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Abstract

Creep-induced crack growth can be described with
the C*-integral as the relevant load parameter. Several
possibilities of evaluating the C*-integral in single
specimen tests are discussed, and the constant load
and the constant loading-rate are applied to an alumina
ceramic containing a glassy phase. The crack-growth
rate as a function of the C*-integral is described by
a power-law relation with an exponent which agrees
very well with the theoretical value.

1 Introduction

Fracture at elevated temperatures may be caused
by subcritical crack propagation, which starts
from existing flaws or from creep-induced damage
caused by the formation and coalescence of pores.
Whereas in the range of subcritical crack growth,
which can be described by linear—elastic fracture
mechanics, the stress intensity factor is the stress
variable at the crack, this is the C*-integral in the
range of noticeable creep.! Creep-induced crack
growth has very often been studied for metals, but
investigations into ceramic materials are sparse.”*
It is the aim of this investigation to determine the
crack-growth rates as a function of the C*-integral
for macroscopic cracks.

The C*-integral — proposed by Landes and
Begley! — is a path-independent energy-rate line
integral. In the two-dimensional case (see Fig. 1) it
is defined as
av,

~— ds

c* = [ wrdy -, o

(1

W* = J‘OlJ Ul]delJ (2)
where W* is the strain-energy density rate, 7T; is
the traction vector, v, is the displacement vector, and
ds 1s a line length increment along the contour I'.
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The C*-integral governs the stresses and strains in
front of a crack tip. A premise for the applicability
of the C*-integral as a loading parameter is the
occurrence of secondary creep, which may be

described by a Norton power law
€, =Do"

&)

Under this condition, an HRR-stress field occurs
ahead of the crack tip.>® The stresses and strain
rates are given by

1

o = (Igr jn . (7ij(9) 4)
| cx Yl
Eij = (InDI” j o-ij(e) (5)

where € is the strain rate and /(n) and &;(6) are
the dimensionless functions, which can be taken
from Ref. 6.

Under creep conditions, the application of a
load instantly yields an elastic strain reaction. This
elastic strain is superposed by creep strains. In the
vicinity of the crack tip eqn (5) is immediately
valid, but under non-steady-state creep conditions
the parameter C* has to be replaced by the time-
dependent parameter C(7).’

For very short times after load application, the
stress intensity factor K is the relevant loading
parameter, which describes the stresses at the
crack tip

where E' = E/(1-*) (E = Young’s modulus, v =
Poisson’s ratio). The numerical factor « is given in
Ref. 7 as @ = 1. With increasing size of the creep
zone, the stress field is firstly governed by ({(¥) and
tends asymptotically to the C*-controlled state. Since

ak?

1
n+1 N
m} 7;(0) (6)
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Fig. 1. Definition of the C*-integral.
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Ct)y > C*fort — o (8)
Riedel’ proposed the interpolation formula:
C(t):(1+[7‘jc* (9)
for the region ¢ =~ ¢, with the characteristic time
_ Ki
NS aE ) ECR (10

In cases where primary creep dominates an addi-
tional integral quantity denoted C} has to be
applied. In this investigation we restrict our con-
siderations to C*.

2 The Experimental Determination of C*
C* can be expressed by the power difference of

two 1dentically loaded structures containing cracks
of depths @ and a + da, respectively, i.e.

1 dU* 5 :
* — L * —
Cr=- " U=[Fas (D

displacement rate 0

Fig. 2. Increment of energy rate dU* for two cracks with
crack lengths ¢ and a + da.
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Fig. 3. Geometrical and loading quantities.
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(B = specimen thickness). This relationship offers
the possibility to determine C* experimentally.
The quantities entering eqn (11) are explained by
Fig. 2. Equation (11) is the basis for a number of
procedures for determination of C*. The experi-
mental data necessary for the evaluation of eqn
(11) are the force F, the displacement rates & of
the load application points, and the crack length a.

2.1 Single-specimen evaluation

The application of C* as the crack-tip parameter
was proposed by Landes and Begley' in analogy
to the J-integral, the loading parameter in case of
plastic material behaviour. J-integral solutions are
available for numerous types of specimen and
loading. In the EPRI-handbook® a number of FE-
solutions are reported. Due to the analogy between
Norton-like creep and strain-hardening plasticity,’
the data of the EPRI-handbook can be used also
for the computation of C*. By introducing the net
stress

_ F
Opet — B(W*Cl) (12)
Riedel” proposed the simple relation
C* = aDayll g (13)

It should be noted that eqn (13) is only valid if
the creep behaviour is correctly described by a
Norton-relation. The geometric function g,(a/W,n)
depends on the stress state and differs for plane-
stress and plane-strain conditions. A second possi-
bility to determine C* — also proposed by Riedel’
— 1is based on the measurement of the displacement
rate at the load-application points

* =00 08 (14)

with g, dependent on a/W and n. Based on the
formulation eqn (11), Webster'® derived

3 Fn+] an
" B(n+ 1) da

with the creep-compliance

%

(15)
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Fig. 4. Ratio of geometric functions from Walz'? and the
EPRI-handbook.?

)
C, = I (16)

For a static test it results
_ F§ [ w1 dS}

% — 1Y - ==
¢ BW n+1 8 da

(17)

and in the dynamic loading case with constant dis-
placement rates at the load application points
_ F3 [ n_ WdF }

x - 19
¢ BW /| n+1 F da

(18)

Based on the integral formulation of C*, Harper and
Ellison'! derived for the static test (F = constant)

ve=_1 pr £ Vg (19)
n+ 1 m,BW
and in case of constant displacement rates
vr="L_pr[—L_TF (o
n+1 my BW

where L is the specimen length, for example the
supported length of a bending bar and F is the
applied load. m is the ratio of the loads necessary
to plastify the specimen with and without crack
for ideal plastic material behaviour. Consequently,
C* results

F Y'd
cc=_ " pr ( ) Mo o))
n+1 myBW | d(a/W)

2.2 Multiple-specimen evaluation

The procedure of Landes and Begley comprises
several steps. The detailed description is given in
the original paper.!

(1) In the first step the load F is plotted as a func-
tion of the crack length ¢ and the displacement
rate 5. The area below the resulting curves
gives the energy rate U*(a,8).

(2) The representation U* = f{8, a) provides the

derivative dU*/da as a function of §.
(3) From eqn (9) C* is calculated and plotted
versus &. .

(4) The basic data directly give da/dt = fla, )
and, finally, the combination of steps 3 and
4 results in the da/dt versus C* curve.

This procedure has been applied successfully to
ALO; which contains a glassy phase.>* A further
possibility to determine C* has been proposed by
Kanninen and Popelar.'? Their procedure is based
on tests with constant load where the crack length
is determined as a function of time. The further
procedure is identical with the evaluation according
to the procedure proposed by Landes and Begley.!

In the present investigation the evaluation of
single tests will be applied.

3 Determination of C* in 3-point bending tests

The procedure of Landes and Begley, Kanninen
and Popelar, Harper and Ellison and Webster are
directly applicable in 3-point bending. With the
relationships proposed in Ref. 7 also the J-integral
solutions for bending tests can be used for the
determination of C*. The geometric functions g,
and g, can be written in terms of the A-parameters
h, h, tabulated in:®

_ W L n+l
g“’_[al)hl (O-728(W—a)] @)

_m L
€07 b, 07284 (23)

where the subscript b stands for bending. The geo-
metric quantities L, ¢ and W can be seen from
Fig. 3. The C*-integral can also be computed
from

n+l
R (24)
0-728B(W — a)

The A-parameters of the EPRI-handbook may be
expressed by the following approximations for the
range 2<n <7

C* = D(W - a) hl[

4 3 2
h~a [1~26+ v ZAW(I—a)”n“’S} (25)

=1 p=l

3 2 2
hy= 1 [Z Y A, (1 —a)”n“} (26)
@ L3230 =0

with @ = a/W and the coefficients 4,, listed in

Table 1 for 4, and in Table 2 for 4,
It is a well-known fact that ceramics containing
a glassy phase exhibit non-symmetry in their creep
behaviour. The creep rates under tensile stresses
may be substantially higher than under compressive
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Table 1. s-parameters. Coefficients for eqn (25)*

Table 2. ~A-parameters. Coefhicients for eqn (26)

pn=1 2 3 p=20 1 2
v=1 4-4451 —4-552 0-1232 vy=0 2:1204 -0-196 0-0153
2 8-9083 -9-312 3-9838 1 —0-809 —0-287 -0-025
3 -23-27 20-225 -3-790 2 0-2307 0-7110 0-0519
4 13-543 —6-597 ~1-333 3 0-4596 —-0-326 -0-046

stresses. This behaviour affects heavily the bend-
ing creep test in which tension and compression
occur. Very often, the non-symmetry is related
only to the state of secondary creep. This seems to
be the case e.g. for MgO-doped hot-pressed silicon
nitride (HPSN).'"* If we take into consideration
this non-symmetry, the Norton power law may be
modified as

€ = A D|ol" (27)
with
1 foro>0
A= j7},for(7<0 (28)
Y
and y > 0.

In a Finite-Element study Walz"® determined
the C*-integral in 3 point bending for a number of
n-values and v = 1, 5 and 10. The results are
expressed by a geometric function C* defined as

C* = DW(1 ~ /Wy o1 (29)

where o 1s the elastically calculated outer fibre
bending stress. In case of symmetric creep be-
haviour (y = 1), the geometric functions obtained
by Walz'? can be compared with the C*-values ac-
cording to eqn (24). From eqn (24) and eqn (29)
one obtains

hy
2:184™!

Figure 4 illustrates the quantity s,/C*2-184"! as
a function of « for several n-values. The deviations
from the expected value 1 are caused by different
values chosen for L/W. Whilst in the EPRI-hand-
book® L/W = 2 is used, the calculations of Walz'?

T+ =

(30)
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Fig. 5. Partial unloadings in a dynamic bending test.

were performed with L/W = 44, as usual for
ceramic bending bars. From the computations of
Walz the geometric functions C* were obtained,
as listed in Tables 3 and 4.

4 Experiments

4.1 Material and measurements

The tested material was an Al,O; containing a
glassy phase. Short characterisation of the mate-
rial used: density 3-75 g/cm®, mean grain size 5
pm, composition 96% AlLO; (2:7% Si0,, 1-3%
MgO, 0-02% CaO, 0-02% Fe,O;), fracture tough-
ness 20°C: 3-4 MPa Vm, 1100°C: 4-1-52 MPa
Vm, 1200°C: 3-1-5-0 MPa Vm, elasticity data at
20°C E = 325 GPa, v = 0-24. In 4-point bending
creep tests the parameters of secondary creep were
determined as:* n = 2:25, D = 1-4 X 10" (in MPa,
h), ¥ = 5-1. Bending specimens, 3-5 X 45 X 45
mm in size, were diamond machined and then an-
nealed in the vacuum for 5 h at 900°C. Then the
specimens were damaged by introducing narrow
saw cuts of 50 um width. A second series of bend-
ing bars was precracked using the bridge indenta-
tion method. The static and dynamic tests were
performed in a testing device as used in creep
tests.'* With this device the displacements can be
measured within the inner roller span where the
bending moment is constant. The 3-point bending
tests were carried out with a modified device
where the outer displacement pick-ups were
applied directly under the outer rollers. All bend-
ing tests were performed with 2L = 40 mm. The
experimental input for the determination of C*

o} 20 40 6C 80

time (h}

N

Fig. 6. Dynamic bending test (displacement rate: 2 um/h).
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Table 3. Geometric function C* according to eqn (29) for y = §

a/W n=15 2 25

01 0-0470 0-0242 0-0127
0-2 0-0644 0-0335 0-0163
03 0-0664 0-0344 0-0144
0-4 0-0621 0-0314 0-0107
0-5 0-0577 0-0275 0-0077
0-6 0-0553 0-0241 0-0068
07 0-0541 0-0215 0-0084
0-8 0-0495 0-0183 0-0120

are the load-displacement curves and the crack-
length data which are determined from partial un-
loadings. During the periodical partial unloadings
the displacements are recorded. An example is
shown in Fig. 5. The slopes of the partial unload-
ings decrease with increasing crack length. During
partial unloading and reloading hysteresis effects
were observed. Therefore, the usually applied lin-
ear—elastic compliance relationship could not be
applied. Dynamic bending tests were interrupted
in different states and the specimens were broken
at room temperature. Then it was possible to mea-
sure the crack size on the fracture surface, and one
point of the relationship slope of the hysteresis =
f(a) has been determined. A series of such tests
then yielded the complete calibration curve. The
result of a single cynamic bending test performed
with a bar containing a saw-cut of 50 um width
and a/W=0-5, with a displacement rate § = 2
pm/h, is shown in Fig. 6. The crack starts propa-
gating approximately when the maximum load is
reached, and the following crack growth is nearly
proportional to the time.

4.2 Evaluation of constant load tests

The loading-point displacements occurring in a
creep-crack-growth test consist of three contribu-
tions:

* the creep deformations §, caused by the sin-
gular stress field close to the crack tip;
* the share of global creep deformation occur-

4.0%

(um/h)

3.0p

2.0H

da/dt

1.0- ",
\;;.;\;>‘;;; s
L ;;;;;;; e
OO L L n e 1 J
0 200 40 80 80 100 120 140

Fig. 7. Displacement rates in a constant load test.; (a) 8,en;
(b) 8,c; (©) 8:: (d) 8.

Table 4. Geometric function C* according to eqn (29) for y = 10.

a/W n=135 2 25

0-1 0-0393 0-0163 0-0065
0-2 0-0577 0-0153 0-0061
0-3 0-0586 0-0109 0-0045
0-4 0-0503 0-0091 0-0030
05 (-0403 0-0104 0-0026
0-6 0-0356 0-0126 0-0032
0-7 0-0424 0-0151 0-0043
0-8 0-0662 0-0215 0-0044

ring in the remote parts of the specimen, §,.,
and

» the contribution caused by an increase in
compliance due to crack extension §,.

The measurable total displacements are

5 = 50 + Snc +66| (31)

meas

Due to the change of crack length during creep
crack growth, an elastical displacement rate &,
occurs. In order to consider only creep effects, the
elastic part has to be eliminated, i.e.

8= b b a=FCasck (32

oa

or it has to be ensured that the elastic part can be
neglected. Displacement rates obtained in a con-
stant load test are plotted in Fig. 7. Whereas the
total displacement rate 8., was experimentally
determined, the quantity &, was measured in a
separate test with an unnotched specimen and 4,
was computed from the time-dependent increase
in crack length.

As a premise for the correct determination of
dU*/da it has to be ensured that crack propaga-
tion had taken place and that the minimum dis-
placement rate in a test has been reached. In Fig.
8 the crack-growth initiation times — the time
span between the moment of load application and

—
2

0

Fig. 8. Initiation times for creep crack growth tests under static

load as a function of the initial crack length a; solid symbols:

cracks introduced by a saw-cut of 50 um width, open symbols:
pre-cracked by the bridging method.
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Fig. 9. Crack-growth rate as a function of dU*/da.

the first detectable crack extension — are plotted
as a function of the initial crack length a.

It can be seen that no significant difference
exists between specimens with saw-cut and with
precrack. The tendency of decreasing crack-
growth initiation time with increasing initial crack
size is perceptable and has been expected.

Several series of static bending tests were evalu-
ated with the method proposed by Webster,'® eqn
(17). The change of creep power with crack length
was determined for test times ¢ > 20 h at 8 h inter-
vals and for times ¢+ < 20 h in time steps of 1-2 h
until the specimens failed or the tests were sus-
pended. All test durations were within 5 h and 340
h. The results are plotted in Figs 9—-12.

4.3 Determination of C*

The values dU*/da determined in the experiments
have to be examined out whether or not they rep-
resent valid C*-values. In order to decide this, we
have to compute the characteristic times ¢,, using
eqn (10). For times ¢ > 10 ¢, we expect the results
to be valid C*-values. Figure 13 shows the results
of the constant load tests. The data undergo much
scatter. There is some evidence that the very low
crack-growth rates may be caused by R-—curve
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Fig. 10. Crack-growth rate as a function of dU*/da.
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Fig. 11. Crack growth rate as a function of dU*/da.

effects. The R-curve behaviour shields the crack-
tip region from the externally applied loads which
results in lower crack-tip loading and, conse-
quently, lower crack-growth rates. A clear indica-
tion is the reduction of the scatter band if only the
first C*-data of each test is considered. These data
are introduced in Fig. 13 as solid symbols. For
these tests the R—curve, for instance caused by
crack-bridging effects, does not influence the result
since Aa = a - a, — 0. Fitting the solid symbols we
find the power-law relation of creep-crack growth

da mm 4

=69 —— C*¥O7 33

dt h (33)
(C* in N/mm h). The corresponding straight line
is entered in Fig. 13. Figure 14 shows the data
resulting from times 7,/10 < ¢ < 10 ¢, evaluated
according to eqn (9). These data can be expressed by

da _ mm 0-71

i 4.4 o C(1) (34)
(C(1) in N/mm h). For identical crack-growth
rates C(7) is slightly lower than C*. Riedel’ has
shown that the exponent of the creep-crack growth
relation should be a simple function of the Norton
creep exponent, namely

=
N
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c FI28 N o |
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3 | v v
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Fig. 12. Crack-growth rate as a function of dU*/da.
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Fig. 13. Crack-growth rate as a function of C* from static
tests. Solid symbols: first values at the beginning of crack
extension.
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Fig. 14. Crack-growth rate as a function of C(r) from static
tests.
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Fig. 15. Crack-growth rate as a function of C* from dynamic
tests.

da

“8 < C*n/(n +1) 35
0 (35)
leading for the investigated material (n = 2-25) to
an exponent of 0-69. This expected value is in very

good agreement with the experimental result.
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Fig. 16. Intercomparison of the crack-growth relations.

4.4 Evaluation of dynamic bending tests

The single-specimen evaluation from the dynamic
tests (tests with constant displacement rates) was
performed with eqn (18). It was assumed that in
the range of decreasing load steady-state creep
conditions are sufficiently fulfilled. The tests were
performed with displacement rates in the range
from 0-2 pum/h to 10 um/h. The initial crack sizes
were in the range 1 mm < @, < 2-3 mm. In the region
where the tests were evaluated the corresponding
loads were between 8 and 22 N. Since, unfortu-
nately, the crack-growth rates in the range of
decreasing load were found to be highly constant
in each test, it was only possible to determine one
single C*-value for one da/dt-value. Figure 15
shows the data obtained. Also in these tests a
power law was found

da _ (o MM 105

0 69 o C (36)
(C* in N/mm h). The slightly increased exponent
of 1-05 may be caused by R—curve influences. In
case of the dynamic tests, the cracks had strongly
grown by about -4 mm to attain the range of
decreasing load. In the static tests the mean crack
extension was only = 0-3 mm. Consequently,
R-—curve effects are stronger in the dynamic tests
since Aa > 0.

A comparison of the crack-growth relations,

eqns (33), (34) and (36), is given in Fig. 16.

5 Summary

The paper deals with the determination of the
loading quantities C* and C(¢) for creep-crack
growth. Different possibilities of evaluating the
C*-integral in single-specimen tests were listed,
and the constant load test and the constant load-
ing-rate test were applied to an alumina ceramic
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containing a glassy phase. It was found that:

+ the crack-growth rate as a function of the
loading quantities C* and C(¢#) can be
described by a power-law relationship;

» the exponents in static tests are about 0-75
and agree very well with the theoretical value
(here: 0-69) proposed by Riedel;’

» the exponent resulting in tests with constant
displacement rate 1s slightly higher, possibly
influenced by R—curve effects.

References

1

2.

. Landes, J. D. & Begley, J. A., ASTM STP 590, 1976, pp.

128-48.

Kromp, K., Haug, T., Pabst, R. F. & Gerold, V., C* for
ceramic materials?, 3. Conf. on Creep and Fracture of
Engineering Materials and Structures, London, 1989, pp.
1021-32.

Martin, G., Fett, T. & Munz, D., Determination of creep
crack growth in ceramics, Proc. 2nd ECRS-Conference,
Augsburg, 1991.

4.

10.

11.

13.
14.

G. Martin, T. Fett, D. Munz

Fett, T., Mifibach, M. & Munz, D., Failure behaviour of
Al,O; with glassy phase at high temperatures. J. Europ.
Ceram. Soc., 13 (1994) 197-209.

. Hutchinson, J. W., Plastic stress and strain fields at crack

tip. J. of Mech. and Phys. of Solids, 16 (1968) 13-31.

. Rice, J. R. & Rosengren, G. F., Plane strain deformation

near crack tip in power law hardening material, J. of
Mech. and Phys. of Solids, 16 (1968) 1-12.

. Riedel, H., Fracture at high temperatures, Springer-Ver-

lag, Berlin, 1987.

. Kumar, V., German, M. D. & Shih, C. F., An engineer-

ing approach for elastic-plastic failure analysis. EPRI-
Report NP-1931, Palo Alto, 1981.

. Hoff, N. J., Approximate analysis of structures in the

presence of moderately large creep deformations Quar-
terly of Applied Mathematics, 12 (1954) 49-55.

Webster, G. A., Crack growth at high temperatures, Con-
ference on Mechanics and Physics of Fracture, Paper 18.
Cambridge, 1975.

Harper, M. P. & Ellison E. G., The use of the C* param-
eter in predicting creep crack propagation rates. J. of
Strain Analysis, 12 (1977).

. Kanninen, M. F., Popelar, C. H., Advanced Fracture

Mechanics, Oxford Engineering Science Series 15, Claren-
don Press, Oxford, 1985 p. 437.

Walz, G., unpublished results.

Fett, T., Keller, K. & Munz, D., An analysis of the creep
of hot-pressed silicon nitride in bending. J. Mater. Sci.,
23 (1988) 467-74.



