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Abstract

The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV

semiconductors, binary compounds of III–Vand II–VI, as well as several ternary compounds from groups I–III–VI2, II–IV–V2 and

I–IV2V3 semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170,

0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these

groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which

depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the

compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above.

An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned

above and that gave the mean ionicity for the compound CuGe2P3 in the range of 0.442.
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1. Intoduction

The ternaries I–III–VI2 and II–IV–V2 (ABC2) have a chalcopyrite type structure and space group I42d with four

formula units per cell [1]. Each A and B-atom is tetrahedrally coordinated to four C-atoms while each C-atom is

tetrahedrally coordinated to two A and two B-atoms in ordered manner. These compounds are regarded as the ternary

analogues of II–VI and III–V binary compounds, respectively, which belong to the diamond structure. There are

compounds such as CuGe2P3 and CuSi2P3 belongs to group I–IV2–V3 and regards of the ternary analogue to III–V

compounds [2]. These two compounds have Zinc-blend structure with space group F4̄3m and their atoms are

distributed in a form that P atoms are occupying cation sites while Cu and Ge or Si are occupying the anion sites

randomly [2,3].

The knowledge of thermal expansion is important not only in crystal growth from liquid-vapor epitaxy but also in

the formation of hetrojunctions as well as in determining temperature dependence of optical birefringence as it may be

necessary in tuning of non-linear optical laser devices [4]. It is also important in determining the band structure of

semiconductors [5].
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There are several methods in determining lattice thermal expansion in semiconductors, but due to the small changes

of the unit cell dimensions, the accuracy of determining this parameter always have been unpredictable. One of the

methods of obtaining lattice thermal expansion is from the measurements of the temperature dependence of the unit

cell volume [3,6,7], or may be from the crystal dimensions [8]. In this case the results will be dependent on the

accuracy of the experimental set-up as well as on the technical information of the researcher. The second method is

dependent on the first principles calculations within the quasi-harmonic approximation [9]. The latter method needs a

powerful computer and efficient algorithms. There is a simpler method reported as a model depends on an empirical

formula build up from the hard sphere model based on diamond [10,11]. In this model, calculations are simple, fast and

more accurate; in regards of the applications point of view it can be highly dependent. The only information needed for

calculating lattice thermal expansion by this method is the bonding length and the melting point. However, due to

existence of these parameters with highly accurate values [3,1], the results obtained for thermal expansion will also

have high accuracy.

Due to the wide range applications of thermal expansion, as mentioned above, a more accurate value will be

important in this regard. However, it has been found that for elementary and binary semiconductors, the cubic root of

the deviation of the lattice thermal expansion from that of the expected values for diamond D1/3 will be changes

linearly with the bonding length for each group [11]. In this work these deviations were investigated for the compound

groups mentioned above and the results were compared with those reported earlier. The effects of mean ionicity due to

each group on the dependence of D1/3 versus mean bonding length dmean were investigated. Depending on the number

of valence electrons, which forms the compound semiconductors, investigations were carried out to obtain a general

formula for calculating lattice thermal expansion for all such compounds.

2. Methods of calculation

It has been found for most compound materials, the product of the melting point MP and their average linear thermal

expansion coefficient aL at near room temperature and above where the value is essentially saturated and tends to be a

structure dependent constant [10,11]. The value is aLMP (K) = 0.027 for rectilinear structures and 0.016 for close-

packed structures [10]. For tetrahedral semiconductors, the saturation value for aL has to be related to the product

aLMP (K) = 0.021 derived from data for diamond and the polarization parameter which is proportional to the bond

length d is raised to the third power, d3 [11]. ‘‘The product has also been found to be constant for analogous compounds

provided that the ionicity and structure do not change’’. Thermal expansion coefficients used are 1/3 of the volume

expansion coefficients in the saturation region. The quotient 0.021/MP (K) is the measure of aL expected from hard

sphere model based on diamond. The term D is the difference between the expected aL calculated for diamond which

is equal to 0.021/MP and that obtained by the measurement in the saturation region aL or aL is constant at the

temperature range near below room temperature and above up to near the melting point of the compound then:

aL ¼
�

0:021

MP

�
� ½Dðd � d0Þ�3 (1)

where D is the slope, d0 is the bond length for diamond and is equal to 1.545 Å and dmean is the mean bond length for

the interested semiconductor. In this work, the bond length was calculated using relations applicable to ternary

chalcopyrite compounds of the form ABC2 as [15]:

dB�C ¼
�

a2

�
1

2
� x

�2

þ ð4a2 þ c2Þ
64

�1=2

(2)

dA�C ¼
�

a2x2 þ ð4a2 þ c2Þ
64

�1=2

(3)

and

x ¼ 0:5�
�

c2

32a2
� 1

16

�1=2

(4)
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where a and c are lattice constants, their values for the two groups of II–IV–V2 and I–III–VI2 are taken from Ref. [1].

The bond-length used for the calculations are the mean values of the two as in the form:

dmean ¼
dA�C þ dB�C

2
(5)
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Table 1

Information for melting point, lattice thermal expansion, bonding length and the calculated lattice thermal expansion for some ternary normal

tetrahedral compounds

Compounds MP (K) Reference aL � 10�6

(Exp.)

Reference D1/3 Bonding

length (Å)

aL � 10�6

(Calc.) Eq. (13)

ZnSiP2 1453 [1] 6.33 [17] 0.0194 2.314 6.82

ZnSiAs2 1389 [1] 5.73 [18] 0.0211 2.406 4.41

ZnGeP2 1298 [1] 6.87 [17] 0.021 2.355 7.26

ZnGeAs2 1123 [1] 5.57 [18] 0.0236 2.443 6.55

ZnSnP2 1223 [1] 5.53 [19] 0.023 2.447 4.86

ZnSnAs2 1048 [1] 2.3 [20] 0.0261 2.538 3.61

CdSiP2 1393 [1] 2.402 4.51

CdSiAs2 1123 [1] 5.4 [19] 0.0237 2.443 6.55

CdGeP2 1063 [1] 6.07 [17] 0.024 2.446 7.48

CdGeAs2 943 [1] 5.68 [21] 0.0255 2.53 6.24

CdSnP2 843 [1] 4 [19] 0.0267 2.535 8.63

CdSnAs2 866 [1] 4.7 [20] 0.0269 2.62 3.41

CuAlS2 1573 [1] 11.17 [22] 0.01296 2.297 10.57

CuAlSe2 1473 [1] 10.47 [22] 0.0175 2.409 10.04

CuAlTe2 1143 [1] 0.0205 2.574 11.24

CuGaS2 1553 [1] 2.299 10.72

CuGaSe2 1343 [1] 10.46 [18] 0.0173 2.417 11.30

CuGaTe2 1143 [1] 2.595 10.80

CuInS2 1300 [1] 2.392 12.18

CuInSe2 1263 [1] 10.27 [18] 0.0183 2.5 10.93

CuInTe2 1053 [1] 9.5 [23] 0.0219 2.676 10.48

AgAlS2 1420 [1] 2.404 10.64

AgAlSe2 1223 [1] 2.515 11.20

AgAlTe2 1000 [1] 2.683 11.36

AgInTe2 953 [1] 2.742 10.81

AgInS2 1120 [1] 2.491 13.21

AgGaSe2 1123 [15] 2.525 12.54

CuGe2P3 1103 [16] 8.2 [24] 0.0221 2.324 7.81

CuSi2P3 1451 [3] 2.272 5.35

C (diamond) 3950 [11] 5.3 [11] 1.545 5.3

W–SiC 2970 [11] 6.3 [11] 0.0091 1.887 6.40

Si 1683 [11] 4.3 [11] 0.02 2.35 3.73

Ge 1209 [11] 5.9 [11] 0.0225 2.45 4.93

Sn 505 [11] 5.3 [11] 0.0331 2.81 7.62

AlSb 1353 [11] 4.5 [11] 0.0222 2.656 2.82

GaAs 1513 [11] 7.2 [11] 0.0188 2.45 7.02

GaP 1813 [11] 6.1 [11] 0.0176 2.36 6.57

InSb 806 [11] 5.6 [11] 0.0273 2.805 7.53

InAs 1216 [11] 6.5 [11] 0.0221 2.614 5.95

InP 1333 [11] 5.5 [11] 0.0217 2.541 6.60

ZnS 2103 [11] 6.9 [11] 0.0144 2.342 7.40

ZnSe 1798 [11] 7.7 [11] 0.0159 2.454 7.84

ZnTe 1512 [11] 8 [11] 0.0181 2.636 7.25

CdS 2023 [11] 4.5 [11] 0.018 2.53 5.49

CdSe 1623 [11] 7.3 [11] 0.0178 2.63 6.41

CdTe 1371 [11] 5.1 [11] 0.0218 2.806 5.07

GaSb 985 [11] 2.649 14.44



For compounds of CuGe2P3 and CuSi2P3 from the ternary group I–IV2–V3 having an f.c.c. structure, relations (2)–

(5) are reduced to:

dmean ¼
�

a

4

� ffiffiffi
3
p

(6)

Hence dmean is the mean bonding length. Lattice spacing values of 5.3678 Å for CuGe2P3 and 5.248 Å for CuSi2P3 are

used [3]. The dmean as well as all other information for groups IV, II–VI and III–V compounds are taken from [11]. Values

of D, aL, D and MP for all compounds interested in this work as well as group IV semiconductors are reported in Table 1.

Fig. 1 shows the cube root of the deviation (D)1/2 versus the mean distance dmean calculated through Eqs. (1)–(6) for

semiconductors mentioned in Table 1.

3. Results and analysis

Fig. 1 shows the cub root of the deviation of aL for the interested sample to that of the calculated from the model of

diamond indicated above as (D)1/3 = ((0.021/MP) � aL)1/3 versus the mean distance between the nearest neighbors

(mean bond length), calculated through Eqs. (1)–(6). This figure clearly shows the deviation of the slopes for groups

having the same configurations of the valence electrons for the elements forming the compound from that of the group IV.

The increase of the bonding for compounds in each class mentioned above is subjects to the increase in their metalicity.

This means that for a certain group the compounds with a larger bonding length, behaves less like a hard sphere and have a

more polarizability. For highly polarizable atoms, such as group IVelements, however, in solids of this group the electron

cloud have a spherical non-ionic distribution and that consequently means a high flexibility to the external effect of

pressure. From the tetrahedral coordinate of diamond, the displacement of the reference atom presses the electron cloud

of the three neighboring atom spheres produces a large orifice sizes with the nucleus remains at their positions and that

consequently permits a greater penetration and that in turn produces a less thermal expansion. The information mentioned

above could be represented through the ionicities of the compounds. However, lattice thermal expansion dependence on

the percentage ionicity has been reported to be linier for many oxide and floride binary compound crystals such as SnO2,

PbO2, etc. and MgF2, CoF2, etc. [12]. The ionicities used in their work were calculated from the relation below:

Amount of ionic character ¼ 1� e�1=4ðXA � XBÞ2 (7)
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Fig. 1. The cubic root of the deviation of the lattice thermal expansion of a semiconductor from that of the expected value of diamond D1/3 in K�1/3

vs. dmean in Å ‘‘the mean bonding length’’ before applying the effects of ionicity.



where XA and XB are the electronegativities of the two type atoms. However, attempts for a such dependence regarding

compounds in the groups interested in this work was not successful so far.

A similar relation has also been used by Numann to calculate the ionicities f i of tetrahedral compound

semiconductors [13]. He reported an approximate empirical relation between D and f i as:

D3 ¼ b0 � b1 f̄
2
i (8)

where b0 and b1 are constants having values of 17.6 and 37.3 � 10�6 K�1 Å�3, respectively. Hence f̄i is the mean

ionicities and are arithmetic means of the ionicities of all the compounds of a given family. For binary groups, f̄i values

have been taken from [14], while for ternary chalcopyrite compounds having two types of anions, the average ionicity

f̄i have been used were taken from Ref. [13]. The values of f̄i are given in Table 2. If the values of D obtained in this

work are drawn versus f̄
2
i as shown in Fig. 2, then new values for b0 and b1 for this empirical relation obtained as

17.061 and 29.86 � 10�6 K�1 Å�3, respectively.

Eq. (8) with its new values of b0 and b1 is applicable for all group compounds mentioned in Table 2 except for that of

I–IV2–V3. To extend this relation for such a group, it should be written in a new form:

D ¼ ðb0 � b1 f̄
2
i Þ

1=3
(9)

In this relation, the negative sign should be for the group compounds having values of D less than that of the group IV

while the positive sign will be for the values of D higher than that. When Eq. (9) was applied the values of ionicity f̄i

for group I–IV2–V3 compounds, namely CuGe2P3 was found to be equal to 0.442.

In semiconductors, ionicities are a function of the configuration of the atomic valence electrons in the

compound. However, tetrahedral compounds are formed from the elements of the right and left side of group IV in
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Table 2

Values of D in (K�1/3 Å�1) ‘‘the slope of D1/3 vs. mean bonding length’’ and f̄
2
i ‘‘square of mean ionicity’’ for six groups of normal tetrahedral

compound semiconductors

Compound groups D (K�1/3 Å�1) (this work) D3 (K�1/3 Å�3) � 10�6 D (K�1/3 Å�1) [13] f 2
i

IV 0.0256 16.777 0.0257 0

III–V 0.0210 9.261 0.02154 0.152

II–VI 0.0170 4.913 0.01488 0.422

II–IV–V2 0.0259 17.374 0.02525 0.0784

I–III–VI2 0.0196 7.53 0.01613 0.325

I–IV2–V3 0.0284 22.9

Fig. 2. D3 in K�1/3 Å�3 vs. f̄
2
i ‘‘square of mean ionicity’’ for five groups of normal tetrahedral compound semiconductors.



the periodic table, having less and more than four valence electrons, respectively [2]. To form sp3 hybridization

for normal tetrahedral compounds, four electrons per lattice should be available. This consequently is formed

through mixing the valence electrons of all the atoms forming the compound, then, the ionic character for both the

cation and anion lattices will be produced [15]. However, the latter produces a considerable shrinkage to

the atomic shells, and that means a harder sphere and less polarizable. Then the nuclei and electron clouds of the

surrounding atoms must shift permanently to allow for penetration, that gives a larger value of thermal expansion.

The analysis mentioned above is build from values of D (the slope of D1/3 versus bond length) as they are

indicated in Table 2.

Values of D for ternary group compounds I–III–V2 and II–IV–V2 indicated in Table 2 are different from that

reported in [5]. Although their calculations were build from the diamond model, but the intercepts of the D1/3 versus d

with the d-axis as the bonding length in their calculation have been left open, which gives different intersection

reference points for different compounds. However, due to the hard sphere model based on diamond the curves for all

compounds should intercept at the same reference point, which is the value of the bonding length of diamond and that

is equal to 1.545 Å [11].

From the information of the dependence of D on the mean ionicity f̄i for the group compound semiconductors as

mentioned earlier, attempts to make a mathematical formula in a long range system for the compounds that belong to

the same group was not successful so far.

Since group IV semiconductors have zero ionicity, then the deviation of D for the more complicated compounds

mentioned earlier could be related to the number of valence electron difference between the cation and anion atoms,

that is, depends on the effect of the electron cloud mentioned earlier. For binary compounds and throughout the process

of trial and error the multiplication value to D which makes the slope of the binary to be exactly equal to that of group

IV was found to be in the form (B � A)1/3.5, where A and B are the number of valence electrons for the anion and cation

atoms, respectively. This is the re-correction of the effects of the ionicity on thermal expansion. Results for group II–VI

and III–V compounds are shown in Fig. 3. However this parameter makes the equation that belongs to group IV
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Fig. 3. The cubic root of the deviation of the lattice thermal expansion of a semiconductor from that of the expected value of diamond D1/3 in K�1/3

vs. dmean in Å ‘‘the mean bonding length’’ after applying the effects of ionicity.



(Eq. (1)) be extended to that including the binary normal tetrahedral compounds as:

aL ¼
0:021

MP

� ½DðB� AÞ�1=3:5ðd � d0Þ�
3

(10)

where D in units of K�1/3 Å�1 and is the value of the slope for diamond as reported in Table 2.

To have values of D that belong to ternary normal tetrahedral compounds having two anion type lattices be exactly

equal to the value of D for diamond, it was found that the difference between the anion lattice atom valence electrons in

these groups has a significant effect on the relation. For chalcopyrite ternary semiconductors such as II–IV–V2 and I–

III–VI2 groups, when the number of the two different anion lattices are equal, their difference of the valence electrons

will be add to the factor found for the binary and become ½fðC � AÞ þ ðC � BÞ � ðB� AÞg1=q�1=3:5
. Then values of D

belong to these ternaries, changes exactly to that of diamond as shown in Fig. 3. For making Eq. (10) applicable to

ternary compounds of this type, this factor should be multiplied by the values of D in Eq. (1), which is applicable to

group IV, then a general equation will be formed:

aL ¼
0:021

MP

�
�

D

�
fðC � AÞ þ ðC � BÞ � ðB� AÞg 1

q

��1=3:5

ðd � d0Þ
�3

(11)

where A and B are the number of the first and second cation valence electron in the compound and q is the number of

cation or anion lattices and is equal to 2 in this case. For a more complicated ternary group compounds such as I–IV2–

V3, where anion lattices are occupied by different number of different type of bases, additional information should be

considered. Through the process of trial and error, new correction parameters were found to bring values of D for group

I–IV2V3 exactly to that for diamond .The factor is: ½½fðC � AÞ þ 2ðC � BÞg � fðB� AÞ þ ½B� ðB� AÞ�g�1=q�1=3:5

and the results are shown in Fig. 3. When this factor is added to Eq. (11), the equation will be extended to include the

above group compounds and becomes:

aL ¼
0:021

MP

�
�

D

�
½fðC � AÞ þ 2ðC � BÞg � fðB� AÞ þ ½B� ðB� AÞ�g� 1

q

��1=3:5

ðd � d0Þ
�3

(12)

where 2 is regarded as a two of a one type bases in the cation lattice and q for this case is equal to 3 which is the number

of cation or anion lattices. In this equation, if the value of D is belongs to group IV compounds and its value is given in

Table 2, d0 is the mean bonding length for diamond, then Eq. (12) for aL can be rewritten in a new form:

aL ¼
0:021

MP

�
�

0:0256

�
½fmðC � AÞ þ nðC � BÞg � fðB� AÞ þ ½B� ðB� AÞ�g� 1

q

��1=3:5

ðd � 1:545Þ
�3

(13)

where m and n are the number of the first and second cation lattices, respectively. They are equal to 1 and 2,

respectively, for the ternary group I–IV2–V3, while both of them are equal to 1 for both of the compound groups II–IV–

V2 and I–III–VI2.

Eq. (13) is found to be applicable to calculate lattice thermal expansion for all group semiconductors mentioned in

this work except group IV compounds where Eq. (1) is applicable. As mentioned for Eq. (1), this equation is applicable

at temperatures near below room temperature and above up to near the compound melting point. However calculated

values of thermal expansion aL by using this equation for all the compounds interested in this work are given in

Table 1.

4. Conclusions

A suitable empirical relation was found to calculate lattice thermal expansion at near room temperature and above

for normal tetrahedral semiconductors based on six groups of compound semiconductors, namely IV, III–V, II–VI, II–

IV–V2, I–III–VI2 and I–IV2–V3. The slope D, of the graph of the cubic root of the deviation of the lattice thermal

expansion of the interested compound from that of the expected value of diamond D1/3 versus their bonding length,

was found to be strongly dependent on the mean ionicity f̄i of the compounds in a group and a general empirical
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relation between the two was formed. The valence electrons for the elements forming these compound groups were

found to be controlling the values of D mentioned above.
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