Journal of

AND COMPOUNDS

Journal of Alloys and Compounds 456 (2008) 16-26

www.elsevier.com/locate/jallcom

Comprehensive analysis of crystal field parameter datasets for
transition ions at low symmetry sites and extracting structural
information—Application to Pr** in BaPrOs

Czestaw Rudowicz *, Pawetl Gnutek

Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin, Poland

Received 17 January 2007; received in revised form 8 February 2007; accepted 9 February 2007
Available online 21 February 2007

Abstract

Our recent literature survey has revealed several crystal field parameter (CFP) datasets for rare-earth ions at orthorhombic, monoclinic, and
triclinic symmetry sites in various hosts. Often CFP datasets are not directly comparable, even for the same ion-host system, whereas the low
symmetry effects observed may be either actual or apparent. Careful considerations are required to distinguish the nature of the low symmetry
effects and extract useful structural information inherent in the low symmetry CFPs. For this purpose, we propose a comprehensive approach
comprising three methods. First method consists in finding the principal values of the second-rank CFPs and the orientation of their principal axis
system w.r.t. the original or crystallographic axis system. Second method consists in extending the cubic/axial pseudosymmetry axes method to
lower symmetry cases. Third method consists in considering for quantitative comparison of CFP datasets of the closeness factors C,, and the norms
ratios R, = Na/Np for the respective Hcp terms: p=k=2, 4, and 6, and the global (p = gl) ones. Usefulness of the various physically equivalent CFP
datasets generated by the first and second method as initial sets for the multiple correlated fitting technique is also discussed. This study benefits
from cross-fertilization between the spin Hamiltonian theory used in the EMR area and the CF theory, since these methods have been used before
in the EMR area. As an application of this approach, for the first time in the CF theory area, we reanalyze the triclinic-like CFPs and the low
symmetry effects involved therein as well as the cubic CFPs for Pr** in BaPrO;.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The crystal field parameter (CFP) datasets for rare-earth ions
at orthorhombic, monoclinic, and triclinic symmetry sites in var-
ious hosts, revealed by our recent literature survey, are often
disparate and thus not directly comparable even for the same
ion-host system. Each symmetry case presents specific intri-
cacies, which are often not realized by experimentalists [1].
Among others, it appears that upon appropriate transformations
such datasets may turn out to be either physically equivalent
or completely inconsistent. For rare-earth ions at triclinic sites,
the symbolic CFPs [1], i.e. those used in the CF Hamiltonian,
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expressed in their original axis systems include for a given rank
k=2, 4, 6, all components, —k < g <+k, admissible by group
theory. Using all 27 symbolic CFPs for fitting the experimental
spectra, i.e. the ‘complete’ C-approach, yields the experimen-
tally fitted CFPs that shall be considered as expressed in an
undefined ‘nominal’ axis system [1]. The C-approach does not
utilize fully the information inherent in the CFP datasets. The-
oretical calculations of CFPs based on various models, which
most commonly employ the crystallographic axis system cen-
tered at rare-earth ion, may also yield triclinic-like CFP datasets.
However, ‘triclinicity’ of the model CFPs turns out to be appar-
ent in the cases when (i) the local site symmetry is actually
higher than triclinic or (ii) the crystallographic axis system
does not coincide with the symmetry-adapted axis system. Care-
ful considerations are required to distinguish the nature of the
low symmetry effects and extract useful structural information
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inherent in the CFPs for the symmetry cases in question. Such
considerations are carried out here using as an example the CFP
datasets for Pr** ion in BaPrOs [2] and utilizing the compre-
hensive approach comprising three methods described in details
in Refs. [3-5]. Preliminary results have been presented at a
conference [6].

Preliminary results have been presented at the 6th Inter-
national Conference on f-elements, 4-9 September 2006,
Wroctaw, Poland [6]. In this paper we provide the full results
of analysis of the triclinic-like crystal field parameter (CFP) [2]
dataset as well as the cubic ones obtained by various authors
for Pr** ion in BaPrOs. The triclinic-like CFPs were calcu-
lated using the exchange charge model (ECM) by Popova et
al. [2]. Our comprehensive approach comprises three recently
developed methods: (i) the procedure for diagonalization of the
second-rank CFPs [3], (ii) an extension of the cubic/axial pseu-
dosymmetry axes method of Bacquetet al. [4] to lower symmetry
cases [5], and (iii) quantitative comparison of CFP datasets and
other quantities based on the closeness factors C}, and the norms
ratios R, = Na/Ng for the respective Hcr terms: p=k=2, 4, 6,
and the global (p =gl) ones [1,7]. The method (i) provides the
principal values of the second-rank CFPs and the orientation
of their principal axis systems w.r.t. the original axis system.
The method (ii) provides the pseudosymmetry axis systems that
best reflect the approximation to a selected higher symmetry
case. This is achieved by minimizing an appropriate combina-
tion of the CFPs w.r.t. the Euler angles, which define the resulting
pseudosymmetry axis system. So obtained CFP sets exhibit the
maximal and minimal values of the given higher symmetry CFPs
and the out-of-given symmetry ones, respectively. This enables
comparison with the experimental CFPs fitted using higher albeit
approximated symmetry, e.g. cubic. The method (iii) provides
means for quantitative comparison of various sets of N quan-
tities of the same nature, e.g. the CFPs or the energy levels,
considered as N-dimensional ‘vectors’. Comparison and corre-
lation of various axis systems considered here enable to extract
useful structural information inherent in the low symmetry CFP
datasets but not hitherto utilized. Our three-method approach and
analysis of the respective results may facilitate correlation of the
optical spectroscopy data with the structural data obtained from
X-ray studies. In Section 2 we discuss thoroughly the aspects
bearing on the reliability of the triclinic-like and cubic CFPs for
Pr** jon in BaPrOj as well as some inconsistencies revealed in
Ref. [2]. In Section 3 we apply the three-method approach to
analyze the triclinic-like CFPs and consider the nature of the
low symmetry effects involved.

2. Crystal field parameters for Pr#* ion in BaPrO;

The first observation of the optical spectrum of Pr** in
BaPrOs was reported in Ref. [8]. The local site symmetry of the
four-fold coordinated Pr** ions in BaPrO3 (orthorhombic space
group Pbnm) is considered as C; due to distortion of the approx-
imated octahedral Oy, symmetry [2]. The cubic symmetry was
used as a first approximation in the optical spectroscopy studies
of Pr** in BaPrO3 [2,8-11]. The unitcell of BaPrO3 drawn based
on the crystallographic data [12] for 7=300 K and the definition

of the crystallographic axis system (x||a, y||b, z||c) as well as the
four adjacent Pr—Og¢ octahedra obtained from these data indicat-
ing the buckling of octahedra were presented in Fig. 1 of Ref.
[6]. The BaPrOs3 unit cell contains four magnetically inequiva-
lent Pr*t sites at positions given in terms of the units vectors (a, b,
¢) as (0.5, 0, 0)—Pr1, (0, 0.5, 0)—Pr2, (0.5, 0, 0.5)—Pr3 and (0,
0.5, 0.5)—Pr4. These sites are related by symmetry operations
[2].

Based on the ECM [13] and using the crystallographic data
[12] for T=300 K, Popova et al. [2] calculated theoretically the
CFPs originally defined by the CF Hamiltonian [13]:

Hcp = qunpO‘[Iy (H

where 0% and 1, were termed as “the Stevens operators and the
reduced matrix elements” without providing any references for
their definitions. In their Table 2 [2] another symbol B, appears
indicating explicitly p as the rank and k as the component. The
notation [13,2] in Eq. (1) differs from the well-established nota-
tions for the usual and extended Stevens operators [14—18] and
the associated CFPs (as well as the zero-field splitting ones)
reviewed in Refs. [14,15]. As discussed in Ref. [19], Hcp (1) is
equivalent to the prevailing [14—17,20] one:

Her =Y BlO!(JorL) =S A! <rk> 6. 0] = clo.0!
k.q k.q k.q
2

where k denotes the rank and ¢ the component, whereas 6
(=np)=a, B,and y fork=2, 4, and 6, respectively, are the Stevens
factors [16]. Note that different Stevens factors apply for the
excited multiplet 2F;, than for the ground one 2F5/2, whereas
the two types of the Stevens factors (J|6x|J) and (J|0;|J + 1) are
listed in Ref. [16]. Hence, doubts arise which factors have been
actually used in Ref. [2]. Therefore, in order to avoid further
confusion, for data presentation below we use the original CFP
values of Table 2 in Ref. [2] denoted as By, (k as the rank and
q as the component) without converting them to the CFPs CZ
defined in Eq. (2).

Under the combined action of the spin-orbit coupling and
the octahedral CF, the f' configuration splits into three Kramers
doublets and two quartets yielding four possible transitions; see,
e.g. [2,9,11]. At the lower symmetry CF only the quartets splits,
yielding total six transitions, which can be used for fitting the
CFPs. Hence, it is impossible to fit all 27 CFPs required for pPrit
ions at triclinic symmetry sites. The ECM [2] employed instead
three dimensionless parameters of the model Gy, k=2, 4, and 6,
together with the spin-orbit coupling constant A. The values of
these four parameters were obtained by matching the theoretical
energy levels with the optical data. The interplay between the
spin-orbit coupling and CF is important since adjusting the value
of A affects the resulting values of the CFPs. This is due to the
fact that the splitting between the multiplets 2Fs, and 2F7/, by
spin-orbit coupling is about 3000cm™!, i.e. comparable with
splitting of 2Fs/, by CF of about 2000cm™!.

Concerning the cubic CFPs determined by various authors for
Pr** in BaPrOs, the following comments are pertinent. Doubts
arise concerning the numerical conversion in Ref. [2] of the
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cubic CFPs for Pr** in BaCeO3 [10] used for comparison with
their CFPs for Pr** in BaPrOj. The prevailing cubic Hcp form
expressed in the tetragonal fourfold axes in the notation of Eq.
(2) [14,16]:

Her = CIB(09 + 50 4 C2y(0% —210%) 3)

yields the relations for the cubic CFPs: C§ = 5C9 and C¢ =
—21C2. Note that a rotation of the coordinate system by 45°
around the z-axis parallel to the four-fold symmetry axis, with
the x- and y-axis taken as the two-fold symmetry axis, yields
instead of Eq. (3) the form:

Her = CYB(0Y — 50%) + CLy(0) +210%). 4

It appears the authors [2] implicitly use the relations for
the cubic CFPs: Cﬁ = —SCQ and Cg = 21C2, which differ in
signs from those in Eq. (3). It is not clear if such rotation
has been implicitly implemented in Ref. [2] or the signs of
the two cubic CFPs have been changed inadvertently. Note
that the sign convention for the two parameters in question
is completely arbitrary, since -replacing Cﬁ and Cé by —Cﬁ
and —Cg does not change any predicted energy level. How-
ever, it should be kept in mind that this convention applies
only for cubic and tetragonal cases. For orthorhombic or lower
symmetry case we have to consider other orthorhombic-like
parameters C,% and C,f, which transform under the 45°/Oz rota-
tion into —C,;z and —C,;é, respectively. Thus for symmetry
lower than cubic or tetragonal, meaningful comparison of all
CFPs requires consideration implications of the 45°/Oz rotation
also for the orthorhombic and/or lower symmetry CFPs [21]. The
signs of the cubic CFPs have structural implications discussed
in Section 3. The CFPs in Ref. [10] were expressed in terms
of the energy differences: A=E(I's) — E(I';)=1686cm™! and
O=E(I'y) —E(I's)=2521 cm™!, where I'; denote the cubic
irreps for the f! configuration. Assuming Ay (%) = C,? and using
the expressions 7R=A, 70=06, Cg =21(30 +2R)/32, and
Cg =39(50 — 4R)/640 [9], we obtain Cg = 1025cm~! and
Cg = 51cm™!. According to the prevailing conventions, these
values would yield C; = 5125cm™! and C? = —1071cm™!,
instead of the values listed in Ref. [2]: C = —5075cm ™! (this
value may be misprinted in Ref. [2] for —5125 cm™!) and
C¢=1071em™.

In the neutron scattering study [11] indicates the excited
level I'g = (255 + 10) meV (2056.7 £ 80.6 cm™ ), which yields
the cubic experimental CFP V4=(119+4)meV (959.8 +
32.3cm™!), whereas the CFP V¢ was approximately esti-
mated as the ratio Vg/V4=~0.05. Hence, we obtain: Cg =
V4 =959.8, C§ = 5V4 = 4799.0, C? = Vo = 0.05V, = 48.0,
Cg = —21Vg = —1007.8 (cm™"). The magnetic susceptibility
study [9] of Pr** in BaPrO3 provided two sets of the cubic
CFPs [7R, 7Q]: (1) [1562, 2881], and (2) [1562, 1267] (cm™ ),
which yield correspondingly [Cg, Cg, Cﬁ, Cé, Cg/Cg] as: (1)
[1103, 71, 5516, 1491, 0.05] and (2) [649, 0.76, 3245, 15.96,
0.001] (em™!). Set (1) was considered as more reliable, since
it yielded better description of the values |uers|=0.7(1)up,
spin-orbit coupling constant & = 865 cm ™!, and the excited level

I'g=2057+81cm~! [11]. The set (2) arises from an attempt
to fit the experimental magnetic susceptibility data in Fig. 4
in Ref. [9] using the values I'g=1550cm™!, 7R=1562cm™!,
and &=865cm~!, which yield 70=1267cm™'. The so
recalculated values of C§ and the ratio C2/CY for set (1)
correspond better than those for set (2) to the values obtained
in Ref. [9]. The authors [9] provide also explicitly the values
Cg = 1100cm™~! and Cg = 71 cm™!, which correspond to their
set (1) and agree well with those recalculated by us above based
on the cubic CFPs [9]. In view of the disagreement in signs of
the cubic CFPs in Ref. [2] and the other literature data [8—11],
the cubic, and thus by implication the triclinic-like CFPs [2],
should be treated with caution.

3. Analysis of the CFPs for Pr** ion in BaPrO;

For this study we have developed computer package DPC
comprises three modules [6]: (i) module 3DD—for diagonaliza-
tion of the second-rank CFPs, (ii) module PAM—for extension
of the pseudosymmetry axes method to lower symmetry cases
that enables finding the pseudosymmetry axis system for the
fourth-rank CFPs, and (iii) module CFNR—for calculations of
the closeness factors and the norms ratios for quantitative com-
parison of CFP datasets and other quantities. The module 3DD
based on diagonalization of the second-rank CFPs provides the
principal values of the second-rank CFPs and the orientation
of their principal axis systems w.r.t. the original axis system
[3]. The module PAM based on an extension of the cubic/axial
pseudosymmetry axes method [4] to monoclinic, orthorhombic
(OR), tetragonal I (TEI), and trigonal I (TGI) approximations
provides the pseudosymmetry axes that best reflect the approxi-
mation to a selected higher symmetry case [5]. This is achieved
by minimizing an appropriate combination of the CFPs w.r.t.
the Euler angles («, B8, y), which define the axes determined by
the pseudosymmetry axes method. For this purpose the module
PAM calculates the 3D surface of the function esym Ww.r.t. the
angles « and B as well as the contours of gy representing its
minima. So obtained CFP sets exhibit the maximal and minimal
values of the given higher symmetry CFPs and the out-of-given
symmetry ones, respectively. This enables comparison with the
experimental CFPs fitted using higher albeit approximated sym-
metry, e.g. cubic. The closeness factors C,, and the norms ratios
R, provide means for quantitative comparison of various sets of
n quantities of the same nature, e.g. the CFPs or the energy levels,
considered as n-dimensional (nD) ‘vectors’ [1,7]. The principal
axis systems and pseudosymmetry axes may be compared with
the axis systems commonly used in the CF area. For theoretical
model calculations, e.g. the ECM ones [2], generally the crys-
tallographic axis system is adopted, which may differ from the
rare-earth for a given transition ion. Any experimentally fitted
CFPs shall be considered as expressed in an undefined ‘nomi-
nal’ axis system [1]. Comparison and correlation of various axes
considered here enable to extract useful structural information,
inherent in the low symmetry CFP datasets, and not hitherto
utilized. Our three-method approach and analysis of the respec-
tive results may facilitate correlation of the optical spectroscopy
data with the structural data obtained from X-ray studies. This is
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Table 1

The CFP in the extended Stevens notation CZ sets (cm~!) and the respective Euler angles (defined in text; in degrees) for Pr** in BaPrOs: set #1—ECM calculated
triclinic set [2], sets #2—#7—after diagonalization of the second-rank CFPs using the module 3DD

o 0 0.433 0.433 90.649 90.649 1.854 1.854
B 0 67.081 67.081 89.490 89.490 157.075 157.075
y 0 0.553 90.553 —22.920 67.080 91.308 1.308
Si - Sy S S Ss S Se
kg Set #

1 2 3 4 5 6 7
2,2 130.3 572 -572 —86.2 86.2 —1434 143.4
2,1 123.7 0 0 0 0 0 0
2,0 34 76.5 76.5 —66.9 —66.9 -9.7 -9.7
2, -1 —1.1 0 0 0 0 0 0
2,-2 24 0 0 0 0 0 0
W =c2/Ch - 0.747 —0.747 1.289 —1.289 14.831 —14.831
4,4 —4707.6 3347.1 3347.1 2758.9 2758.9 —4802.1 —4802.1
4,3 —4183.7 ~9566.6 1774.9 1053.8 1014.7 1146.0 3874.6
4,2 3074 —4320.5 43205 —4656.7 4656.7 —336.1 336.1
4,1 —3838.5 1885.9 —1340.5 203.2 —1449.1 1111 3806.1
4,0 830.3 —329.1 —329.1 —245.1 —245.1 835.0 835.0
4, -1 —3415 —1340.5 —1885.9 —1449.1 —203.2 —3806.1 1111
4,-2 60.9 —3143 3143 —-1920.2 1920.2 —108.6 108.6
4,-3 —1075.4 —1774.9 —9566.6 —1014.7 1053.8 3874.6 —1146.0
4,—4 —1601.9 —46.1 —46.1 2846.0 2846.0 1394.8 1394.8
6,6 —30.9 820.6 —820.6 254.5 —2545 45.4 —454
6,5 —2419.0 300.1 850.6 —771.8 5439 —649.7 2369.7
6,4 819.0 632.8 632.8 546.4 546.4 882.8 882.8
6,3 960.0 —361.6 2426 —256.9 —391.3 —3124 —856.0
6,2 270.2 76.5 —76.5 4122 —412.2 —2759 275.9
6,1 —290.2 —834.2 —150.0 58.8 —103.5 36.6 347.1
6,0 40.5 ~50.9 ~50.9 —79.7 —79.7 324 324
6, —1 —36.8 ~150.0 834.2 —103.5 —588 —347.1 36.6
6, —2 512 —1837 183.7 183.7 —1837 412 —412
6, -3 2403 2426 —361.6 3913 —256.9 —856.0 3124
6, —4 2823 222 222 487.1 487.1 —2535 —2535
6, -5 —~1062.0 850.6 —300.1 5439 771.8 —2369.7 —649.7
6, -6 -15.0 124.8 —124.8 726.3 —7263 —447 447

evidenced by our consideration of the CFPs for Pr** in BaPrOs
below.

The original triclinic-like CFPs for Pr1 [2] are listed in Table 1
(set#1). The set#1 yields the rotational invariants [1]: S = 37.28,
452.00, and 44.48 (cm_l) for k=2, 4, and 6, respectively. All
transformed CFP sets in Tables 1-3 yield the same Sk, thus con-
firming correctness of the respective transformations. The above
values of S4 and Sg are close to the cubic approximation ones
in Refs. [10,11] and for set (1) in Ref. [9], whereas differ from
that for set (2) in Ref. [9]; [Ss, S¢] (cm~1)=[447.35, 40.01] and
[418.98, 37.65] for Refs. [10,11] [481.39, 55.70] and [283.25,
0.60], for set (1) and (2) in Ref. [9], respectively.

First we determine the principal values of the second-rank
CFP ‘tensor’ and the respective Euler angles («, B, y) apply-
ing the module 3DD [3] to set #1 in Table 1. The fourth- and
sixth-rank CFPs can be transformed accordingly using the CST
package [22], so for convenience the transformation expressions
have been incorporated into the module 3DD. In Table 1 we
provide the six orthorhombic-like sets (#2—#7) corresponding
to the original triclinic set #1 for the angles « and B in the range
O—m. The set #2 is chosen as the standard one (S1), whereas

the remaining sets #3—#7 represent the transformed sets using
the orthorhombic standardization transformations Si (S2-S6)
defined in Refs. [23,24]. The respective values of the ratio
A = C3/CY are also provided in Table 1. For the orthorhombic-
like datasets the ratio A" describes the ‘rhombicity” of the second
rank CFPs [23,24], so it is not meaningful in this sense for lower
symmetry cases including non-orthorhombic CFPs. In general,
the method of diagonalization of the second-rank CFPs yields
also other solutions [3], which may alternatively be obtained
from the basic ones listed in Table 1 by a rotation 180° around
either axis (x, y, z). The resulting sign relationships, noticed also
by Burdick et al. [25], are explained in terms of the transforma-
tion properties of the CFPs in Ref. [3].

Next we apply the module PAM [5] to set #1 in Table 1
for the angles o and B in the range O-m. In Table 2 we
present the results of the approximation OR, whereas in Table 3
for TEI and TGI. We additionally list the asterisked values
Sy = \/((C,(c))2 + (CZ)z/(c’(;)z)/Qk + 1)fork=2,4 and 6, based
only on the bolded CFPs applicable for a given symmetry

approximation used in the pseudosymmetry axes method as
well as the asterisked values A'* = C% / Cg defined in Ref. [5].
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Table 2

The CFP in the extended Stevens notation CZ sets (cm~!) and the respective Euler angles (defined in text; in degrees) for Pr** in BaPrOj: sets #1-#9 result from the

PAM OR approximation

o 4.703 5.036 59.847 50.300 43111 94.717 146.400 139.121 129.488
B 78.415 168.415 37.468 81.788 126.278 89.935 53.640 98.118 142.423
y 0.067 0.326 —13.423 —8.202 —10.089 —11.585 —10.218 —8.296 —13.548
k, q Set #

1 2 3 4 5 6 7 8 9
2,2 59.9 138.7 -30.7 —-19.3 —-8.3 —78.8 22.3 0.3 -2.3
2,1 —66.6 66.6 —-0.7 —44.9 0.7 3.1 38.6 49.3 —38.6
2,0 72.5 —-6.3 4.7 —6.7 —-17.7 —66.2 -9.0 13.0 15.6
2,—1 —39.3 3.1 -231.0 —271.3 —161.3 39.3 164.4 277.3 227.8
2,-2 1.6 19.6 —80.6 24.6 115.5 333 113.9 22.4 —82.2
M= C%/Cg 0.826 —21.935 —6.493 2.900 0.466 1.191 —2.430 0.026 —0.149
4,4 3805.7 —5192.9 3880.2 5173.0 3902.0 3938.3 3911.8 5167.5 3862.2
4,3 51.5 —101.4 39.9 —437 —-39.9 —19.1 51.0 99.3 —50.8
4,2 —5217.8 —-75.7 5182.6 14.5 5170.1 —5142.1 5162.9 114 5191.3
4,1 35.9 14.0 5.7 —6.2 —-5.7 —14.1 7.2 14.1 -7.3
4,0 —252.1 1033.4 —255.5 1036.2 —258.6 —-271.1 —261.6 1037.0 —254.5
4, —1 —1.6 5.8 91.8 -379 41.9 1.5 —56.0 37.8 —77.7
4, -2 8.3 -3.1 —-25.1 —28.4 55.3 21.8 47.0 —12.5 —334
4,-3 10.9 39.1 —129.6 265.0 —583 —11.0 77.7 —265.1 110.2
4, —4 10.0 0.0 29.3 0.1 —64.2 25.0 —54.3 0.0 39.3
CX/CQ —15.095 —5.025 —15.187 4.992 —15.089 —14.529 —14.955 4.983 —15.176
CZ/CE: 20.695 —0.073 —20.285 0.014 —19.992 18.970 —19.738 0.011 —20.399
6,6 830.9 —180.6 —822.1 -7.0 —809.9 786.0 —806.5 —5.5 —823.3
6,5 —158.6 —101.7 -9.9 —24.3 —29.2 34.3 25.4 47.4 7.4
6,4 715.2 1185.0 730.3 —1181.9 742.1 772.7 746.8 —1181.3 728.0
6,3 76.7 41.6 15.5 7.3 2.3 —14.8 0.1 —18.9 —14.9
6,2 268.4 27.2 —349.0 —-2.8 -392.8 466.6 —403.8 —-2.8 -337.0
6, 1 -34 50.7 0.2 —34.3 6.9 4.0 -7.5 50.5 1.5
6,0 -101.0 55.6 -93.5 56.6 —89.6 —81.8 —88.4 56.8 —94.7
6, —1 —-14 12.3 —41.1 —1404 —14.9 -2.2 11.3 144.0 33.3
6, —2 1.8 0.7 -85 10.0 16.7 3.7 14.3 7.1 -9.2
6, -3 5.8 —6.1 —172.8 —86.7 —86.5 32 103.5 71.7 159.1
6, —4 -84 -3.6 —-51.3 5.9 96.5 —47.3 90.2 7.1 —63.8
6, —5 7.3 —11.7 —376.5 —189.9 —195.1 12.5 234.1 170.2 344.6
6, —6 10.2 —-0.8 —-51.2 60.0 113.5 34.8 99.7 38.6 —54.5
Cg/Cg —8.226 —3.250 8.789 —0.123 9.038 —9.604 9.120 —0.096 8.695
C;‘/Cg —7.081 21.325 —17.807 —20.880 —8.282 —9.442 —8.445 —20.802 —7.689
Cé/C6 —2.657 0.490 3.731 —0.050 4.383 —5.701 4.567 —0.050 3.559
S5 /82 (%) 96.32 96.32 22.00 15.56 22.00 96.32 18.83 15.56 18.83
S /84 (%) 100.00 100.00 99.99 99.99 99.99 100.00 99.99 99.99 99.99
S¢ /86 (%) 99.91 99.91 99.35 99.32 99.35 99.91 99.39 99.32 99.39

Comparison of the two types, i.e. total and asterisked, of (i)
the rotational invariants and (ii) the ‘rhombicity’ ratio for the
second rank CFPs provides a measure of the goodness of the
given higher symmetry approximation. Comparison of the OR
results, which represent both the four- and two-fold pseudosym-
metry axes, with the TEI ones, which represent only the four-fold
pseudosymmetry axes, enables recognition of the OR solutions
that correspond to the four-fold pseudosymmetry axes, whereas
the remaining solutions, i.e. not assigned in this way, correspond
to the two-fold ones. The results in Tables 2 and 3 indicate the
following correspondence between the OR and TEI solutions:
OR#2 and TEI#1, OR#4 and TEI#2, OR#8 and TEI#3. This is
confirmed by the respective closeness factors C,, and the norms

ratios R), for the respective Hcr terms: k=2, 4, 6, and the global
(gD) ones. We obtain C;, Cy4, Cg, and Cg equal nearly exactly
1.0 (within the eight decimal places) for each pair of the OR
and TEI sets, whereas all R, equal exactly 1.0. The solutions
for the TGI approximation represent the three-fold pseudosym-
metry axes. However, the TGI approximation can be considered
only as following directly from the triclinic CFP case, without
the ascent of symmetry via the monoclinic, orthorhombic, and
tetragonal approximation. This shows the greater usefulness of
the latter approximations over the former one. The difference in
the orientation of the respective z-axes being the four-fold (three-
fold) pseudosymmetry axis for the approximation TEI (TGI) is
illustrated in Fig. 1.
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Table 3
The CFP CZ sets (cm~!) and the respective Euler angles (defined in text; in degrees) for Pr*+ in BaPrOs after the TEI approximation (sets #1—#3) and TGI
approximation (sets #4—#7); ES—the extended Stevens and NS—the normalized Stevens notation

a 5.039 5.039 50.300 50.300 139.121 139.121 4.647 4.746 102.806 86.641
B 168.413 168.413 81.788 81.788 98.118 98.118 43.148 113.679 55.490 124.379
y 0.328 0.328 —8.202 —8.202 —8.295 —8.295 0.096 0.072 —14.106 —14.084
k, q Set #

1 (ES) I'(NS)  2(ES) 2(NS)  3(ES) F(NS)  4(ES) 5 (ES) 6 (ES) 7 (ES)
2,2 138.7 80.1 -19.3 ~11.1 03 0.2 704 101.8 —98.0 -99.5
2,1 66.6 19.2 —44.9 ~13.0 493 14.2 126.4 -170.8 —111.8 113.9
2,0 -63 -6.3 -6.7 -6.7 13.0 13.0 61.9 30.5 —47.0 —45.5
2,-1 3.1 0.9 -2713 —80.1 271.3 80.1 -33.9 -303 —64 70.5
2,-2 19.6 113 24.6 14.2 224 13.0 -10.1 12.6 385 158
Ve =C3/CY -21.932 - 2.900 - 0.026 - 1.138 3.335 2.088 2.188
4,4 —5192.9 -877.8 5173.0 874.4 5167.5 873.5 —53.4 —85.0 423 54.7
4,3 —101.0 —6.0 —43.7 -2.6 99.3 59 —193985 194883  —19627.5 19592.5
4,2 ~75.7 -16.9 14.5 33 114 2.6 -5.1 -0.7 -18.7 —20.6
4,1 14.5 2.3 6.2 -1.0 14.1 22 35.0 —67.2 —61.9 74.3
4,0 1033.4 1033.4 1036.2 1036.2 1037.0 1037.0 ~703.3 —694.3 —680.2 —683.7
4,-1 5.6 0.9 -37.8 —6.0 37.7 6.0 -9.0 12.5 -29.7 262
4,-2 -3.1 -0.7 —284 -6.3 —125 -2.8 -0.8 4.0 6.2 1.4
4,-3 39.3 2.3 265.1 15.8 —265.2 ~15.8 0.0 0.0 0.0 0.0
4,—4 0.0 0.0 0.0 0.0 0.0 0.0 129 8.6 252 295
ci/cl -5.025 - 4.992 - 4.983 - - - - -
c3/cl - - - - - - 27.581 —28.071 28.856 —28.656
6.6 ~180.6 -16.8 ~7.0 -0.6 -55 -05 923.6 950.2 993.9 987.1
6,5 —101.4 -2.7 —243 —0.7 474 1.3 -217.7 431.7 336.9 —3743
6.4 1185.0 1493 -11819 -1489 11813 -148.8 —48.4 -91.1 58.0 65.2
6,3 415 2.9 7.2 0.5 —18.9 -13 14253 12934 —1104.4 11329
6,2 272 3.8 -2.8 04 -2.8 04 -282 —39.8 36.5 417
6,1 50.7 5.5 -343 -3.7 50.5 5.5 —40.4 47.6 354 —41.6
6,0 55.6 55.6 56.6 56.6 56.8 56.8 92.5 98.0 105.5 104.4
6, -1 12.3 1.3 —140.4 ~153 144.0 15.7 6.7 —0.6 274 -23.0
6, -2 0.7 0.1 10.0 1.4 7.1 1.0 —4.5 -2.9 -20.0 -16.9
6,3 —6.1 —04 —86.7 —6.0 77.8 54 —2.7 ~1.6 48 -7.0
6, —4 -36 -0.5 5.9 0.7 7.1 0.9 6.4 7.6 26.9 304
6,-5 ~11.8 -0.3 —190.0 -5.1 170.2 46 —28.9 405 —157.9 160.7
6, =6 —0.8 —0.1 60.0 5.6 38.6 3.6 32 -15 —6.5 -11.9
ct/cl 21.325 - —20.879 - —20.802 - - - - -
55/82 (%) 7.59 7.59 7.99 7.99 15.56 15.56 74.28 36.61 56.33 54.56
Sk /S4(%) 99.99 99.99 99.99 99.99 99.99 99.99 100.00 99.99 99.99 99.99
S /S6 (%) 99.33 99.33 99.33 99.33 99.33 99.33 99.80 99.37 99.57 99.48

In order to extract useful structural information inherent in the
respective Euler angles sets and the CFPs sets in Tables 2 and 3,
we need to carry out theoretical analysis of the transformation
properties of CF Hamiltonian in Egs. (3) and (4) and then ana-
lyze correspondingly the original CFPs and the axis systems
used [2,12]. The authors [2] have implicitly adopted the crys-
tallographic axis system defined in Fig. 1 of Rosov et al. [12],
in which the Pr-ligands complex (see Fig. 1 of Ref. [6]) has
the orientation corresponding to the 45°/Oz rotation discussed
in Section 2. Note that the axes x and y directed towards lig-
ands represent the so-called first-kind orthorhombic symmetry,
whereas the 45°/Oz rotation represents the so-called second-
zlle Zje kind orthorhombic symmetry [26]. Correspondingly, for cubic

Fig. 1. The z-axis obtained using the module PAM for each of the three solutions symmetry, the former axis Sys’tem, V.VhICh applies to Hcr in Eq.
in the TEI (a) and the four solutions in the TGI approximation (b). (3), may be defined as the basic cubic axis system, whereas the
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latter axis system, which applies to Hcp in Eq. (4), as the 45°/0z
rotated cubic axis system. The two axis systems yield the cubic
CFP ratios (C§/CY, C2/CY) as (5, —21) and (-5, 21), respec-
tively. Transformations of Hcr in Eq. (3) using any orthorhombic
transformation S2 to S6 [23,24] leave Hcp invariant and thus pre-
serve the CFP ratios. This invariance, however, does not apply
fully to Hcr in Eq. (4). Only the transformation S3 leaves Hcp
invariant, whereas other transformations, resulting in the change
of the z-axis to a two-fold axis, yield Hcr in the form:

Her = {CHB(—1 05 £50% + B ob
HOW(-F O F RO+ P05 F 3 0)

where the curly brackets denote the original CFPs, whereas the
upper sign applies to S2 and S4, while the lower sign to S5
and S6. The transformed CFPs denoted by the square brackets
result from Eq. (5) as C{ = const{C{}. The CFPs [C7],[C?], and
[Cg] reflect the apparent orthorhombic symmetry for the purely
cubic Hcr expressed in the transformed axis systems. Eq. (5)
yields the following relations for the transformed cubic CFPs (S2
and S4—upper sign; S5 and S6—lower sign): [Cj/Cg] =—15,
[C3/CI1 = %20, [CS/CY] = £231/26 ~ £8.88, [CZ/CQ] =
—105/13 ~ —8.08, and [C2/CY] = £105/26 ~ £4.04. In a
similar way in Ref. [21] we have considered the S2 to S6
transformations and derived the relations for the second-rank
CFPs for tetragonal I and II symmetry as well as both kinds
of orthorhombic symmetry. The general relations [21] are used
below to analyze the TEI and OR approximations within the
pseudosymmetry axes method.

Analysis of the TEI and OR sets in view of the theoretical
relations derived above enable the following observations. The
TEI sets #2 and #3 in Table 3 correspond to the basic cubic axis
system, whereas the set #1 corresponds to the 45°/Oz rotated
cubic axis system. Due to the correspondence discussed above,
the same applies to the equivalent OR sets (#2, #4, and #8). The z-
axes for the sets #1—#3 are mutually perpendicular to each other,
whereas the orientations of the x- and y-axes vary. Importantly,
the calculated ratios C§/C9 and C¢ / C2 for sets #1—#3 in Table 3
turn out to be very close to the theoretical ones for pure cubic
symmetry in Eqgs. (3) and (4). This reveals the very high degree
of cubic symmetry of the fourth- and sixth-rank CFPs in TEI sets
#1—#3. The calculated CFP ratios for the remaining OR sets #1,
#3, #5—#7, and #9 yield also the values closely corresponding
to the cubic ones, so in this case those arising from Hcr in Eq.
(5). The second-rank ratios calculated for (i) the basic cubic axis
system: A" = C% / CS (TEI#2: ~ 3 and TEI#3: ~ 0) and (ii) the
45°/0z rotated cubic axis system: A'* = C;%/C9 (TEI#1:~ 3)
are very close to the theoretical values as indicated. In both
cases these ratios indicate that the Pr** site symmetry is very
close to tetragonal, whereas the small values of the respective
CFPs reveal symmetry very close to cubic. Hence, overall the
results from the pseudosymmetry axes method, both in the TEI
and OR approximation, indicate that the local site symmetry of
Pr** ion is close to cubic with a slight triclinic distortion. This
agrees well with the hypothesis put forward by Bickel et al. [9].
Additionally, for the basic cubic axis system, where the fourfold

rotation axes are chosen as the quantization axes, the positive
signs of Cg and Cﬁ indicate that the symmetry at the Pr** site is
very close to the cubic octahedral (six-fold coordination) one.
Note that the negative sign of Cg and Cﬁ would indicate [27] the
cubic tetrahedral (four-fold coordination) or the regular cube
(eight-fold coordination).

Analysis of the TGI approximation also confirms the above
conclusion that the local site symmetry of Pr** ion is close to
cubic with a slight triclinic distortion. In the trigonal axes taken
along one of the three-fold axis and one two-fold axis, the cal-
culated ratio of the cubic CFPs: Ci / Cg ~ £28 is very close to
the theoretical value indicated.

In Table 3 we list also the CFPs in the normalized Stevens
(NS) notation [14,17,18] for selected sets to illustrate the appar-
ently different relative strength of the CFPs expressed in the two
notations. It turns out that the cubic character of the fourth- and
sixth-rank CFPs, which is accounted for by specific parameter
ratios, is more directly evident if we consider CZ(NS) instead of
CZ in the extended Stevens notation. Interestingly, the TEI set
#1 (as well as #2 and #3) turns out to be very close to the cubic
CFPs for Pr** in BaCeO; [10] (cm~!): C§ = 1025, C? = 51,
C} = —5125(5125), and C{ = 1071(—1071). The dominant
cubic fourth-rank CFPs and relatively small non-cubic ones sug-
gest that fourth-rank CFPs may have been reliably determined in
Ref. [2]. However, for the sixth-rank CFPs, although the cubic
CFP Cg is dominant, Cg in the extended Stevens notation is
smaller than some non-cubic sixth-rank CFPs. Conversion to
the normalized Stevens notation yields as dominant Cg(NS),
C}(NS), CXNS), and CZ(NS). Thus C{(NS) in Table 3 reveal
considerably different parameter ratios. Overall the relative CFP
values may suggest either more pronounced low symmetry
effects for the sixth-rank CFPs or, most probably, their less
accurate determination in Ref. [2]. Hence, it turns out that the
normalized Stevens notation provides more accurate represen-
tation of the relative strength of the CFPs, whereas the extended
Stevens notation yields apparently misleading CFP ratios. This
is due to the different multiplication factors implicit in the g-
components in the two notations. Importantly, the normalized
Stevens operators are ‘normalized’ in the quantum mechanical
sense, namely, the product of their transformation matrices is
equal to 1 (for details, see Ref. [17]). Hence, CZ(NS) enable
more meaningful assessment of the relative strength of CFPs.

A word of caution is pertinent here concerning two aspects
(A) and (B) bearing on the triclinic-like nature of any theoretical
CFP sets and their reliability. (A) Generally, the smaller number
of the non-zero CFPs, the higher local site symmetry. However,
the great number of the non-zero CFPs (even maximum of 27
required for 4f" ions at triclinic sites) does not necessarily mean
that the local site symmetry around an impurity ion is triclinic.
Our considerations [19] reveal that an apparently low symme-
try CFP set may indicate the choice of an axis system that does
not coincide with the appropriate rare-earth. In order to verify
which symmetry case actually applies, one needs to consider in
details the crystallographic data, if available, and determine the
appropriate rare-earth. A partial indication of the actual local site
symmetry may be obtained by analysis of the observed degen-
eracy of the energy levels, since complete or partial removal of
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degeneracy may indicate lower symmetry, e.g. triclinic or mono-
clinic. (B) It appears that the triclinic distortion is most evident in
the second-rank CFPs (original set #1 in Table 1), which remain
highly triclinic in the TEI approximation (sets #1—#3 in Table 3).
This may represent the actual low symmetry effects inherent in
the second-rank CFPs. However, it cannot be excluded that the
low symmetry effects observed in the CFPs [2] are due to some
computational artifacts. Our recent ECM calculations for Cr3*
ion in CspNaAlF¢ [19] and N i2* jon in MgAl,O4 [28] yielded
the initial CFPs exhibiting local site symmetry lower than the
expected D3q. The choice of the surrounding ions is crucial to
ensure that the cluster preserves properly the RE3* site symme-
try. Avoiding the artificial effects due to corners, edges, and/or
missing ions may not be an easy matter for large clusters. In
fact, any finite truncation of the crystal lattice within the ECM
cluster calculations may yield CFPs of apparently lower symme-
try than applicable. Appearance of some non-zero CFPs may be
due to computational artifacts, which may originate from either
some rounding-off errors or inclusion/exclusion in the lattice
summations of some distant ions that overall do not preserve
the site symmetry. This may also apply to the CFPs [2] since
the authors suspect improper estimations of their Cg based on
the observation that some calculated energy levels differ signif-
icantly from the measured ones. To split the degenerate cubic
energy levels some non-cubic CFPs are necessary, however, any
improper estimations of CFPs [2] may yield the second-rank
CFPs exhibiting apparent low symmetry. The most pronounced
low symmetry effects may be due to the second-rank non-axial
CFPs, which should be responsible for the observed splitting of
the energy levels I'g and I'y [2] indicating axial or lower sym-
metry. We note that the orthorhombic CFPs C% and Cg (sets #2
and #3 in Table 3) are very small as compared with the remain-
ing lower symmetry CFPs Cé, Cy ! and Cy 2 1f not the large
non-zero values of the latter CFPs, this would indicate the case
very close to cubic symmetry. This discrepancy may suggest
that the CFPs C% and Cg calculated using the ECM [2] are
accurate, however, doubts arise concerning the CFPs C%, (&Y 1,
and C; 2 Our experience [19,28] indicates that the energy lev-
els discrepancies [2] are most likely due to the computational
artifacts discussed above. Hence, a careful re-check of the ECM
calculations [2] would be useful in order to obtain a more reliable
and symmetry-consistent CFP set.

In analogy with the EMR data, it may be expected that the
principal axis system of the second-rank CFPs may be somewhat
correlated with the principal axes of the theoretical g-factor and
tensor A;; [2]. Concerning the principal axes of the tensor A;;
Popova et al. [2] have only mentioned that these axes are slightly
turned away from the axes of the g-tensor (angles of rotations
are less than 10°). The principal values of the g-tensor of the
ground doublet for the Pr1 site were calculated [2] as —0.6827,
—0.7295 and —0.8369. The corresponding principal axis sys-
tem of the g-factor in the crystallographic axis system [2] were
expressed in terms of the unit vectors: uy (0.0531, —0.9928,
0.1075), uz (—0.5288, 0.0634, 0.8464), and u3 (0.8471,0.1018,
0.5216). The module 3DD enables us also to calculate the respec-
tive unit vectors in the crystallographic axis system for all set
being solutions of diagonalization of the second-rank CFPs as

well as all solutions obtained using the module PAM in each
approximation defined above. We have adhered to the r.h.s. con-
vention for the axes. It turns out that the unit vector for set #2
(3DD) in Table 1 is very close, except for the orientation, to the
unit vector for the g-tensor [2], namely, u/, = —uy, u/} = —u,
and u}, = —u3, whereas the principal values are rearranged as
follows: gy=—0.7295, g,=—0.6827, and g, =—0.8369. Con-
cerning the pseudosymmetry axes method results, only the OR
approximation yields one solution (#1 in Table 2), with the x-
axis parallel to the four-fold axis and the y- and z-axes parallel
to the two-fold axis, which is most close to the principal axis
system of the second-rank CFPs as well as to the unit vectors
of the g-tensor calculated by us based on data [2]. The principal
axis system of the second-rank CFPs (3DD), sets #2, #4, and #7
in Table 1, are very close to the principal axis system obtained in
the OR approximation (#1, #6 and #2 in Table 2), respectively.
The latter sets correspond to the 45°/Oz rotated orthorhombic
axes. For comparison, the orientation of the respective axes: (i)
principal axis system of the g-factor [2], (ii) principal axis sys-
tem of the second-rank CFPs (3DD) for set #2 in Table 1, and
(iii) OR approximation fourth-rank CFPs for set #1 in Table 2
is presented in Fig. 2.

The closeness factors and the norms ratios have been calcu-
lated between pairs of various quantities: (i) the cubic fourth- and
sixth-rank CFPs and the respective global quantities obtained
by us in the TEI approximation (Table 3) and those taken
from literature sources (Table 4), (ii) the energy level sets for
Pr** jons in BaPrOs (and BaCeQ3) in triclinic and/or cubic
symmetry approximation (Table 5), and (iii) the experimen-
tal [12,29] structural parameters (Pr—O bonds and O-Pr-O
angels) at various temperatures listed in Table 6. The latter
quantities are overall very close as reflected by the close-
ness factors and the norms ratios: C, € 0.999971-0.99999993
and R, € 0.995-0.99976. Hence we refrain from providing the
respective table. For the CFPs in Table 3 the closeness factors
and the norms ratios listed in Table 4 confirm that the CFPs cal-

Xp,
PAM _~

Fig. 2. The principal axes (x;, y;, z;) for the g-tensor, the 3DD principal values
of the second-rank CFPs (set #2 in Table 1), and the fourth-rank CFPs in the
PAM OR approximation (set #1 in Table 2).
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Table 4

The closeness factors C, and the norms ratios R,, for the cubic fourth- and sixth-rank CFPs and the respective global quantities between the pairs (i, j) of various CFP
sets: the triclinic CFPs obtained in the PAM TEI approximation—sets #1—#3 (cubic CFPs only in Table 3), sets #5 and #6 [9], set #7 [10], and set #4 [11]

Pair/quantity (1,4) (1,5) (1, 6) (1,7) 6,7)
Cy 1.00000 1.00000 1.00000 1.00000 1.00000
Ce 1.00000 1.00000 1.00000 1.00000 1.00000
Cy 0.99996 0.99977 0.99346 0.99995 0.99454
R4 0.8592 0.8813 0.3929 0.9799 0.4009
Rg 0.7264 0.6292 0.0002 0.8200 0.0002
Ry 0.8574 0.8765 0.3875 0.9777 0.3964
Pair/quantity 4,5) 4, 6) “4,7) (5, 6) 4,7
Cy 1.00000 1.00000 1.00000 1.00000 1.00000
Ce 1.00000 1.00000 1.00000 1.00000 1.00000
Cy 0.99953 0.99448 1.00000 0.99082 0.99952
R4 0.7573 0.4572 0.8769 0.3462 0.8636
Re 0.4571 0.0003 0.8858 0.0001 0.5160
Ryl 0.7516 0.4520 0.8770 0.3397 0.8570

Note that sets #2 and #3 yields the same values as set #1 in pairs with other sets #4—#7.

Table 5

The closeness factors C and the norms ratios R between pairs (i, j) for the energy level sets E;: Ej—E3 and Eg are the sets listed in Table 1 of Ref. [2] denoted by the
cubic irreps I'j; E1 (T=120K) and E; (T'=16 K)—experimental values, E3—ECM calculated, Es—quoted from [10], whereas E4 (E5)—calculated set 1 (alternative

set 2) of Table 2 in Ref. [9]

Pair/quantity (E1, E) (E1, E3) (E1, E4) (E1, Es) (E1, Ee)
C 0.9999982 0.9999529 0.9998600 0.9969977 0.9999877
R 0.9944116 0.9784687 0.9081661 0.7487859 0.9538995
Pair/quantity (E2, E3) (E2, E4) (E2, Es) (E2, E6) (Es, Ee)
C 0.9998731 0.9998680 0.9968968 0.9998337 0.9978140
R 0.9942829 0.9264945 0.6951086 0.9849529 0.6846492
Pair/quantity (E3, Es) (E3, E) (E3, E¢) (E4, E¢) (Es, E¢)
C 0.9999118 0.9974016 0.9999523 0.9969726 0.9998567
R 0.9211976 0.6991054 0.9793218 0.6440142 0.9406485

Note that seven energy levels are taken into account for all sets, except for set E; comprising six energy levels.

culated based on the ECM reflect very closely cubic symmetry.
The following correlations may be noted. For each sets #1-—#3
(TE) in Table 3 compared with a given literature set using only
the cubic CFPs we obtain the values of C, and R, (p=4, 6,
gl): (i) very close for set #7 taken from Ref. [10]—the ranges:
Cp €0.99995-1.00000 and R, € 0.8200-0.9799, (ii) quite close
for set #4 (#5) of Ref. [11] ([9]): C, €0.99977-1.00000
and R), € 0.6292-0.8813. For set #6 (the alternative CFP set
obtained in Ref. [9]) compared with sets #1-3, the close-

Table 6

ness factors are very close: C, € 0.99346-1.00000, however,
the norms ratios show disparity: R, € 0.0002-0.3929, thus con-
firming that the set #6 is physically unacceptable [9]. The
closeness factors and the norms ratios listed in Table 5 indi-
cate that all energy level sets for Pr** in BaPrOj; at triclinic
and/or cubic symmetry approximation, namely, £, E> and E3
(Table 1 of Ref. [2]), E4—the calculated set 1 of Table 2
[9], and Eg for Pr** in BaCeOs3 [10], are mutually very close
(C, €0.9998600/0.9999982 and R, €0.9081661/0.9944116).

Comparison of the structural parameters for the Pr-Og complex in BaPrO3: the Pr—O bonds (in pm) and the O-Pr—O angles (°)

Set # (temperature (K))

1 (300) [12] 2(17)[12] 3(5)[12] 4 (16) [29] 5(2)[29] 6 (-)[11]
Pr-02 222.33 223.05 223.35 223.46 223.15 22243
Pr-02 22227 221.97 221.66 222.29 222.40
Pr-Ol 222.52 222.87 222.78 223.08 223.15 22346
01-Pr-02 90.342 89.837 89.860 89.713 89.435
O1-Pr-02 90.528 90.568 90.778 91.204 91.283
02-Pr-02 88.414 88.342 88.317 88.228 88.260
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For Es, i.e. the set 2 of Table 2 [9] calculated using the alternative
CFP set [9], we obtain very close C), € 0.9968968/0.9978140,
while disparate R, € 0.6440142/0.7487859, thus reinforcing the
above conclusion concerning the alternative CFP set #6 of Ref.
[9]. The closeness factors and the norms ratios in Tables 4 and 5
enable quantitative correlations of various sets of comparable
quantities.

4. Summary and conclusions

This paper provides framework for comprehensive analysis
of crystal field parameter (CFP) datasets for transition ions at
low symmetry sites, which enables extracting useful structural
information. As a case study, the full results of analysis of the
triclinic-like CFP [2] dataset as well as the cubic ones obtained
by various authors for Pr** ion in BaPrOj are presented, whereas
the preliminary results were presented in the conference paper
[6]. Our investigations concern several aspects, which are briefly
summarized as follows.

The method of diagonalization of the second-rank CFPs, and
the standardization idea involved therein, have been extended to
triclinic symmetry. Our literature survey indicates that several
authors still lack awareness of the orthorhombic and mono-
clinic standardization, which have been proposed in the 1985s.
Thus incompatible CFP datasets, i.e. with the fitted or calcu-
lated ‘rhombicity’ ratio lying in various ranges, do appear in
the literature. The major point is that the large non-standard
values of this ratio do not indicate large orthorhombic distor-
tions in crystals and hence such data may lead to physically
wrong conclusions. For meaningful comparisons of CFPs the
datasets must be first transformed into the same nominal axis
system w.r.t. both the orientation of axes and their direction,
to ensure that the ‘rhombicity’ ratio is in the standard range.
Thus the standard range is strongly recommended for the CFP
presentation.

The pseudosymmetry axis method has been extended from
tetragonal and trigonal type II symmetry to monoclinic,
orthorhombic, tetragonal and trigonal type I symmetry. We have
developed a computer module PAM with the major features:
graphical visualization capabilities; determination of the Euler
angles (o, B, y) that define the pseudosymmetry axes, which
have structural interpretation; accordingly transformed CFPs of
the rank k=2, 4, 6. The orthorhombic and axial approximations
have been applied to the fourth- and sixth-rank triclinic-like
CFPs for Pr** in BaPrOs. Comparison of the results from
the pseudosymmetry axes method for various approximations
enables extracting useful structural information. The closeness
factors and the norms ratios, which have recently been intro-
duced to facilitate quantitative comparison of CFP datasets as
well as the energy level sets, have also been calculated.

Major findings arising from the calculations, using the
method of diagonalization of the second-rank CFPs, the pseu-
dosymmetry axis method, and the closeness factors and norms
ratios, for the cubic and triclinic-like CFPs for Pr** in BaPrOs are
as follows: (i) the results arising from the first method show that
the strength of low symmetry effects inherent in the second-rank
CFPs appear quite large, whereas the large discrepancy between

S5 (original triclinic CFPs: ¢ =0, 2) and S, (total obtained also
from the module 3DD) indicates significant deviation of the
crystallographic axis system from the principal axis system of
the second-rank CF terms, (ii) the method of diagonalization
of the second-rank CFPs is equivalent to Burdick and Reid [30]
method, however, but their method for the fourth- and sixth-rank
CFPs has no clear not physical sense, (iii) the orthorhombic
approximation within the pseudosymmetry axes method visu-
alizes fourfold and twofold pseudo-symmetry axes determined
w.r.t. the crystallographic axis system, whereas the tetragonal
(trigonal) approximation visualizes the three (four) equivalent
four- (three-) fold pseudosymmetry axes and (iv) the structural
model of site symmetry arising from the calculations using the
module PAM shows that in spite of the buckling of the Pr-Og¢
octahedra the local site symmetry of the complex is very close
to cubic octahedral one.

Additional advantages of the comprehensive approach reside
in the fact that both the method of diagonalization of the second-
rank CFPs and the pseudosymmetry axis method yield several
physically equivalent CFP sets. Thus these CFP sets may be used
in the multiple correlated fitting technique for additional fittings
using such CFP sets as starting values. This would yield sev-
eral correlated datasets. Finding the intercorrelations between
these sets requires knowledge of the transformation proper-
ties of CFPs. This need enhances the role of the package CST
for conversions, standardization, transformations of crystal field
(zero-field splitting) parameters. The multiple correlated fitting
technique offers ways to increase accuracy and reliability of final
fitted CFPs, identify global minima, and eliminate spurious sets
(computational artifacts).

In summary, the comprehensive approach proposed here
comprising three methods outlined above, together with the
multiple correlated fitting technique, proved to be useful in
optical studies of low symmetry systems. Application of the
three-method approach to the triclinic-like CFPs for Pr** ion
in BaPrO3 [2] confirms the usefulness of our comprehensive
approach. The axes determined using the method of diagonal-
ization of the second-rank CFPs and the pseudosymmetry axes
method have been related to the structural data. The principal
axes of the second-rank CFPs obtained due to the former method
have been correlated with the principal axes of the g-factor and
the A-tensor determined in Ref. [2]. The apparent low symmetry
nature of the triclinic-like CFPs [2] determined in the crystal-
lographic axis system [12] becomes evident due to application
of the pseudosymmetry axes method extended to orthorhombic
and axial cases. Thus the hypothesis concerning the cooperative
buckling of Pr-octahedra reducing the local site symmetry, while
preserving the nearly octahedral geometry for the Pr site [2] is
supported by our considerations.

Importantly, our approach may help experimentalists to better
interpret and analyze optical data as well as to extract useful
structural information from CFP datasets for transition ions at
low symmetry sites. This approach appears timely, whereas other
applications of this approach for rare-earth ions in various hosts
andreanalysis of the CFP as well as zero-field splitting parameter
datasets for several other ion-host systems will be considered
elsewhere.
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