non-orthorhombic CFPs. In general,
he method of diagonalization of the second-rank CFPs yields
lso other solutions [3], which may alternatively be obtained
rom the basic ones listed in Table 1 by a rotation 180◦ around
ither axis (x, y, z). The resulting sign relationships, noticed also
y Burdick et al. [25], are explained in terms of the transforma-
ion properties of the CFPs in Ref. [3].

Next we apply the module PAM [5] to set #1 in Table 1
or the angles α and β in the range 0–π. In Table 2 we
resent the results of the approximation OR, whereas in Table 3
or TEI and TGI. We additionally list the asterisked values√

∗
k = ((C0

k )
2 + (Cq

k )
2
/(ck

q)2)/(2k + 1) for k = 2, 4 and 6, based
nly on the bolded CFPs applicable for a given symmetry
pproximation used in the pseudosymmetry axes method as
ell as the asterisked values λ′∗ = C2

2/C0
2 defined in Ref. [5].
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Table 2
The CFP in the extended Stevens notation C

q

k
sets (cm−1) and the respective Euler angles (defined in text; in degrees) for Pr4+ in BaPrO3: sets #1–#9 result from the

PAM OR approximation

α 4.703 5.036 59.847 50.300 43.111 94.717 146.400 139.121 129.488
β 78.415 168.415 37.468 81.788 126.278 89.935 53.640 98.118 142.423
γ 0.067 0.326 −13.423 −8.202 −10.089 −11.585 −10.218 −8.296 −13.548

k, q Set #

1 2 3 4 5 6 7 8 9

2, 2 59.9 138.7 −30.7 −19.3 −8.3 −78.8 22.3 0.3 −2.3
2, 1 −66.6 66.6 −0.7 −44.9 0.7 3.1 38.6 49.3 −38.6
2, 0 72.5 −6.3 4.7 −6.7 −17.7 −66.2 −9.0 13.0 15.6
2, −1 −39.3 3.1 −231.0 −277.3 −161.3 39.3 164.4 277.3 227.8
2, −2 1.6 19.6 −80.6 24.6 115.5 33.3 113.9 22.4 −82.2

λ′∗ = C2
2/C0

2 0.826 −21.935 −6.493 2.900 0.466 1.191 −2.480 0.026 −0.149

4, 4 3805.7 −5192.9 3880.2 5173.0 3902.0 3938.3 3911.8 5167.5 3862.2
4, 3 51.5 −101.4 39.9 −43.7 −39.9 −19.1 51.0 99.3 −50.8
4, 2 −5217.8 −75.7 5182.6 14.5 5170.1 −5142.1 5162.9 11.4 5191.3
4, 1 35.9 14.0 5.7 −6.2 −5.7 −14.1 7.2 14.1 −7.3
4, 0 −252.1 1033.4 −255.5 1036.2 −258.6 −271.1 −261.6 1037.0 −254.5
4, −1 −1.6 5.8 91.8 −37.9 41.9 1.5 −56.0 37.8 −77.7
4, −2 8.3 −3.1 −25.1 −28.4 55.3 21.8 47.0 −12.5 −33.4
4, −3 10.9 39.1 −129.6 265.0 −58.3 −11.0 77.7 −265.1 110.2
4, −4 10.0 0.0 29.3 0.1 −64.2 25.0 −54.3 0.0 39.3

C4
4/C0

4 −15.095 −5.025 −15.187 4.992 −15.089 −14.529 −14.955 4.983 −15.176
C2

4/C0
4 20.695 −0.073 −20.285 0.014 −19.992 18.970 −19.738 0.011 −20.399

6, 6 830.9 −180.6 −822.1 −7.0 −809.9 786.0 −806.5 −5.5 −823.3
6, 5 −158.6 −101.7 −9.9 −24.3 −29.2 34.3 25.4 47.4 7.4
6, 4 715.2 1185.0 730.3 −1181.9 742.1 772.7 746.8 −1181.3 728.0
6, 3 76.7 41.6 15.5 7.3 2.3 −14.8 0.1 −18.9 −14.9
6, 2 268.4 27.2 −349.0 −2.8 −392.8 466.6 −403.8 −2.8 −337.0
6, 1 −3.4 50.7 0.2 −34.3 6.9 4.0 −7.5 50.5 1.5
6, 0 −101.0 55.6 −93.5 56.6 −89.6 −81.8 −88.4 56.8 −94.7
6, −1 −1.4 12.3 −41.1 −140.4 −14.9 −2.2 11.3 144.0 33.3
6, −2 1.8 0.7 −8.5 10.0 16.7 3.7 14.3 7.1 −9.2
6, −3 5.8 −6.1 −172.8 −86.7 −86.5 3.2 103.5 77.7 159.1
6, −4 −8.4 −3.6 −51.3 5.9 96.5 −47.3 90.2 7.1 −63.8
6, −5 7.3 −11.7 −376.5 −189.9 −195.1 12.5 234.1 170.2 344.6
6, −6 10.2 −0.8 −51.2 60.0 113.5 34.8 99.7 38.6 −54.5

C6
6/C0

6 −8.226 −3.250 8.789 −0.123 9.038 −9.604 9.120 −0.096 8.695
C4

6/C0
6 −7.081 21.325 −7.807 −20.880 −8.282 −9.442 −8.445 −20.802 −7.689

C2
6/C0

6 −2.657 0.490 3.731 −0.050 4.383 −5.701 4.567 −0.050 3.559

S∗
2 /S2 (%) 96.32 96.32 22.00 15.56 22.00 96.32 18.83 15.56 18.83

S∗ 9
S 2
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4 /S4 (%) 100.00 100.00 99.99 99.9
∗
6 /S6 (%) 99.91 99.91 99.35 99.3

omparison of the two types, i.e. total and asterisked, of (i)
he rotational invariants and (ii) the ‘rhombicity’ ratio for the
econd rank CFPs provides a measure of the goodness of the
iven higher symmetry approximation. Comparison of the OR
esults, which represent both the four- and two-fold pseudosym-
etry axes, with the TEI ones, which represent only the four-fold

seudosymmetry axes, enables recognition of the OR solutions
hat correspond to the four-fold pseudosymmetry axes, whereas
he remaining solutions, i.e. not assigned in this way, correspond

o the two-fold ones. The results in Tables 2 and 3 indicate the
ollowing correspondence between the OR and TEI solutions:
R#2 and TEI#1, OR#4 and TEI#2, OR#8 and TEI#3. This is

onfirmed by the respective closeness factors Cp and the norms

t
t
f
i

99.99 100.00 99.99 99.99 99.99
99.35 99.91 99.39 99.32 99.39

atios Rp for the respective HCF terms: k = 2, 4, 6, and the global
gl) ones. We obtain C2, C4, C6, and Cgl equal nearly exactly
.0 (within the eight decimal places) for each pair of the OR
nd TEI sets, whereas all Rp equal exactly 1.0. The solutions
or the TGI approximation represent the three-fold pseudosym-
etry axes. However, the TGI approximation can be considered

nly as following directly from the triclinic CFP case, without
he ascent of symmetry via the monoclinic, orthorhombic, and
etragonal approximation. This shows the greater usefulness of

he latter approximations over the former one. The difference in
he orientation of the respective z-axes being the four-fold (three-
old) pseudosymmetry axis for the approximation TEI (TGI) is
llustrated in Fig. 1.
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Table 3
The CFP C

q

k
sets (cm−1) and the respective Euler angles (defined in text; in degrees) for Pr4+ in BaPrO3 after the TEI approximation (sets #1–#3) and TGI

approximation (sets #4–#7); ES—the extended Stevens and NS—the normalized Stevens notation

α 5.039 5.039 50.300 50.300 139.121 139.121 4.647 4.746 102.806 86.641
β 168.413 168.413 81.788 81.788 98.118 98.118 43.148 113.679 55.490 124.379
γ 0.328 0.328 −8.202 −8.202 −8.295 −8.295 0.096 0.072 −14.106 −14.084

k, q Set #

1 (ES) 1′ (NS) 2 (ES) 2′ (NS) 3 (ES) 3′ (NS) 4 (ES) 5 (ES) 6 (ES) 7 (ES)

2, 2 138.7 80.1 −19.3 −11.1 0.3 0.2 70.4 101.8 −98.0 −99.5
2, 1 66.6 19.2 −44.9 −13.0 49.3 14.2 126.4 −170.8 −111.8 113.9
2, 0 −6.3 −6.3 −6.7 −6.7 13.0 13.0 61.9 30.5 −47.0 −45.5
2, −1 3.1 0.9 −277.3 −80.1 277.3 80.1 −33.9 −30.3 −6.4 70.5
2, −2 19.6 11.3 24.6 14.2 22.4 13.0 −10.1 12.6 38.5 15.8

λ′∗ = C2
2/C0

2 −21.932 – 2.900 – 0.026 – 1.138 3.335 2.088 2.188

4, 4 −5192.9 −877.8 5173.0 874.4 5167.5 873.5 −53.4 −85.0 42.3 54.7
4, 3 −101.0 −6.0 −43.7 −2.6 99.3 5.9 −19398.5 19488.3 −19627.5 19592.5
4, 2 −75.7 −16.9 14.5 3.3 11.4 2.6 −5.1 −0.7 −18.7 −20.6
4, 1 14.5 2.3 −6.2 −1.0 14.1 2.2 35.0 −67.2 −61.9 74.3
4, 0 1033.4 1033.4 1036.2 1036.2 1037.0 1037.0 −703.3 −694.3 −680.2 −683.7
4, −1 5.6 0.9 −37.8 −6.0 37.7 6.0 −9.0 12.5 −29.7 26.2
4, −2 −3.1 −0.7 −28.4 −6.3 −12.5 −2.8 −0.8 4.0 6.2 1.4
4, −3 39.3 2.3 265.1 15.8 −265.2 −15.8 0.0 0.0 0.0 0.0
4, −4 0.0 0.0 0.0 0.0 0.0 0.0 12.9 8.6 25.2 29.5

C4
4/C0

4 −5.025 – 4.992 – 4.983 – – – – –
C3

4/C0
4 – – – – – – 27.581 −28.071 28.856 −28.656

6, 6 −180.6 −16.8 −7.0 −0.6 −5.5 −0.5 923.6 950.2 993.9 987.1
6, 5 −101.4 −2.7 −24.3 −0.7 47.4 1.3 −217.7 431.7 336.9 −374.3
6, 4 1185.0 149.3 −1181.9 −148.9 −1181.3 −148.8 −48.4 −91.1 58.0 65.2
6, 3 41.5 2.9 7.2 0.5 −18.9 −1.3 −1425.3 1293.4 −1104.4 1132.9
6, 2 27.2 3.8 −2.8 −0.4 −2.8 −0.4 −28.2 −39.8 36.5 41.7
6, 1 50.7 5.5 −34.3 −3.7 50.5 5.5 −40.4 47.6 35.4 −41.6
6, 0 55.6 55.6 56.6 56.6 56.8 56.8 92.5 98.0 105.5 104.4
6, −1 12.3 1.3 −140.4 −15.3 144.0 15.7 6.7 −0.6 27.4 −23.0
6, −2 0.7 0.1 10.0 1.4 7.1 1.0 −4.5 −2.9 −20.0 −16.9
6, −3 −6.1 −0.4 −86.7 −6.0 77.8 5.4 −2.7 −1.6 4.8 −7.0
6, −4 −3.6 −0.5 5.9 0.7 7.1 0.9 6.4 7.6 26.9 30.4
6, −5 −11.8 −0.3 −190.0 −5.1 170.2 4.6 −28.9 40.5 −157.9 160.7
6, −6 −0.8 −0.1 60.0 5.6 38.6 3.6 3.2 −1.5 −6.5 −11.9

C4
6/C0

6 21.325 – −20.879 – −20.802 – – – – –

S∗
2 /S2 (%) 7.59 7.59 7.99 7.99 15.56 15.56 74.28 36.61 56.33 54.56

S∗
4 /S4 (%) 99.99 99.99 99.99 99.99 99.9

S

F
i

∗
6 /S6 (%) 99.33 99.33 99.33 99.33 99.3

ig. 1. The z-axis obtained using the module PAM for each of the three solutions
n the TEI (a) and the four solutions in the TGI approximation (b).

r
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i
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(

9 99.99 100.00 99.99 99.99 99.99
3 99.33 99.80 99.37 99.57 99.48

In order to extract useful structural information inherent in the
espective Euler angles sets and the CFPs sets in Tables 2 and 3,
e need to carry out theoretical analysis of the transformation
roperties of CF Hamiltonian in Eqs. (3) and (4) and then ana-
yze correspondingly the original CFPs and the axis systems
sed [2,12]. The authors [2] have implicitly adopted the crys-
allographic axis system defined in Fig. 1 of Rosov et al. [12],
n which the Pr-ligands complex (see Fig. 1 of Ref. [6]) has
he orientation corresponding to the 45◦/Oz rotation discussed
n Section 2. Note that the axes x and y directed towards lig-
nds represent the so-called first-kind orthorhombic symmetry,

hereas the 45◦/Oz rotation represents the so-called second-
ind orthorhombic symmetry [26]. Correspondingly, for cubic
ymmetry, the former axis system, which applies to HCF in Eq.
3), may be defined as the basic cubic axis system, whereas the
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atter axis system, which applies to HCF in Eq. (4), as the 45◦/Oz
otated cubic axis system. The two axis systems yield the cubic
FP ratios (C4

4/C0
4, C

4
6/C0

6) as (5, −21) and (−5, 21), respec-
ively. Transformations of HCF in Eq. (3) using any orthorhombic
ransformation S2 to S6 [23,24] leave HCF invariant and thus pre-
erve the CFP ratios. This invariance, however, does not apply
ully to HCF in Eq. (4). Only the transformation S3 leaves HCF
nvariant, whereas other transformations, resulting in the change
f the z-axis to a two-fold axis, yield HCF in the form:

CF = {C0
4}β(− 1

4O0
4 ± 5O2

4 + 15
4 O4

4)

+{C0
6}γ(− 13

8 O0
6 ∓ 105

16 O2
6 + 105

8 O4
6 ∓ 231

16 O6
6) (5)

here the curly brackets denote the original CFPs, whereas the
pper sign applies to S2 and S4, while the lower sign to S5
nd S6. The transformed CFPs denoted by the square brackets
esult from Eq. (5) as C

q
k ≡ const{Cq

k}. The CFPs [C2
4], [C2

6], and
C6

6] reflect the apparent orthorhombic symmetry for the purely
ubic HCF expressed in the transformed axis systems. Eq. (5)
ields the following relations for the transformed cubic CFPs (S2
nd S4—upper sign; S5 and S6—lower sign): [C4

4/C0
4] = −15,

C2
4/C0

4] = ∓20, [C6
6/C0

6] = ±231/26 ≈ ±8.88, [C4
6/C0

6] =
105/13 ≈ −8.08, and [C2

6/C0
6] = ±105/26 ≈ ±4.04. In a

imilar way in Ref. [21] we have considered the S2 to S6
ransformations and derived the relations for the second-rank
FPs for tetragonal I and II symmetry as well as both kinds
f orthorhombic symmetry. The general relations [21] are used
elow to analyze the TEI and OR approximations within the
seudosymmetry axes method.

Analysis of the TEI and OR sets in view of the theoretical
elations derived above enable the following observations. The
EI sets #2 and #3 in Table 3 correspond to the basic cubic axis
ystem, whereas the set #1 corresponds to the 45◦/Oz rotated
ubic axis system. Due to the correspondence discussed above,
he same applies to the equivalent OR sets (#2, #4, and #8). The z-
xes for the sets #1–#3 are mutually perpendicular to each other,
hereas the orientations of the x- and y-axes vary. Importantly,

he calculated ratios C4
4/C0

4 and C4
6/C0

6 for sets #1–#3 in Table 3
urn out to be very close to the theoretical ones for pure cubic
ymmetry in Eqs. (3) and (4). This reveals the very high degree
f cubic symmetry of the fourth- and sixth-rank CFPs in TEI sets
1–#3. The calculated CFP ratios for the remaining OR sets #1,
3, #5–#7, and #9 yield also the values closely corresponding
o the cubic ones, so in this case those arising from HCF in Eq.
5). The second-rank ratios calculated for (i) the basic cubic axis
ystem: λ′∗ = C2

2/C0
2 (TEI#2: ≈ 3 and TEI#3: ≈ 0) and (ii) the

5◦/Oz rotated cubic axis system: λ′∗ = C−2
2 /C0

2 (TEI#1: ≈ 3)
re very close to the theoretical values as indicated. In both
ases these ratios indicate that the Pr4+ site symmetry is very
lose to tetragonal, whereas the small values of the respective
FPs reveal symmetry very close to cubic. Hence, overall the

esults from the pseudosymmetry axes method, both in the TEI

nd OR approximation, indicate that the local site symmetry of
r4+ ion is close to cubic with a slight triclinic distortion. This
grees well with the hypothesis put forward by Bickel et al. [9].
dditionally, for the basic cubic axis system, where the fourfold

d
a
s
e

and Compounds 456 (2008) 16–26

otation axes are chosen as the quantization axes, the positive
igns of C0

4 and C4
4 indicate that the symmetry at the Pr4+ site is

ery close to the cubic octahedral (six-fold coordination) one.
ote that the negative sign of C0

4 and C4
4 would indicate [27] the

ubic tetrahedral (four-fold coordination) or the regular cube
eight-fold coordination).

Analysis of the TGI approximation also confirms the above
onclusion that the local site symmetry of Pr4+ ion is close to
ubic with a slight triclinic distortion. In the trigonal axes taken
long one of the three-fold axis and one two-fold axis, the cal-
ulated ratio of the cubic CFPs: C3

4/C0
4 ≈ ±28 is very close to

he theoretical value indicated.
In Table 3 we list also the CFPs in the normalized Stevens

NS) notation [14,17,18] for selected sets to illustrate the appar-
ntly different relative strength of the CFPs expressed in the two
otations. It turns out that the cubic character of the fourth- and
ixth-rank CFPs, which is accounted for by specific parameter
atios, is more directly evident if we consider C

q
k (NS) instead of

q
k in the extended Stevens notation. Interestingly, the TEI set
1 (as well as #2 and #3) turns out to be very close to the cubic
FPs for Pr4+ in BaCeO3 [10] (cm−1): C0

4 = 1025, C0
6 = 51,

4
4 = −5125 (5125), and C4

6 = 1071 (−1071). The dominant
ubic fourth-rank CFPs and relatively small non-cubic ones sug-
est that fourth-rank CFPs may have been reliably determined in
ef. [2]. However, for the sixth-rank CFPs, although the cubic
FP C4

6 is dominant, C0
6 in the extended Stevens notation is

maller than some non-cubic sixth-rank CFPs. Conversion to
he normalized Stevens notation yields as dominant C0

4(NS),
4
4(NS), C0

6(NS), and C4
6(NS). Thus C

q
k (NS) in Table 3 reveal

onsiderably different parameter ratios. Overall the relative CFP
alues may suggest either more pronounced low symmetry
ffects for the sixth-rank CFPs or, most probably, their less
ccurate determination in Ref. [2]. Hence, it turns out that the
ormalized Stevens notation provides more accurate represen-
ation of the relative strength of the CFPs, whereas the extended
tevens notation yields apparently misleading CFP ratios. This

s due to the different multiplication factors implicit in the q-
omponents in the two notations. Importantly, the normalized
tevens operators are ‘normalized’ in the quantum mechanical
ense, namely, the product of their transformation matrices is
qual to 1 (for details, see Ref. [17]). Hence, C

q
k (NS) enable

ore meaningful assessment of the relative strength of CFPs.
A word of caution is pertinent here concerning two aspects

A) and (B) bearing on the triclinic-like nature of any theoretical
FP sets and their reliability. (A) Generally, the smaller number
f the non-zero CFPs, the higher local site symmetry. However,
he great number of the non-zero CFPs (even maximum of 27
equired for 4fN ions at triclinic sites) does not necessarily mean
hat the local site symmetry around an impurity ion is triclinic.
ur considerations [19] reveal that an apparently low symme-

ry CFP set may indicate the choice of an axis system that does
ot coincide with the appropriate rare-earth. In order to verify
hich symmetry case actually applies, one needs to consider in
etails the crystallographic data, if available, and determine the

ppropriate rare-earth. A partial indication of the actual local site
ymmetry may be obtained by analysis of the observed degen-
racy of the energy levels, since complete or partial removal of
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ness factors and the norms ratios: Cp ∈ 0.999971–0.99999993
and Rp ∈ 0.995–0.99976. Hence we refrain from providing the
respective table. For the CFPs in Table 3 the closeness factors
and the norms ratios listed in Table 4 confirm that the CFPs cal-
C. Rudowicz, P. Gnutek / Journal of

egeneracy may indicate lower symmetry, e.g. triclinic or mono-
linic. (B) It appears that the triclinic distortion is most evident in
he second-rank CFPs (original set #1 in Table 1), which remain
ighly triclinic in the TEI approximation (sets #1–#3 in Table 3).
his may represent the actual low symmetry effects inherent in

he second-rank CFPs. However, it cannot be excluded that the
ow symmetry effects observed in the CFPs [2] are due to some
omputational artifacts. Our recent ECM calculations for Cr3+

on in Cs2NaAlF6 [19] and Ni2+ ion in MgAl2O4 [28] yielded
he initial CFPs exhibiting local site symmetry lower than the
xpected D3d. The choice of the surrounding ions is crucial to
nsure that the cluster preserves properly the RE3+ site symme-
ry. Avoiding the artificial effects due to corners, edges, and/or

issing ions may not be an easy matter for large clusters. In
act, any finite truncation of the crystal lattice within the ECM
luster calculations may yield CFPs of apparently lower symme-
ry than applicable. Appearance of some non-zero CFPs may be
ue to computational artifacts, which may originate from either
ome rounding-off errors or inclusion/exclusion in the lattice
ummations of some distant ions that overall do not preserve
he site symmetry. This may also apply to the CFPs [2] since
he authors suspect improper estimations of their C

q
2 based on

he observation that some calculated energy levels differ signif-
cantly from the measured ones. To split the degenerate cubic
nergy levels some non-cubic CFPs are necessary, however, any
mproper estimations of CFPs [2] may yield the second-rank
FPs exhibiting apparent low symmetry. The most pronounced

ow symmetry effects may be due to the second-rank non-axial
FPs, which should be responsible for the observed splitting of

he energy levels Γ 8 and Γ ′
8 [2] indicating axial or lower sym-

etry. We note that the orthorhombic CFPs C2
2 and C0

2 (sets #2
nd #3 in Table 3) are very small as compared with the remain-
ng lower symmetry CFPs C1

2, C−1
2 , and C−2

2 . If not the large
on-zero values of the latter CFPs, this would indicate the case
ery close to cubic symmetry. This discrepancy may suggest
hat the CFPs C2

2 and C0
2 calculated using the ECM [2] are

ccurate, however, doubts arise concerning the CFPs C1
2, C−1

2 ,
nd C−2

2 . Our experience [19,28] indicates that the energy lev-
ls discrepancies [2] are most likely due to the computational
rtifacts discussed above. Hence, a careful re-check of the ECM
alculations [2] would be useful in order to obtain a more reliable
nd symmetry-consistent CFP set.

In analogy with the EMR data, it may be expected that the
rincipal axis system of the second-rank CFPs may be somewhat
orrelated with the principal axes of the theoretical g-factor and
ensor Aij [2]. Concerning the principal axes of the tensor Aij

opova et al. [2] have only mentioned that these axes are slightly
urned away from the axes of the g-tensor (angles of rotations
re less than 10◦). The principal values of the g-tensor of the
round doublet for the Pr1 site were calculated [2] as −0.6827,
0.7295 and −0.8369. The corresponding principal axis sys-

em of the g-factor in the crystallographic axis system [2] were
xpressed in terms of the unit vectors: u (0.0531, −0.9928,
1
.1075), u2 (−0.5288, 0.0634, 0.8464), and u3 (0.8471, 0.1018,
.5216). The module 3DD enables us also to calculate the respec-
ive unit vectors in the crystallographic axis system for all set
eing solutions of diagonalization of the second-rank CFPs as

F
o
P

and Compounds 456 (2008) 16–26 23

ell as all solutions obtained using the module PAM in each
pproximation defined above. We have adhered to the r.h.s. con-
ention for the axes. It turns out that the unit vector for set #2
3DD) in Table 1 is very close, except for the orientation, to the
nit vector for the g-tensor [2], namely, u′

x = −u2, u′
y = −u1,

nd u′
z = −u3, whereas the principal values are rearranged as

ollows: gx = −0.7295, gy = −0.6827, and gz = −0.8369. Con-
erning the pseudosymmetry axes method results, only the OR
pproximation yields one solution (#1 in Table 2), with the x-
xis parallel to the four-fold axis and the y- and z-axes parallel
o the two-fold axis, which is most close to the principal axis
ystem of the second-rank CFPs as well as to the unit vectors
f the g-tensor calculated by us based on data [2]. The principal
xis system of the second-rank CFPs (3DD), sets #2, #4, and #7
n Table 1, are very close to the principal axis system obtained in
he OR approximation (#1, #6 and #2 in Table 2), respectively.
he latter sets correspond to the 45◦/Oz rotated orthorhombic
xes. For comparison, the orientation of the respective axes: (i)
rincipal axis system of the g-factor [2], (ii) principal axis sys-
em of the second-rank CFPs (3DD) for set #2 in Table 1, and
iii) OR approximation fourth-rank CFPs for set #1 in Table 2
s presented in Fig. 2.

The closeness factors and the norms ratios have been calcu-
ated between pairs of various quantities: (i) the cubic fourth- and
ixth-rank CFPs and the respective global quantities obtained
y us in the TEI approximation (Table 3) and those taken
rom literature sources (Table 4), (ii) the energy level sets for
r4+ ions in BaPrO3 (and BaCeO3) in triclinic and/or cubic
ymmetry approximation (Table 5), and (iii) the experimen-
al [12,29] structural parameters (Pr–O bonds and O–Pr–O
ngels) at various temperatures listed in Table 6. The latter
uantities are overall very close as reflected by the close-
ig. 2. The principal axes (xi, yi, zi) for the g-tensor, the 3DD principal values
f the second-rank CFPs (set #2 in Table 1), and the fourth-rank CFPs in the
AM OR approximation (set #1 in Table 2).
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Table 4
The closeness factors Cp and the norms ratios Rp for the cubic fourth- and sixth-rank CFPs and the respective global quantities between the pairs (i, j) of various CFP
sets: the triclinic CFPs obtained in the PAM TEI approximation—sets #1–#3 (cubic CFPs only in Table 3), sets #5 and #6 [9], set #7 [10], and set #4 [11]

Pair/quantity (1, 4) (1, 5) (1, 6) (1, 7) (6, 7)

C4 1.00000 1.00000 1.00000 1.00000 1.00000
C6 1.00000 1.00000 1.00000 1.00000 1.00000
Cgl 0.99996 0.99977 0.99346 0.99995 0.99454
R4 0.8592 0.8813 0.3929 0.9799 0.4009
R6 0.7264 0.6292 0.0002 0.8200 0.0002
Rgl 0.8574 0.8765 0.3875 0.9777 0.3964

Pair/quantity (4, 5) (4, 6) (4, 7) (5, 6) (5, 7)

C4 1.00000 1.00000 1.00000 1.00000 1.00000
C6 1.00000 1.00000 1.00000 1.00000 1.00000
Cgl 0.99953 0.99448 1.00000 0.99082 0.99952
R4 0.7573 0.4572 0.8769 0.3462 0.8636
R6 0.4571 0.0003 0.8858 0.0001 0.5160
Rgl 0.7516 0.4520 0.8770 0.3397 0.8570

Note that sets #2 and #3 yields the same values as set #1 in pairs with other sets #4–#7.

Table 5
The closeness factors C and the norms ratios R between pairs (i, j) for the energy level sets Ei: E1–E3 and E6 are the sets listed in Table 1 of Ref. [2] denoted by the
cubic irreps Γ i; E1 (T = 120 K) and E2 (T = 16 K)—experimental values, E3—ECM calculated, E6—quoted from [10], whereas E4 (E5)—calculated set 1 (alternative
set 2) of Table 2 in Ref. [9]

Pair/quantity (E1, E2) (E1, E3) (E1, E4) (E1, E5) (E1, E6)

C 0.9999982 0.9999529 0.9998600 0.9969977 0.9999877
R 0.9944116 0.9784687 0.9081661 0.7487859 0.9538995

Pair/quantity (E2, E3) (E2, E4) (E2, E5) (E2, E6) (E5, E6)

C 0.9998731 0.9998680 0.9968968 0.9998337 0.9978140
R 0.9942829 0.9264945 0.6951086 0.9849529 0.6846492

Pair/quantity (E3, E5) (E3, E6) (E3, E6) (E4, E6) (E4, E6)

C 0.9999118 0.9974016 0.9999523 0.9969726 0.9998567
R

N 1 com
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T
(
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a
o
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P
P
O
O
O

0.9211976 0.6991054

ote that seven energy levels are taken into account for all sets, except for set E

ulated based on the ECM reflect very closely cubic symmetry.
he following correlations may be noted. For each sets #1–#3

TE) in Table 3 compared with a given literature set using only
he cubic CFPs we obtain the values of Cp and Rp (p = 4, 6,
l): (i) very close for set #7 taken from Ref. [10]—the ranges:

p ∈ 0.99995–1.00000 and Rp ∈ 0.8200–0.9799, (ii) quite close

or set #4 (#5) of Ref. [11] ([9]): Cp ∈ 0.99977–1.00000
nd Rp ∈ 0.6292–0.8813. For set #6 (the alternative CFP set
btained in Ref. [9]) compared with sets #1–3, the close-

a
(
[
(

able 6
omparison of the structural parameters for the Pr–O6 complex in BaPrO3: the Pr–O

Set # (temperature (K))

1 (300) [12] 2 (17) [12] 3 (5) [

r–O2 222.33 223.05 223.35
r–O2 222.27 221.97 221.66
r–O1 222.52 222.87 222.78
1–Pr–O2 90.342 89.837 89.86
1–Pr–O2 90.528 90.568 90.77
2–Pr–O2 88.414 88.342 88.31
0.9793218 0.6440142 0.9406485

prising six energy levels.

ess factors are very close: Cp ∈ 0.99346–1.00000, however,
he norms ratios show disparity: Rp ∈ 0.0002–0.3929, thus con-
rming that the set #6 is physically unacceptable [9]. The
loseness factors and the norms ratios listed in Table 5 indi-
ate that all energy level sets for Pr4+ in BaPrO3 at triclinic

nd/or cubic symmetry approximation, namely, E1, E2 and E3
Table 1 of Ref. [2]), E4—the calculated set 1 of Table 2
9], and E6 for Pr4+ in BaCeO3 [10], are mutually very close
Cp ∈ 0.9998600/0.9999982 and Rp ∈ 0.9081661/0.9944116).

bonds (in pm) and the O–Pr–O angles (◦)

12] 4 (16) [29] 5 (2) [29] 6 (–) [11]

223.46 223.15 222 ± 3
222.29 222.40
223.08 223.15 223 ± 6

0 89.713 89.435
8 91.204 91.283
7 88.228 88.260
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or E5, i.e. the set 2 of Table 2 [9] calculated using the alternative
FP set [9], we obtain very close Cp ∈ 0.9968968/0.9978140,
hile disparate Rp ∈ 0.6440142/0.7487859, thus reinforcing the

bove conclusion concerning the alternative CFP set #6 of Ref.
9]. The closeness factors and the norms ratios in Tables 4 and 5
nable quantitative correlations of various sets of comparable
uantities.

. Summary and conclusions

This paper provides framework for comprehensive analysis
f crystal field parameter (CFP) datasets for transition ions at
ow symmetry sites, which enables extracting useful structural
nformation. As a case study, the full results of analysis of the
riclinic-like CFP [2] dataset as well as the cubic ones obtained
y various authors for Pr4+ ion in BaPrO3 are presented, whereas
he preliminary results were presented in the conference paper
6]. Our investigations concern several aspects, which are briefly
ummarized as follows.

The method of diagonalization of the second-rank CFPs, and
he standardization idea involved therein, have been extended to
riclinic symmetry. Our literature survey indicates that several
uthors still lack awareness of the orthorhombic and mono-
linic standardization, which have been proposed in the 1985s.
hus incompatible CFP datasets, i.e. with the fitted or calcu-

ated ‘rhombicity’ ratio lying in various ranges, do appear in
he literature. The major point is that the large non-standard
alues of this ratio do not indicate large orthorhombic distor-
ions in crystals and hence such data may lead to physically
rong conclusions. For meaningful comparisons of CFPs the
atasets must be first transformed into the same nominal axis
ystem w.r.t. both the orientation of axes and their direction,
o ensure that the ‘rhombicity’ ratio is in the standard range.
hus the standard range is strongly recommended for the CFP
resentation.

The pseudosymmetry axis method has been extended from
etragonal and trigonal type II symmetry to monoclinic,
rthorhombic, tetragonal and trigonal type I symmetry. We have
eveloped a computer module PAM with the major features:
raphical visualization capabilities; determination of the Euler
ngles (�, �, �) that define the pseudosymmetry axes, which
ave structural interpretation; accordingly transformed CFPs of
he rank k = 2, 4, 6. The orthorhombic and axial approximations
ave been applied to the fourth- and sixth-rank triclinic-like
FPs for Pr4+ in BaPrO3. Comparison of the results from

he pseudosymmetry axes method for various approximations
nables extracting useful structural information. The closeness
actors and the norms ratios, which have recently been intro-
uced to facilitate quantitative comparison of CFP datasets as
ell as the energy level sets, have also been calculated.
Major findings arising from the calculations, using the

ethod of diagonalization of the second-rank CFPs, the pseu-
osymmetry axis method, and the closeness factors and norms

atios, for the cubic and triclinic-like CFPs for Pr4+ in BaPrO3 are
s follows: (i) the results arising from the first method show that
he strength of low symmetry effects inherent in the second-rank
FPs appear quite large, whereas the large discrepancy between

a
a
d
e

and Compounds 456 (2008) 16–26 25

∗
2 (original triclinic CFPs: q = 0, 2) and S2 (total obtained also
rom the module 3DD) indicates significant deviation of the
rystallographic axis system from the principal axis system of
he second-rank CF terms, (ii) the method of diagonalization
f the second-rank CFPs is equivalent to Burdick and Reid [30]
ethod, however, but their method for the fourth- and sixth-rank
FPs has no clear not physical sense, (iii) the orthorhombic
pproximation within the pseudosymmetry axes method visu-
lizes fourfold and twofold pseudo-symmetry axes determined
.r.t. the crystallographic axis system, whereas the tetragonal

trigonal) approximation visualizes the three (four) equivalent
our- (three-) fold pseudosymmetry axes and (iv) the structural
odel of site symmetry arising from the calculations using the
odule PAM shows that in spite of the buckling of the Pr–O6

ctahedra the local site symmetry of the complex is very close
o cubic octahedral one.

Additional advantages of the comprehensive approach reside
n the fact that both the method of diagonalization of the second-
ank CFPs and the pseudosymmetry axis method yield several
hysically equivalent CFP sets. Thus these CFP sets may be used
n the multiple correlated fitting technique for additional fittings
sing such CFP sets as starting values. This would yield sev-
ral correlated datasets. Finding the intercorrelations between
hese sets requires knowledge of the transformation proper-
ies of CFPs. This need enhances the role of the package CST
or conversions, standardization, transformations of crystal field
zero-field splitting) parameters. The multiple correlated fitting
echnique offers ways to increase accuracy and reliability of final
tted CFPs, identify global minima, and eliminate spurious sets
computational artifacts).

In summary, the comprehensive approach proposed here
omprising three methods outlined above, together with the
ultiple correlated fitting technique, proved to be useful in

ptical studies of low symmetry systems. Application of the
hree-method approach to the triclinic-like CFPs for Pr4+ ion
n BaPrO3 [2] confirms the usefulness of our comprehensive
pproach. The axes determined using the method of diagonal-
zation of the second-rank CFPs and the pseudosymmetry axes

ethod have been related to the structural data. The principal
xes of the second-rank CFPs obtained due to the former method
ave been correlated with the principal axes of the g-factor and
he A-tensor determined in Ref. [2]. The apparent low symmetry
ature of the triclinic-like CFPs [2] determined in the crystal-
ographic axis system [12] becomes evident due to application
f the pseudosymmetry axes method extended to orthorhombic
nd axial cases. Thus the hypothesis concerning the cooperative
uckling of Pr-octahedra reducing the local site symmetry, while
reserving the nearly octahedral geometry for the Pr site [2] is
upported by our considerations.

Importantly, our approach may help experimentalists to better
nterpret and analyze optical data as well as to extract useful
tructural information from CFP datasets for transition ions at
ow symmetry sites. This approach appears timely, whereas other

pplications of this approach for rare-earth ions in various hosts
nd reanalysis of the CFP as well as zero-field splitting parameter
atasets for several other ion-host systems will be considered
lsewhere.
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