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Abstract

The objective of this paper is to apply the asymptotic homogenization method (AHM) to determine the analytical formulae

for the elastic effective coefficients of a two-phase fibrous composite provided with a periodic structure. In the analysis, the

periodicity of the structure is assumed to be much smaller than the elastic wavelength. The fibres are aligned unidirectional with

respect to the x3-axis. The constituents are transversely isotropic materials. The results are used to determine numerically the

linear elastic behavior of two types of fibre composites. Some comparisons with different experimental results and theoretical

models are shown.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The asymptotic homogenization method (AHM),

which was developed by Bensoussan et al. [1],

Sanchez-Palencia [2] and Bakhvalov and Panasenko

[3], is a mathematically rigorous technique for pre-

dicting both the local and global properties of this

kind of inhomogeneous media. The main problem of

the AHM is that averaged coefficients depend on the

solutions of the so-called local problems in the peri-

odic cell [4]. These problems are given by a set of

partial differential equations with periodic boundary

conditions and their solution, in general, requires

numerical methods [5].

In the present work, an analytical expression and

exact formulae for all effective elastic coefficients are

obtained using the AHM for an unidirectional rein-

forced two-phase composite with transversely isotropic

cylindrical fibres periodically distributed in a matrix

[6–8]. In the analysis, the periodicity of the structure is

assumed to be much smaller than the elastic wave-

length. A comparison with different models [9–11],
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and some experimental results [12,15,14] is presented.

In Section 2, the AHM is briefly explained, the state-

ment of the problem and the corresponding local

problems are defined in order to obtain the overall

properties of the elastic composite considered for the

study. The general expressions of local problems and

effective coefficients for elastic heterogeneous media

with a periodic structure are summarized. In Section 3,

the averaged formulae obtained are compared with

other models and experimental results.

2. Formulation and statement of the local problems

The constitutive relations of the linear elasticity

theory for an heterogeneous and periodic medium, X,

is characterized by the Y-periodic function C. Y

denotes the periodic cell, whereas C is the elastic

fourth order tensor. By mean of AHM, the initial

constitutive relations with rapidly oscillating material

coefficients is transformed in new physical relations

with constant coefficients
–
C, which represent the

elastic properties of an equivalent homogeneous

medium and are called the effective coefficients of X.

The main problem to obtain such average formulae

is to find the Y-periodic solutions Uk(pq) of the local

problems on Y in terms of the fast variable y [7].

Once the local problems is solved, the homogen-

ized moduli
–
Cijpq may be determined by using the

following formulae:

Cijpq ¼ hCijpq þ CijklUkðpqÞ,li: ð1Þ

Fig. 1. Geometric distribution of the reinforcements in the composite and its periodic square cell.

Fig. 2. Geometric distribution of the reinforcements in the composite and its periodic hexagonal cell.
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where

hFi ¼ 1

AXA

Z
X

FdX :

The unit cell Y of the body is chosen with a side

parallel to the x3, with unit length in the x3-direction.

The transversal sections of the periodic cell are: (A)

unit squares (Fig. 1), (B) regular hexagon (Fig. 2),

both with the radius of the fibres denoted by r. Due to

the periodic distributions of the fibres in the isotropy

plane Ox1x2, it is possible to reduce the general

problem to the solution of the local problems over

the unit cell. In this case, the elasticity tensor compo-

nents Cijkl takes different values in the regions occu-

pied by these two different materials, such that

Cijklðy1,y2Þ ¼
C

ð1Þ
ijkl if ðy1,y2ÞaM1 ðmatrixÞ

C
ð2Þ
ijkl if ðy1,y2ÞaM2 ðfibreÞ

:

8<
:

The local problems can be written as

sð�Þ
ijðpqÞ,j ¼ 0 if ðy1,y2ÞaM�, ð2Þ

with sa
ijðpqÞ ¼ Ca

ijklU
ðaÞ
kðpqÞ,l (a, l, j= 1, 2, and i, k, p,

q = 1, 2, 3).

The solution of problem (2) must consist of doubly

periodic functions in y1 and y2 subject to the following

perfect bounding conditions at the interface C:

U
ð1Þ
kðpqÞAC ¼ U

ð2Þ
kðpqÞAC ð3Þ

ðsð1Þ
ijðpqÞ þ C

ð1Þ
ijpqÞn

ð1Þ
j AC ¼ �ðsð2Þ

ijðpqÞ þ C
ð2Þ
ijpqÞn

ð2Þ
j AC: ð4Þ

The potential method of complex variables and the

properties of doubly periodic Weierstrass and related

functions are used for the solution of the local prob-

lems (Eqs. (2)–(4)). In that way, we obtain for the

average coefficients of the composite given in Figs. 1

and 2 the following analytic and closed form formulae

using the abbreviated notation of two indices:

C11 ¼ C22 ¼ hC11i þ kðD2
2�1=C

ð1Þ
66 � D1�2Þ,

C12 ¼ hC12i þ kðD2
2�1=C

ð1Þ
66 � D1�2Þ,

C13 ¼ C23 ¼ hC13i þ kD2D3�1=C
ð1Þ
66 ,

C33 ¼ hC13i þ kD2
3�1=C

ð1Þ
66 ,

C66 ¼ hC66i þ kD1�3, if l ¼ p=2,

C66 ¼
C11 � C12

2
,if l ¼ p=3,

C44 ¼ C55 ¼ hC55i þ kD4�4, ð5Þ

where,

D1 ¼ C
ð1Þ
66 � C

ð2Þ
66 , D2 ¼ C

ð1Þ
11 � C

ð2Þ
11 þ C

ð1Þ
12 � C

ð2Þ
12 ,

D3 ¼ C
ð1Þ
13 � C

ð2Þ
13 , D4 ¼ C

ð1Þ
55 � C

ð2Þ
55 ,

�1 ¼
j2 � 1

2�o

k � 1� Bðj1 þ 1Þ j2 � 1

2�o

N1Z
�1N2

� �
,

�2 ¼
j1 þ 1

ð1þ v*j1Þðk2 � B2U1U
�1U2Þ

� 1,

�3 ¼ 1� ðj1 þ 1ÞBCð1Þ
66

k3 � B2V1V
�1V2

,

�4 ¼ 1� 2C
ð1Þ
55

ð1þ v*Þð1þ vk � B2N1Y�1N2Þ
,

k ¼ pr2=sinl, l ¼ p
2

or l ¼ p
3
: ð6Þ

The bar above the material constants means the

effective coefficients of the composite and k is the

volume fraction of the fiber. The magnitudes involved

in the expressions of a1, a2, a3, a4 in Eq. (6) can be

found in detail in Refs. [6,7]. The most difficult aspect
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in Eq. (6) is the calculation of infinite numerical

matrices N1, Z, N2, U1, U, U2, V1, V, V2, and Y,

which can be computed according with the proposed

algorithm given in Ref. [8].

3. Comparisons with different models

The overall properties calculated in Eq. (5) for the

hexagonal and square cells of both types of compo-

sites (see Figs. 1 and 2) are compared with theoretical

and experimental results reported in the above men-

tioned papers.

(1) In Ref. [9], theoretical expressions are obtained

by means of classical theory of elasticity for determin-

ing the composite elastic constants for fibre reinforced

plastics in terms of the elastic moduli and the geo-

metrical parameters of the constituents. This inves-

tigations were made for a hexagonal array and the

material properties used were E-glass fibre and epoxy

resin. The fibre volume content was approximately

63%. A good concordance between the numerical

results reported in Ref. [9] and the numerical calcu-

lations derived from Eq. (5) were obtained and they

are shown in Table 1.

(2) Numerical results are obtained in Ref. [10]

from simple explicit expressions. Several models for

calculating elastic constants of fibre-reinforced com-

posites with transversely isotropic constituents for

hexagonal lattice model are discussed in this work.

The material constituents data are graphite fibres

embedded in an epoxy matrix. The fibre volume

content is approximately 50%. The results of AHM

and the predictions in the model [10] for the Young’s

moduli, shear modulus and Poisson’s ratios are very

close. They are shown in Table 2.

(3) The complete set of elastic mechanical proper-

ties for a composite reinforced by graphite in an epoxy

matrix was investigated in Ref. [12]. In this work,

equations used to calculate the complete set of elastic

transversely isotropic properties for unidirectional

fibre-reinforced materials having transversely iso-

tropic fibres were experimentally verified by using

improved ultrasonic techniques. In Table 3, the AHM

formulae are compared with the results of Ref. [12]

for a composite Modmor II/LY558 at 67% of volume

fraction of the fibres.

(4) The Hill’s relations [13] are satisfied identically

by the effective coefficients Eq. (5). This work

showed proof that for the calculated effective coef-

ficients, these universal relations are constant and

invariant in relation with the volume fraction
D2

D3
¼

k�hki
C13�hC13i

¼ C13�hC13i
C33�hC33i

, where k = 0.5(C
11 +C12).

(5) The elastic constants Cij were measured and

calculated for a laminated uniaxially fibre-reinforced

boron–aluminum composite in Ref. [14]. In this

paper, three theoretical models were considered:

square array, hexagonal array and random-distribution

and relationships for predicting the full set of elastic

constants for this model were derived. A comparison

of AHM given by Eq. (5) with the experimental and

theoretical results reported in Ref. [14] at a volume

fraction of 48% is shown in Table 4. The hexagonal

configuration by AHM agrees best with random

distribution model and the ‘‘observed’’. Considering

all six elastic constants, ‘‘observed’’ and AHM differ

on the average by 6% for hexagonal, and 15% for

square.

(6) A comparison between the theoretical results

derived here and the experimental data, which were

obtained for transversely isotropic Modmor type 1

Table 1

Comparisons between AHM for both type of arrays (hexagonal and

square) and the model reported in [9]

Models used
–
C11

–
C12

–
C13

–
C33

–
C44

–
C66

Chen and Cheng 2.2352 0.8933 0.7625 6.8621 0.6926 0.6727

(5) Hexagonal 2.2369 0.8919 0.7626 6.8631 0.6934 0.6725

(5) Square 2.5749 0.6855 0.7872 6.8723 0.7467 0.5245

Table 2

Theoretical results of AHM and the predictions given in Ref. [10]

for the Young’s and shear moduli and Poisson’s ratios
–
Ea

–
Et

–
Ga

–
Gt

–
ma

–
mt

AHM 12.3 1.0654 0.6020 0.4037 0.3000 0.3195

Behrens 12.3 1.05805 0.6014 0.3994 0.3002 0.3205

Table 3

Comparison between the AHM formulae and the results reported by

Kriz–Stinchcomb [12]
–
C11

–
C12

–
C13

–
C33

–
C44

–
C66

AHM 14.5511 7.4083 6.6223 161.2077 7.2313 3.5714

Kriz–Stinchcomb 14.5 7.24 6.50 161 7.10 3.63
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carbon fibres in isotropic Ciba LY558 epoxy resin by

Dean now follows. Fig. 3a and b plots the effective

stiffness
–
C11 and

–
C33 versus the volume fraction of the

fibre k. The solid line gives the results using the

analytical formula (5). The empty circles are the

experimental values. It can be seen that the exper-

imental data agree quite well with the prediction of the

asymptotic homogenization method. In Fig. 3c and d,

the transverse shear modulus
–
Gt and the effective

Poisson’s ratio
–mt are plotted against the volume

fraction k. The predictions given by asymptotic

homogenization are compared with the theoretical

expressions bounds, derived by Ref. [11], which

predict the composite properties as a function of the

properties of the constituents and their concentration.

The upper and lower bounds and the AHM prediction

are very close. Their curves are almost indistinguish-

able. The solid lines of Fig. 3 have been calculated for

Table 4

Comparison of AHM with the experimental and theoretical results reported in Ref. [14] for both types of arrays
–
Cij Observed Square

model

Hexagonal

model

Random

model

AHM

hexagonal

AHM

square
–
C11 1.852 1.856 1.872 1.790 1.7993 1.8802
–
C12 0.779 – 0.661 0.745 0.7336 0.6570
–
C13 0.606 – 0.578 0.583 0.5832 0.5832
–
C33 2.450 2.480 2.551 2.560 2.5601 2.5601
–
C44 0.566 0.451 0.561 0.559 0.5595 0.5634
–
C66 0.526 – 0.606 0.523 0.5328 0.4737

Fig. 3. (a–b) Comparison between predicted and the measured [14] values of the effective coefficients
–
C11,

–
C33 for transversely isotropic

Modmor type 1 carbon/Ciba LY558 epoxy resin versus the volume fraction of fibers. (c–d) Comparison between the effective shear modulus
–
Gt

and the effective Poisson’s ratio
–mt with the Hashin–Rosen bounds.
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the hexagonal distribution of the fibres. Similar results

can be obtained for the square distribution.

4. Concluding remarks

The overall coefficients were calculated using the

asymptotic homogenization technique. The compari-

sons in the present work between formula (5), other

models and experimental results proved the effective-

ness approach of the asymptotic homogenization for

the derivation of the overall properties.
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