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Abstract

The aim of this work is to propose a new alternative representation of impedance data using the derivative of

the tangent of the phase angle, which allows enhanced discrimination between processes with relaxation

frequencies that are very close. The new representation allows discrimination between overlapped processes

within a factor of 2 in their relaxation frequencies for process with similar strength. Equations for the simplified

behaviour of the impedance data have been proposed to obtain all the parameters of the processes involved in the

impedance spectrum. This new alternative representation has been applied to bulk and grain boundary responses

of YSZ with very satisfactory results. It has also been applied to the qualitative study of impedance data of a CuO

composite showing the usefulness of this representation to discriminate different electrode processes. This

approach provides an ab initio method of identify the contributing components to an electrochemical impedance

spectrum with quite remarkable resolution. It is suggested that if this method is applied to provide starting

parameters for non-linear least squares fitting using constant phase elements, then problems due to correlation of

parameters and identification of components can be minimised.

# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Impedance spectroscopy EIS [1] is extensively used to study all type of processes, to resolve bulk and
grain boundary contributions from the total conductivity of a material, interfacial kinetics in batteries
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and fuel cells, surface reactions and mass transport through porous electrodes in wet or dry conditions,
polymer formation, to monitor the corrosion of metals in different environments or to study coating
corrosion protective properties, etc.

Essentially, EIS involves applying a small, sinusoidal voltage or current signal to an electrochemical
cell, measuring the system’s response current or voltage, respectively with respect to amplitude and
phase. The impedance of the system is determined by complex division of ac voltage by ac current.
This process is performed for a certain range of frequencies for each sample. Finally, the parameters
related with the macroscopic properties of these materials are obtained by fitting the impedance data to
an equivalent circuit or model.

Among these materials, electroceramics are widely studied as materials for fuel cells, gas sensor or
electrochemical applications. Their properties depend on the phase composition, sintering temperature,
gas composition, impurities, etc. Their modification will affect the bulk and grain boundary transport
properties, so a good understanding of these properties is necessary to develop new materials and to
optimise the conductivity by control of crystal structure.

The equivalent circuit to study these ceramic materials often includes three components with their
corresponding relaxation frequencies. At higher frequencies, the component normally corresponds to
the bulk properties (fb), at intermediate frequency the element corresponds to the grain boundaries (fgb),
and at low frequency, we usually have the electrode processes (fel) or processes occurring at the
material/electrode interface.

The values that characterise each process are easily obtained by fitting experimental data to
equivalent circuits, if the relaxation frequencies of the different processes are well-resolved, usually
fel ! fgb ! fb, where b ¼ bulk, gb ¼ grain boundary and el ¼ electrode. Typically, fb is one or two
orders of magnitude higher than fgb and fel is much smaller than fgb. However, when overlapping
between processes increases, equivalent circuit fitting can lead to wrong values. For this reason,
different alternative representations have been used to solve the overlapped processes.

Abrantes et al. [2,3] demonstrate the ability of the representation of log(tan(d)) versus log(f) to reveal
the bulk, grain boundary and electrode components of impedance spectra. At same time, they pointed
out that the Z00 versus Z0, log(Z00) versus log(f), log(M00) versus log(f) and log(A00) versus log(f) plots
often have a limited applicability. All the contributions to the spectra are obtained from the minima and
peaks of those plots.

West and co-workers [4,5] proposed a method based on combined spectroscopic plots of the
imaginary components of impedance, Z00 and electric modulus M00. The method can be used to probe the
electrical homogeneity of ceramics. The quantitative analysis of the spectra is obtained from the Debye
peaks in the M00 and Z00 versus log(f) plots, due to the peaks in Z00 spectra being directly proportional to
R and inversely proportional to C in the M00 spectra.

Another way is to use deconvolution methods. In the method used by Schichlein et al. [6,7], the
distribution of relaxation times is computed directly from the experimental impedance data without
any a priori assumptions about the internal structure of the system in the form of equivalent circuit
models. The starting point is a model made by a serial connection of RC elements, then they assume
an infinite number of elements with relaxation times ranging continuously from 0 to 1 to obtain the
convolution equation in accord with the Fuoss and Kirkwood treatment [8]. Since the real and
imaginary part of the impedance are connected through the Kramers–Kronig transformations [9,10]
only the imaginary parts were considered. After that, the data were logarithmically sampled and using
the corresponding substitutions the convolution equation were obtained. A Fourier transformation was
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applied to work in the transformed space, and then a Hanning filter was applied to avoid numerical
error amplification. After filtering, inverse Fourier transformation gives the looked-for distribution
function. In simulated cases, it is possible to resolve up to three physically distinct processes within
one-decade frequency. Macdonald [11] obtained the distribution function of the relaxation
frequencies using a weighted, non-linear least-squares inversion method, which avoids some of the
inversion problems. The method was applied to dielectric data, but it can be applied to a conducting
system or to inverse-diffusion problems. The dielectric response is expressed as a normalised
frequency–response function and after the corresponding mathematical treatment the convolution
equation is obtained.

An alternative method is the Differential Impedance Analysis (DIA) proposed by Raikova et al.
[12]. DIA is a new structural approach for impedance data analysis that allows to extract the
impedance model directly from the experimental data without any initial hypothesis about the
system. The principle of the DIA is the frequency scanning local analysis using a model of a simple
order inertial system, called local operating system (LOM). The model recognition is obtained by the
temporal analysis of the LOM parameters estimates. If the LOM corresponds in a given frequency
range to the nature of the impedance model, then the estimates tend to exhibit a constant behaviour in
this frequency range, in other case the analysis gives frequency dispersion, that is a Constant Phase
Element.

If a model is proposed by any of the methods above mentioned, the parameters can be obtained
by a non-linear fitting method [13–17]. All of them generally use the algorithm developed
by Levenberg [18] and Marquardt [19]. The convergence of the fitting depends of the starting values
and it always is necessary to have an idea of the model, for this reason is the above mentioned
representations or methods are needed. According to this, Boukamp [17] used a special subroutine
in his software EQUIVALENT CIRCUIT (EQUIVCRT), to provide a ‘‘rough’’ deconvolution of the
immittance spectra and from that a probable equivalent circuit and the corresponding starting values
are obtained.

It would be ideal to use only one type of representation to obtain both qualitatively the number of
processes and the parameters that characterise them or at least the relationships between these
parameters that could be used with other non-linear fitting methods to refine the proposed circuit.

In this paper, we have taken the log(tan(d)) approach due to its good discrimination capability, and
we have modified it to propose a new alternative representation of the impedance data, which allows
discrimination between overlapped processes within a factor of 2 in their relaxation frequencies and can
be used as a tool to qualitatively study the evolution of a system under certain experimental conditions.
We present some examples related to solid oxide fuel cell technology; however, the treatment can be
generally applied.

2. Experimental

2.1. YSZ pellet

Powders of Yttria-Stabilised Zirconia (YSZ) from Tosoh (8 mol Y2O3/ZrO2) were hydrostatically
pressed at 1 ton applied for 2 min. The pellet, with a diameter of 10 mm and a thickness of 1 mm, was
sintered at 1400 8C for 12 h. The heating and cooling ramp rates were 5 8C/min.
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The impedance measurements were performed with a FRA Solartron 1260, and a Potentiostat/
Galvanostat, Solartron 1287, at zero applied voltage, with a 200 mV of ac perturbation. Measurements
were carried out in the 2:5 � 105 to 0.1 Hz frequency domain.

2.2. CuO composite

A cermet was prepared by mixing, Y0.15Zr0.57Ti0.13Ce0.15O1.925 (YZTC6) with CuO (Aldrich) in the
weight ratio YZTC6:CuO ¼ 40:60. The CuO has previously been dried at 500 8C for 2 h. The powder
mixture was planetary ball milled in acetone for 1 h using a zirconia container with zirconia balls.
Then, the powder was fired at 1000 8C, in air, for 24 h, and the purity was checked by powder X-ray
diffraction. A slurry of this sample was prepared, mixing with a binder (Decoflux VB41). This slurry
was used to paint two identical and symmetrical layers on each side of YSZ–20% Al2O3 electrolyte
plates from CeramTec AG (Germany).

The symmetrical cell with an anode of area 0.95 cm2, and about 125 mm thickness of the electrodes
was sintered onto the 300 mm thick electrolyte at 1000 8C. The electrode material was coated with an
organo-platinum paste on each face, dried at 100 8C for 1 h and fired at 1000 8C for 1 h.

The sample was mounted in a ‘‘compression jig’’ with Pt wire electrodes, in a horizontal tube
furnace. Temperature dependent resistance corrections, as had previously been determined for the jig,
were applied. Measurements were also corrected for lead inductance. The ac impedance measurements
on symmetrical cells were performed sequentially in air and 5% hydrogen (wet), cooling back to
500 8C before changing atmosphere. For each temperature sufficient time was allowed to obtain
thermal equilibrium and the reproducibility of the measurements.

The impedance measurements were performed with a Solartron 1260 Frequency Response Analyser,
at OCV, with a 15 mV of ac perturbation. Measurements were carried out in the 1 MHz to 0.1 Hz
frequency domain.

3. Theory, results and discussion

If the ceramic material has a behaviour given by the ‘‘brickwork’’ model (Fig. 1a), the classical
representation of Bauerle [20] can be used, where each process can be assigned to a single RC circuit.
A RC element is described by way of a resistance and a capacitance placed in parallel. When these
processes are developed sequentially, many circuits RC are used as processes exist.

Thus, for an ideal behaviour of the ceramic material we can use the basic circuit shown in Fig. 1b.
Depending on the sintering degree of the samples however, the grain boundary can sometimes
disappear in well-sintered samples. On the other hand, a new arc will appear if we have a non-
conducting second phase in the grain boundary that partially blocks the ionic conduction. This arc is
usually called a ‘‘constriction arc’’. For this reason, the equivalent circuit must be appropriately
modified to introduce this new arc. The assignment of arcs to one or another process type depends upon
the capacitive values [4,21] (Table 1).

Keeping in mind that the impedance of any arc RC is given by:

ZRC ¼ Ri

1 þ ðf=fiÞ2
� ðf=fiÞRi

1 þ ðf=fiÞ2
j
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where, i corresponds to the coefficient assigned to each processes, R is the resistance, f is the frequency and
j ¼

ffiffiffiffiffiffiffi
�1

p
. In accordance with the sequential development of the processes, the value of the global

impedance, Z
, is given by: Z
 ¼ Z 0 � jZ 00 (note that Z00 has to be a positive number in this equation), where

Z 0 ¼ Rb

1 þ ðf=fbÞ2
þ Rgb

1 þ ðf=fgbÞ2
þ Rel

1 þ ðf=felÞ2
and

Z 00 ¼ ðf=fbÞRb

1 þ ðf=fbÞ2
þ ðf=fgbÞRgb

1 þ ðf=fgbÞ2
þ ðf=felÞRel

1 þ ðf=felÞ2

If we make the logarithm of the quotient of real and imaginary part, we will obtain a function that we
call L(y), that is:

LðyÞ ¼ log
Z 0

Z 00

� �

¼ log
½Rb=ð1 þ ðf=fbÞ2Þ� þ ½Rgb=ð1 þ ðf=fgbÞ2Þ� þ ½Rel=ð1 þ ðf=felÞ2Þ�

½ðf=fbÞRb=ð1 þ ðf=fbÞ2Þ� þ ½ðf=fgbÞRgb=ð1 þ ðf=fgbÞ2Þ� þ ½ðf=felÞRel=ð1 þ ðf=felÞ2Þ�

( )

(1)

Fig. 1. Brickwork model of a ceramic material (a). Equivalent circuit model with RC elements in series (b).

Table 1

Typical capacitance values for some processes [4] using 1 cm�1 of geometrical factor (l/A) as reference

Process Capacitance (F)

Bulk 10�12

Minor, second phase 10�11

Grain boundary 10�11 to 10�8

Sample/electrode interface 10�7 to 10�5

Electrochemical reactions 10�4

J.C. Ruiz-Morales et al. / Materials Research Bulletin 39 (2004) 1299–1318 1303



where, fi ¼ oi=2p, oi ¼ 1=RiCi, ti ¼ RiCi, f is the relaxation frequency, o is the angular frequency,
t is the relaxation time or time constant and Ci is the capacitance of each process. L(y) can be related
with tan(y) through expression: L(y) ¼ log(Z0/Z00) ¼ �log(�tan(y)), y being the angle formed by Z0

and Z00.
We will study the behaviour of the function L(y) versus log(f). In case 1, the frequency of the

processes (bulk, grain boundary and electrode) will differ by a factor of 102 while in case 2 by 101. In
case 3 the frequency of the grain boundary process is only half of that of the bulk process.

3.1. Case 1

This shows the typical behaviour of this function with frequency, using a hypothetical case in which
the processes are quite separate (Table 2, case 1).

Fig. 2 shows three different formalisms: (a) typical plot of Z00 versus Z0; (b) |Z| and y versus frequency;
and (c) the plot of L(y) versus log(f), for this case. Three processes can clearly be deduced from each
plot.

A qualitative analysis of the L(y) versus log(f) plot (Fig. 2c) shows that it is possible to observe zones
corresponding to straight line of slope �1, these are the RC arc domain zones. If we had only one arc,
we should only obtain one straight line with slope �1. In this sense, for each RC arc a straight line with
slope �1 will be obtained.

Table 2

Theoretical values used for the simulated cases 1, 2 and 3. In all the cases the resistance of each process was 103 O

Process Case 1 Case 2 Case 3

�log Ci (F) fi (Hz) �log Ci (F) fi (Hz) �log Ci (F) fi (Hz)

Bulk 9.497 5 � 105 8.497 5 � 104 8.497 5 � 104

Grain boundary 7.497 5 � 103 7.497 5 � 103 8.196 2.5 � 104

Electrode 5.497 5 � 101 6.497 5 � 102 1.799 1 � 10�2

Fig. 2. Impedance spectra computed for Rb ¼ Rgb ¼ Rel ¼ 103 O, fb ¼ 5 � 105 Hz, fgb ¼ 5 � 103 Hz, fel ¼ 5 � 101 Hz.

Nyquist plot (a), the corresponding plots of magnitude, |Z| and phase angle, y, vs. frequency (b), and L(y) vs. log(f) (c).
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In the transitions between the different arcs a change in the slope from �1 to þ1 is observed when we
decrease the frequency, in a well-resolved spectrum.

Evidently, in the transition zones between two straight lines of slope �1 (2 RC arcs) a maximum and
a minimum will exist, so the slope of L(y) versus log(f) must be zero in these points.

The frequency domains for each of the previously commented zone are shown in Fig. 3. The zones
with even numbers (2, 4, 6 and 8) correspond to those with slope ¼ 0; and lead to maxima (zones 2 and
6) and minima (zones 4 and 8) of L(y). While zones with slope ¼ �1 (1, 5 and 9) correspond to the
bulk, grain boundary and electrode processes; and zones with slope ¼ þ1 (zones 3 and 7) correspond to
transition zones.

Once the function L(y) is qualitatively characterised we must obtain the equations corresponding to
each zone.

First, we will consider zones with slope �1, where we can observe three cases: high, intermediate
and low frequency (points (a)–(c)). Then we will take into account zones with slope þ1, where two
cases can be observed: bulk-grain boundary and grain boundary-electrode transitions frequency (points
(d) and (e)). Finally, we will bear in mind zones (slope ¼ 0) with maxima and minima of the function
L(y) (points (f)–(i)).

(a) Straight line with slope �1, high frequency.

In the zones with slope �1, and at higher frequency (Fig. 3, zone 1), only the bulk contribution
will exist, and Eq. (1) can be simplified to:

LðyÞ  log
Rb

Rb=fb

� �
� log f ) LðyÞ ¼ log fb½ � � log f (2)

(b) Straight line with slope �1, intermediate frequency.

In this case we will work in the frequency range corresponding to the zone 5 in Fig. 3, so f ! fb,
f @ fel, where the electrode contribution is negligible, and moreover f < fgb, so Eq. (1) will be
reduced to:

LðyÞ  log
Rb þ ½Rgb=ð1 þ ðf=fgbÞ2Þ�

ðf=fbÞRb þ ½ðf=fgbÞRgb=ð1 þ ðf=fgbÞ2Þ�

( )
) LðyÞ ¼ log

Rb þ Rgb

ðRb=fbÞ þ ðRgb=fgbÞ

� �
� log f

(3)

Fig. 3. Schematic representation of the frequency domain of each process, with the corresponding slope �1, þ1 and 0.
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(c) Straight line with slope �1, low frequency.
In this situation the frequency range corresponds to the zone 9 in Fig. 3, so f ! fb, f ! fgb and

f < fel, therefore Eq. (1) can be written as:

LðyÞ  log
Rb þ Rgb þ ½Rel=ð1 þ ðf=felÞ2Þ�

ðf=fbÞRb þ ðf=fgbÞRgb þ ½ðf=felÞRel=ð1 þ ðf=felÞ2Þ�

( )

) LðyÞ ¼ log
Rb þ Rgb þ Rel

ðRb=fbÞ þ ðRgb=fgbÞ þ ðRel=felÞ

� �
� log f (4)

(d) Straight line with slope þ1, transition bulk-grain boundary.

This transition corresponds to the zone 3 (Fig. 3), so f > fgb, f < fb and f @ fel, consequently:

LðyÞ  log
Rb þ ðRgb=ðf=fgbÞ2Þ

ðf=fbÞRb þ ððf=fgbÞRgb=ðf=fgbÞ2Þ

" #
) LðyÞ ¼ log

Rb

Rgb

1

fgb

� �
þ log f (5)

(e) Straight line with slope þ1, transition grain boundary-electrode.

This transition corresponds to the zone 7 (Fig. 3), so f ! fb, f < fgb and f > fel, thus:

LðyÞ  log
Rb þ Rgb þ ðRel=ðf=felÞ2Þ

ðf=fbÞRb þ ðf=fgbÞRgb þ ½ðf=felÞRel=ðf=felÞ2�

" #
) LðyÞ ¼ log

Rb þ Rgb

Rel

1

fel

� �
þ log f

(6)

(f) Maximum between bulk-grain boundary, slope 0.
This maximum (zone 2) between the bulk and the grain boundary simply corresponds to the

intercept between the straight line of slope �1 corresponding to the bulk process (Eq. (2)) with the
straight line of slope þ1 corresponding to the bulk-grain boundary transition (Eq. (5)). In
consequence balancing both equations:

log fb½ � � logðf max
b$gbÞ ¼ log

Rb

Rgb

1

fgb

� �
þ logðf max

b$gbÞ ) logðf max
b$gbÞ ¼

1

2
log fbfgb

Rgb

Rb

� �
(7)

where, logðf max
b$gbÞ is the frequency in which the maximum is reached in this region.

(g) Minimum between bulk-grain boundary, slope 0.
Analogously, the minimum (zone 4) between the bulk and the grain boundary corresponds to the

intercept between the straight line of slope þ1 corresponding to the bulk-grain boundary transition
Eq. (5) with the straight line of slope �1 corresponding to the grain boundary process Eq. (3). So
balancing both equations:

log
Rb

Rgb

1

fgb

� �
þ logðf min

b$gbÞ ¼ log
Rb þ Rgb

ðRb=fbÞ þ ðRgb=fgbÞ

� �
� logðf min

b$gbÞ

) logðf min
b$gbÞ ¼

1

2
log

Rgb

Rb

fgb

Rb þ Rgb

ðRb=fbÞ þ ðRgb=fgbÞ

� �� �
(8)

where, logðf min
b$gbÞ is the frequency in which the minimum is reached in this region.

(h) Maximum between grain boundary-electrode, slope 0.
To obtain the theoretical equation corresponding to the maximum (zone 6) between the grain

boundary and the electrode process, we should just find the frequency in which the straight line
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with slope �1 (grain boundary, Eq. (3)) intercepts with the straight line of slope þ1 (grain
boundary-electrode transition, Eq. (6)), thus balancing both equations we will obtain:

log
Rb þ Rgb

ðRb=fbÞ þ ðRgb=fgbÞ

� �
� logðf max

gb$elÞ ¼ log
Rb þ Rgb

Rel

1

fel

� �
þ logðf max

gb$elÞ

) logðf max
gb$elÞ ¼

1

2
log fel

Rel

ðRb=fbÞ þ ðRgb=fgbÞ

� �
(9)

where, logðf max
gb$elÞ is the frequency in which the maximum is reached in this region.

(i) Minimum between grain boundary-electrode, slope 0.

Finally, balancing Eq. (6), corresponding to the transition grain boundary-electrode, slope þ1, with
Eq. (4), corresponding to the electrode process, slope �1, the frequency of the minimum will be
obtained, thus:

log
Rb þ Rgb

Rel

1

fel

� �
þ logðf min

gb$elÞ ¼ log
Rb þ Rgb þ Rel

ðRb=fbÞ þ ðRgb=fgbÞ þ ðRel=felÞ

� �
� logðf min

gb$elÞ

) logðf min
gb$elÞ ¼

1

2
log

Rb þ Rgb þ Rel

Rb þ Rgb

Relfel

ðRb=fbÞ þ ðRgb=fgbÞ þ ðRel=felÞ

� �
(10)

where, logðf min
gb$elÞ is the frequency in which the minimum is reached in this region.

Thus, all the equations corresponding to the behaviour of the L(y) function with the frequency have
been deduced, in such a way that from these equations or together with the use of the classic
representation of the magnitude |Z| versus frequency is possible to determine the six parameters that
characterise the three RC processes.

Obviously, all these equations can be simplified depending on the resistive values and the relaxation
frequencies.

As the relaxation frequencies of the different processes reach similar values, the corresponding RC
arcs are overlapped, so the problem is to obtain reliably the parameters of these arcs. This overlapping
will also be reflected in the representation of L(y) versus log(f), because each RC arc corresponds to a
zone with straight line with slope �1. It is evident that if the relaxation frequencies are identical, it
would not be possible to observe the different processes RC and we will only be able to see a straight
line with slope �1. But, if the processes have slightly different relaxation frequencies it will be possible
to obtain a sensitive representation to the transition between these processes.

The change of slope of the function L(y) will perfectly reproduce any transition type, although the
capability to discriminate processes with close relaxation frequencies will depend fundamentally on the
dispersion of the experimental data and the number of points.

In order to be able to calculate the slope in each zone of the function L(y) we will use the well-known
numeric approach:

slope ¼ dLðyÞ
dlogðf Þ 

DLðyÞ
Dlogðf Þ

� �
Dlogðf Þ!0

(11)

The value of the slope will be obtained with great accuracy when small increments of log(f) are used. In
general, very good values of the slope can be obtained using about 12 points per decade of frequency.

The plot of slope of L(y) versus log (fmean) is built up by applying Eq. (11) to each pair of consecutive
points. From Fig. 4a we can observe two zones with slope �1, at high and low frequencies, and another
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zone corresponding to the grain boundary process, at log(f) ffi 3.7, whose slope approaches at �1.
Similarly, two transition zones are observed at log(f) ffi 4.2 and log(f) ffi 2.2.

On the other hand, solving the following equation for each couple of points it is also possible to find
the intercept corresponding to the straight line that goes through them.

LðyÞi ¼ ðayÞilogðfiÞ þ ðlyÞi (12)

where ay and ly are the straight line parameters.

Fig. 4. Slope of the function L(y) vs. frequency (a), intercept (ly) vs. slope (ay) of the function L(y) (b) and the corresponding

3D plot (c), computed for Rb ¼ Rgb ¼ Rel ¼ 103 O, fb ¼ 5 � 105 Hz, fgb ¼ 5 � 103 Hz and fel ¼ 5 � 101 Hz.
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Fig. 4b shows a plot of the intercepts of L(y) versus slope of L(y), that is ly versus ay. If the slope
obtained coincides with �1, 0 or �1, the corresponding intercepts should coincide with the theoretical
intercept deduced (Eqs. (2)–(10)).

Thus, the new alternative representation of the impedance data that we propose consists of the
representation of calculated intercepts, ly versus slopes of the function L(y), ay.

The advantages of this new type of representation can be shown from Fig. 4b. Firstly, this
representation is very sensitive to processes with small separations in its relaxation frequencies, as we
will see later on.

In second place, from the extrapolations or intercepts to slope �1, 0 and þ1, it is possible to apply all
the deduced Eqs. (2)–(10) and to obtain the parameters or combinations of these, of the processes
studied. For the case described in Fig. 4b, it is observed that the bulk and electrode processes are well-
resolved, with numerous data that present slope �1, so Eqs. (2) and (4) can be applied to these data,
respectively. For the grain boundary, which presents a slight overlapping, we can make an extrapolation
of the data and then apply Eq. (3). The successive intercepts with the value of the slope 0 allow us to
apply Eqs. (7)–(10). Finally, extrapolating to slope þ1, the intercept values are obtained that allow us to
apply Eqs. (5) and (6), for the transitions of bulk-grain boundary and grain boundary-electrode,
respectively.

In spite of the advantages of this type of representation, it is not an explicit function of the frequency,
given that we are plotting slopes versus intercepts and sometimes the plots can be overlapped. For this
reason, we introduce the use of the 3D representation of the proposed function, using the frequency
explicitly, because although the processes have the same intercepts, each one corresponds to different
processes that take place in different frequency ranges, so it will be possible to easily discriminate the
involved processes. This type of 3D representation for case 1 is shown in Fig. 4c. The same conclusion
can be observed as from Fig. 4b; but it is also possible to determine qualitatively the frequency domain
of each arc. It can clearly be verified that this 3D representation is equivalent to Fig. 4a and b.

Table 3 (case 1) shows the theoretical values of the intercept corresponding to Eqs. (2)–(10) and the
values obtained from Fig. 4b, by extrapolation or intercepts points. It can be confirmed the perfect
agreement between the theoretical data and those obtained of the intercepts and extrapolations to slopes
�1, 0, þ1 (Fig. 4b).

Table 3

Theoretical and extrapolated values, simulated cases 1 to 3 using the parameters from Table 2

Eq. no. Slope Case 1 (theoretical/

experimental)

Case 2 (theoretical/

experimental)

Case 3 (theoretical/

experimental)

Case 4: YSZ (theoretical/

experimental)

2 �1 5.70/5.69 4.70/4.66 4.70/4.62 5.57/5.57

3 �1 4.00/4.00 3.96/3.91 4.52/4.52 3.85/3.85

4 �1 2.17/2.17 3.13/3.13 �1.52/�1.23 0.0366/0.0366

5 þ1 �3.70/�3.72 �3.70/�3.76 �4.40/�4.44 �2.61/�2.52

6 þ1 �1.40/�1.40 �2.40/�2.41 2.30/2.30 �0.396/�0.468

7 0 4.70/4.68 4.20/4.02 4.55/4.52 3.99/4.04

8 0 3.85/3.86 3.83/4.02 4.46/4.52 3.25/3.18

9 0 2.70/2.69 3.18/3.02 1.11/1.07 2.19/2.16

10 0 1.79/1.80 2.76/3.02 �1.91/�1.91 �0.591/0.233

Experimental values obtained for YSZ pellet, at 325 8C, sintered at 1440 8C for 12 h, corresponding to the case 4.
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Thus, it has been proven with a practical case that when the processes are well-resolved, the classic
and the new proposed representations allow us to obtain the parameters of the analysed processes. But
let us to see now what happens when these processes shows some more overlapping.

3.2. Case 2

In this case we simulate processes whose relaxation frequencies are only separated by one order in
logarithmic scale, as listed in (Table 2, case 2).

The existence of three processes can be verified from the typical representations (Fig. 5a and b) or
from the L(y) function (Fig. 5c). The three processes are partially overlapped, but the grain boundary is
the process with the biggest degree of overlapping.

Fig. 5. Impedance spectra computed for Rb ¼ Rgb ¼ Rel ¼ 103 O, fb ¼ 5 � 104 Hz, fgb ¼ 5 � 103 Hz and fel ¼ 5 � 102 Hz.

Nyquist plot (a), the corresponding plots of magnitude, |Z| and phase angle, y, vs. frequency (b), L(y) vs. log(f) (c), and the new

alternative representation of the impedance data in 2D (d) and 3D (e).
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The new alternative representation, in 2D and 3D, for case 2 is shown in Fig. 5d and e. In this case, as
we previously commented, the grain boundary presents a high degree of overlapping with the other
processes (Fig. 5d). However, using the 3D representation (Fig. 5e), it can be clearly verified the
existence of the three processes, and by extrapolations and intercepts points it will be possible to obtain
the values shown in the (Table 3, case 2). From this table, the excellent agreement between the
theoretical data and the data obtained by the new alternative representation can be confirmed.

In this case, the high overlapping rate of the grain boundary with the adjacent processes (Fig. 5b)
does not allow us to clearly observe the maxima and minima that exists after and before the grain
boundary. However, a slope change will exist between each one of these maximum–minimum, whose
frequency range will correspond approximately with the half value of these maximum–minimum. Thus,
for the maximum–minimum between the bulk-grain boundary, the theoretical values are:

logðf max
b$gbÞ ¼ 4:20 and logðf min

b$gbÞ ¼ 3:83

The mean value will be 4.02 and the value obtained by extrapolation (Table 3, case 2) is 4.02. For the
maximum–minimum between the grain boundary-electrode, the theoretical values are:

logðf max
gb$elÞ ¼ 3:18 and logðf min

gb$elÞ ¼ 2:76

Obtaining a mean value of 2.97, also in very good agreement with the value obtained 3.02.

3.3. Case 3

Now, let us to suppose a extreme case, with two processes overlapped, the bulk and the grain
boundary. With both processes overlapped within a factor of 2 in their relaxation frequencies, and with
a well-resolved process corresponding to the electrode, as often happens in the reality for many ceramic
materials under certain experimental conditions (see Table 2, case 3).

Usually, from the Nyquist and Bode plots (Fig. 6a and b) it will only possible to confirm the existence
of 2 RC arcs, and the same conclusion can be obtained from the Fig. 6c. From this figure is possible to
view a slight transition between the bulk and the grain boundary, however, using the new representation
it will be possible to observe the existence of three processes clearly, and to obtain approximate
relationships for the studied parameters.

Electric modulus would also show this with the smallest capacitance element dominating [4],
however, unlike this formalism overlapping responses not involving the smallest capacitance element
could not be resolving using modulus spectroscopy.

Fig. 6d and e shows the new representation in 2D and 3D where it is possible to observe the three
processes and the overlapping ratio for the bulk with the grain boundary. Although the separation of the
relaxation frequencies is only 0.3 units (in logarithmic scale), two processes can be clearly seen by
magnification of domain area of the bulk and grain boundary (inset of Fig. 6d). The 3D representation
(Fig. 6e) confirms with more clarity the existence of three processes not two.

The usefulness of this new representation to find relationships between the different parameters is
again verified. In this case, the bulk and the grain boundary overlap does not allow us to observe the
maximum and the minimum corresponding to this transition, but the transition should occur at
intermediate value between this maximum–minimum. The theoretical values are 4.55 for the maximum
and 4.46 for the minimum, and the mean value is 4.51. This value (4.52) fully agrees with the one
obtained from the Fig. 6d.
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On the other hand, the parameter with more imprecision corresponds to the straight line with the
slope �1 at low frequency, where the theoretical value is �1.52 and the obtained value is �1.23. The
main reason for this discrepancy arises for the narrowness of the linear region, which produces a large
inaccuracy in the extrapolation of this line. Further experimental points at lower frequency could
improve the accuracy of this extrapolated value.

Actually, the new representation can be very useful if we take the data obtained from this method and
set up non-linear least square fitting since it allows us to know the correct number of series element and
also provides good initial parameters. With non-linear least-squares (NLLS) it is often difficult to
decide upon the correct circuit model and erroneous fitting will ensure. Similarly false minima will be
avoided. In addition, this approach will be very valuable where a high degree of correlation is observed
in NLLS fitting without constants.

Fig. 6. Impedance spectra computed for Rb ¼ Rgb ¼ Rel ¼ 103 O, fb ¼ 5 � 104 Hz, fgb ¼ 2:5 � 104 Hz and

fel ¼ 1 � 10�2 Hz. Nyquist plot (a), the corresponding plots of magnitude, |Z| and phase angle, y, vs. frequency (b), and

L(y) vs. log(f) (c), and the new alternative representation of the impedance data in 2D (d) and 3D (e).
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3.4. Case 4, YSZ pellet

As an initial test of this treatment, a dense pellet of 8 mol% Y2O3/ZrO2, YSZ (Tosoh) was prepared.
The impedance spectrum was performed at 325 8C (Fig. 7).

From the classic representations of Nyquist (Fig. 7a); or the plots of both magnitude |Z| and phase
angle y versus frequency (Fig. 7b); or the plot of L(y) versus log(f) (Fig. 7c) the same conclusion is
reached, that is, it is possible to observe clearly three processes.

With the new alternative representation (Fig. 7d and e), it is also possible to confirm the existence of
the three processes: bulk, grain boundary and electrode processes. The corresponding extrapolations
and intercepts points allow us to obtain the relationships between the parameters studied (Table 3,
case 4).

Fig. 7. Impedance spectra obtained for YSZ pellet, at 325 8C, sintered at 1400 8C for 12 h. Nyquist plot (a), the corresponding

plots of magnitude, |Z| and phase angle, y, vs. frequency (b), and L(y) vs. log(f) (c), and the new alternative representation of

the impedance data in 2D (d) and 3D (e).

J.C. Ruiz-Morales et al. / Materials Research Bulletin 39 (2004) 1299–1318 1313



From these values and combining them with the data obtained from the plots of magnitude, |Z|,
(Rb ¼ 8438 O and Rgb ¼ 2005 O) it is possible to obtain all the parameters using only some of the
proposed equations Eqs. (2)–(4), (6) and (9). Thus, from Eq. (2) the bulk relaxation frequency is directly
obtained, fb ¼ 3:7 � 105 Hz. Using this value into Eq. (3) lets us find the grain boundary relaxation
frequency, fgb ¼ 1:4 � 103 Hz. On the other hand, Eqs. (6) and (9), allow us to obtain a mean value for
the relationship Relfel ¼ 3:1 � 104. Using this value in Eq. (4) we find an approximate value for the
relaxation frequency and resistance of the electrode process, Rel ¼ 3:6 � 104 O and fel ¼ 0:9 Hz.

Finally keeping in mind the connection between the relaxation frequencies and the resistances and
capacities of each process, the remaining parameters finally are determined: Cb ¼ 6:5 pF cm�1,
Cgb ¼ 7:3 nF cm�1 and Cel ¼ 7:8 mF cm�2.

The obtained values allow the remaining parameters to be calculated from the theoretical equations
(Table 3, case 4). As can be seen, the agreement between experimental and theoretical data is good,

Fig. 8. Impedance spectra obtained for CuO composite (60% CuO þ 40% YZTC6), in 5% H2 (wet), at 500 8C, symmetrical

cell. Nyquist plot (a), the corresponding plots of magnitude, |Z| and phase angle, y, vs. frequency (b), and L(y) vs. log(f) (c),

and the new alternative representation of the impedance data in 2D (d) and 3D (e).
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Fig. 9. New alternative representation of the impedance in 2D and 3D plot, for CuO composite (60% CuO þ 40% YZTC6), in

5% H2 (wet), at 500 8C (a), 550 8C (b), 600 8C (c), 650 8C (d), 700 8C (e), 750 8C (f), 800 8C (g), and 900 8C (h).
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except for those where the electrode process is involved. The discrepancies do not arise due to the
extrapolation method, the origin of the discrepancies comes from the fact that the theoretical
development has been outlined for ideal processes; in consequence the existence of non-ideal processes
will affect the results. For this reason, if we make a fitting of the experimental data with an equivalent
circuit formed by R-CPE elements, instead of RC, it is possible to observe that the exponents of the
CPE, for the bulk and the grain boundary, are approximately of 0.9, that which agrees with the values
obtained by the new representation. For the electrode process, at lower frequencies, the exponent is
about 0.75, so far from the ideal value 1. This explains the discrepancies with the intercepts for this
process. The value of this new method in identifying the number of involved processes and initial
parameters is clearly demonstrated.

3.5. Case 5, composite electrode, symmetrical cell measurements

In a further example, a CuO composite sample (60% CuO þ 40% YZTC6) has been studied. The
impedance spectra were obtained from 500 to 900 8C in 50 8C steps. Fig. 8 shows the impedance
spectrum for 500 8C.

From the classic representations of Nyquist (Fig. 8a); or the plots of both magnitude |Z| and phase angle
y versus frequency (Fig. 8b); or the plot of L(y) versus log(f) (Fig. 8c), we can observe two processes.

With the new alternative representation (Fig. 8d and e), it is possible to confirm the existence of two
processes. Independent of the series resistance of the electrolyte and electrode that can be obtained
from the high frequency intercept, we have one R-CPE1 element at higher frequencies, and at lower

Fig. 10. Plot of L(y) vs. log(f) for CuO composite (60% CuO þ 40% YZTC6), in 5% H2 (wet), at 550, 600 and 650 8C.
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frequencies we can have another R-CPE2 and a diffusion element, but depending on the impedance
values the contribution of one process can be higher than the other.

At 500 8C (Fig. 9a) and 550 8C (Fig. 9b), the shape of the new representation is approximately the
same. Nevertheless, at 600 8C (Fig. 9c), something new happens, because it is possible to see a high
concentration of points between the first R-CPE element and the transition. However, as can be
deducted from the text, the accumulation of points only happens close to a RC element or in the
transition zones. Anyway, that it means the existence of another arc or process. From 650 8C (Fig. 9d),
the shape changes dramatically and it remains similar until 900 8C (Fig. 9h). Probably this change
between 600 and 650 8C is related with microstructural changes. For this system [22], we have
observed indications of segregation of Cu from the anode material to the interface between the
electrolyte and the anode material at around 650 8C. Similar conclusions can be extracted from the 3D
plots. Until 550 8C the shape is similar but at 600 8C we can see a transition around 300 Hz and the plot
shape changes dramatically at 700 8C. From this type of plot, it is possible to see very active changes at
lower frequencies, usually related with adsorption and diffusion processes for all the temperatures.
Fig. 10 shows the dependence of L(y) versus log(f), in the transition between 550 and 650 8C.

4. Conclusions

The usefulness of this new alternative representation of impedance data has been shown. This
representation allows us to discriminate rapidly the number of processes in the spectra. Also, all the
parameters of these processes can be extracted: relaxation frequencies, resistances and capacities, from
this representation or in combination with classic representations, specially, |Z| versus f.

Theoretical equations for the simplified behaviour of the impedance data are proposed. These
equations can be directly used to obtain the parameters previously commented or can be included in
non-linear fitting software to limit the possible range of variation of the parameters studied. This
method can be applied to provide starting parameters for non-linear least squares fitting using constant
phase elements, in that case problems due to correlation of parameters and identification of components
can be minimised.

Finally, we have demonstrated the high resolution of the new alternative representation that
depending on the analysed processes, it can be able to solve overlapped processes within a factor of 2 in
their relaxation frequencies, and even qualitative analysis can be achieved with high level of resolution.
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