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Abstract

A finite element technique is used to study the stress distributions at the crack tip of a piezoelectric ceramic subject to the
applied electric fields. Under a negative applied electric field (electric field opposite to the direction of poling), the assumption of
crack surfaces to be free of surface traction as the mechanical boundary condition is found to be invalid. It is shown that the stress
distributions at the crack tip under the negative applied electric field are different for the closed crack mechanical boundary
condition than those for the traction-free crack surface mechanical boundary condition. © 1997 Elsevier Science S.A.
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1. Introduction

In piezoelectric materials, the application of an elec-
trical field generates mechanical stresses apart from
generating electrical charges and the application of a
mechanical load generates electrical charges apart from
mechanical stresses. This makes piezoelectric materials
very useful in electromechanical and electronic devices
such as electromechanical actuators, sensors, and trans-
ducers. In these devices, both electrical and mechanical
loads are applied on the piezoelectric components
which give rise to sufficiently high stresses which can
lead to their failure.

In the theoretical analyses of crack problems in the
piezoelectric materials, although researchers have dif-
ferent opinions about the electrical boundary condi-
tions at the crack surfaces, they usually consider crack
surfaces to be free of surface traction as defined by Eq.
(1) to be the mechanical boundary condition:

Gg9=0,9=09, =0 (1)

where, r, § and z denote the co-ordinates in the c¢ylin-
drical co-ordinate system.
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Usually, as the dielectric constant of the air or the
medium between the crack faces is very small as com-
pared with that of the piezoelectric material, some
researchers [1-8] have assumed: (i) zero dielectric per-
mittivity of the medium between the two crack surfaces;
and (ii) the crack surfaces to be free of surface charge
as defined by Eq. (2),

Df =Dy =0 ' )

where, D, is the normal electrical displacement at the
crack faces. Superscripts + and — denote the upper
and lower crack surfaces, respectively.

On the other hand, researchers such as Parton [9],
Zhang and Hack [10], Hao and Shen [11], and Dunn

[12] have assumed that although the magnitude of the

normal electrical displacement component at the crack
face is very small, the electrical displacement is continu-
ous across the crack faces. Parton [9] used the electrical
boundary conditions as

Df =Dy 3)
and
T =¢" 4

where ¢ is the electrical potential. Hao and Shen [11]
used the boundary condition in which the electric per-



2 S. Kumar, R.N. Singh / Materials Science and Engineering A231 (1997) 1-9

meability of air in a crack gap is considered. Apart
from Eq. (3), they used an additional equation for the
boundary condition at the crack faces,

Dy (ui —ug)=efp~ —¢") &)

where u, is the displacement component normal to the
crack face and ¢, is the permittivity of air. If there is no
gap between the crack faces, ie., uf —uy; =0, then
Eq. (5) reduces to Eq. (4) and for the condition &, =0,
ie., for a medium having zero electrical permittivity,
Eq. (5) reduces to Eq. (2).

In a recent study, we used the finite element tech-
nique to calculate the angular distributions of radial
and tangential stresses at the crack tip in piezoelectric
materials for the combined mechanical and electrical
loads [13], and also the energy release rates for the
crack propagation under these conditions [14,15]. The
calculated stress distributions and the energy release
rates were in agreement with the theoretical results of
Sosa [6] and Pak [7], and the experimental results of
Wang and Singh [16,17].

In this study, a finite element technique is used to
study the validity of the mechanical boundary condi-
tion at crack surfaces to be free of traction (Eq. (1)) in
piezoelectric materials under applied electric field. The
results reported in this paper are calculated using the
electrical boundary condition as defined by Eq. (2).

2. Constitutive equations

The constitutive equations for the piezoelectric mate-
rials are,

Oy = Cl_’iklslcl - ekz_’/‘Ek 6)
D= eys0+ 6. B, N

where oy, 5., F, and D; are the stress, strain, electric
field strength and electric displacement tensors, respec-
tively. Cy,, Ey, and ey, are the elastic constant tensor,
the dielectric constants and the piezoelectric constants,
respectively, of the material. The strain tensor is related
to the displacement vector {w, i=1, 2, 3} by the
equation,

1
Sy = E(ui,j +uy) )

where
du; .
u,;=—-—, X;=co-ordinate axes
0x;
The electric field strength is related to the electrical
potential ¢ by the equation
d¢

i = _5;1_ ’ (9)

The governing field equations are given by
oy;+5=0 (109)
Dy;= gy (il

where, f; and g, are the body force and body charge,
respectively.
The boundary conditions are given by

oyn; =T, (12)
Diniz — s (13)

where #, is the unit normal vector to the boundary
surface. T; and ¢, are the surface traction and surface
charge, respectively, applied on the boundary surface.

Poled piezoelectric materials like barium titanate and
lead zirconate titanate (PZT) are transversely isotropic
elastic materials with hexagonal symmetry of class 6
mm. The constitutive relations for these materials can
be written as (with x; as the poling direction and x;-x,
plane as the isotropic plane),
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where Cj; and ¢; are the elastic constant tensor and the
piezoelectric constants, respectively, in the contracted
notation. The relationships between the contracted and
expanded notations of these variables are given as

Cu=Cun= Com

Cp3=Cia3= C2233
Co= C2323 = Cy3

Cia=Cip

Ci3 = Cisas

Cos = Cra12 = 1/2(Cy; — Cyp)
€15 = €113 = €323

€31 = €311 = €323 €33 = €333

For the plane strain conditions (s,, =8, =25,;=0
and E, =0), Egs. (14) and (15) can be written as,

g1 Cy Ci 0 s
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255,

(17)

3. Model

In order to study the stress distributions at the
crack tip in a piezoelectric material, a double edge-
notched (DEN) specimen is modeled. The dimensions
of the specimen are shown in Fig. 1. Due to symme-
try, only the right half of the model (shown by
ABCD) is used in the finite element analysis. Direc-
tion shown by P is the poling direction. The crack
surface OE is assumed to be perpendicular to the
poling direction. A specialized preprocessor is written
to divide the model into finite ‘elements’ taking into
consideration the two free surfaces of the crack along
OE. In order to accurately calculate the stress distri-
butions at the crack tip, the mesh density is increased
near the crack tip. The finite element mesh for the
mode!l is shown in Fig. 2(a). Eight-noded quadrilat-
eral finite elements with three degrees of freedom—u,
(x-displacement), u, (y-displacement) and ¢ (electric
potential)—are used in the model. The total number
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of nodes and elements in the finite element analysis
are 4551 and 1488, respectively.

Fig. 2(b) shows the enlarged view of the finite
element mesh near the crack tip. The quadrilateral
elements at the crack tip are at an interval of

7.5° . Sosa and Pak [4] and Wang [8] theoretically

showed that stress and electric fields at the crack
tip show classical 1 \/; type of singularity. In order
to produce a l/\/;/ type of singularity for the dis-
placement and electric potential at the crack tip,
the three nodes along one of the sides of each of
the quadrilateral elements are collapsed at the crack
tip and the two adjoining mid-points are moved to
the quarter point distances [18]. The angular distribu-
tions of the radial and tangential components of
stresses at an interval of 7.5° are calculated for
the four node sets defined by points along the cir-
cular arcs OP, OQ, OR and OS (Fig. 2(c)). The ra-
tios OP/OE, OQ/OE, OR/OE and OS/OE (radial
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Fig. 1. The double edge-notch (DEN) model in two dimensions.
Direction shown by P is the poling direction. Due to symmetry, only
half of the double edge-notch specimen, ABCD, has been modeled.
For the mechanical boundary conditions, point C was fixed; line CD
and line AC were constrained to have displacement only along the
x-axis and y-axis, respectively. For the electrical boundary condition,
the line CD was grounded. For the electrical boundary conditions at
the crack surfaces, the normal electrical displacement was assumed to
be zero.
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Fig. 2. (a)The finite element mesh for the model. Eight-noded quadrilateral finite elements with three degrees of freedom u, (x-displacement), u,
(y-displacement) and ¢ (electric potential) were used in the model. The total number of nodes and elements were 4551 and 1488, respectively. (b)
The enlarged view of the finite element mesh near the crack tip. The quadrilateral elements at the crack tip were at an interval of 7.5°, (¢) The
angular distributions of the radial and tangential stresses were calculated for the four node sets defined by the points along the circular arcs OP,
OQ, OR and OS. The ratios OP/OE, OQ/OE, OR/OE and OS/OE are 1.0 x 1075, 40 x 105, 6.0 x 10~ and 8.0 x 10 =%, respectively. OE is

the crack length (Fig. 1).

distances in terms of the crack length OE) are 1.0 x
1075, 40x 1073 6.0 x 10~% and 8.0 x 105, respec-
tively. The side lengths (in radial direction from the
crack tip) of the elements are about 1.25 times the
preceding element length (starting from the element at
the crack tip) in order to increase the accuracy of the
results. Initially, we tried a finite element mesh for
which the ratios OP/OE, OQ/OE, OR/OE and OS/OE
were 1.25x 1074 5.0x10~% 7.5x 10~* and 1.0 x

1073, respectively, but for this mesh, the angular varia-
tions of stress distributions calculated for the applied
electric field were found to be inaccurate and different
from those predicted theoretically by Sosa [6] and Pak
[71.

For the mechanical boundary conditions, point C
was fixed; lines CD and AC were constrained to have
displacement only along the x-axis and y-axis, respec-
tively. For the electrical boundary condition, the line
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CD was grounded, and the normal electrical displace-
ment at the crack surfaces was assumed to be zero.
Electric potential was applied on the line AB for creat-
ing an electrical load. The finite element package
ABAQUS Version 5.4 [19] was used to calculate the
stresses at the nodes of the model. Plane strain condi-
tions were assumed for the analysis.

4, Results and discussion

The PZT-5H material properties, as given in Table 1,
were used for the analysis. The angular distributions of
the radial and tangential stresses under applied electric
field were calculated for the four node sets defined by
points along the circular arcs OP, OQ, OR and OS at
an interval of 7.5° (Fig. 2(c)). The stresses were normal-
ized by multiplying them by the factor /2r/a, where r
and « are the radial distance of the point from the crack
tip and crack length, respectively. For applied electric
fields, the angular distributions of the stresses differ for
the different circular arcs, and only the angular distri-
butions of the stresses for the circular arc defined by the
radius OP were found to be accurate and same as those
predicted by the theoretical analyses of Sosa [6] and
Pak [7]. Hence, a very fine mesh near a crack tip is
required to accurately calculate stresses near the crack
tip in a piezoelectric material. The angular distributions
of stresses reported in this paper are for the circular arc
defined by the radius OP which is nearest to the crack
tip and at a distance of 1.0 x 10~ 5 of the crack length.

The double edge-notched specimen, as shown in Fig.
1, was used to study the stress distributions at the crack
tip under electrical loads. The stress distributions at the
crack tip under either a negative or a positive electric
potential applied at the top edge AB (Fig. 1) were
determined. As the bottom edge CD was grounded,
negative electric potential on AB produced an electric
field which was parallel to the poling direction. We call
this type of electric field a positive electric field. A

Table 1

Material properties for PZT-SH piezoelectric ceramic [7]
Parameter

Cy 12.6x 10 N m—2

Cp, ) 5.5% 10" N m~—2

Cis 12.3% 10 N m~?

Cy3 11.7x 10" N m~—2

Cuy 3.53x 10" N m~—2

e —-65Cm~? .
€33 233 Cm™?2

es 170 Cm~2

& 151x 1071 C (V-m)~!

833 130% 1019 C (V-m)~!

¥

o./D (2r/$)”2 x 108

0 ) 120 180 240 300 360
Angle 6

Fig. 3. Angular variations of the stresses ¢, 0,, and a,4 at the crack
tip for the applied positive electric field under plane strain condition
and for the mechanical boundary conditions at the crack surfaces as
defined by 1; r, a and angle 6 are defined in Fig. 1. The stresses were
normalized by the equivalent electrical displacement D (= &; x E)
corresponding to the applied electric field E. The direction of the
applied electric field E was parallel to the direction of poling. The
plotted stresses are similar to those calculated theoretically by Sosa
[6] (Fig. 4) and Pak [7] (Fig. 7(b)) except a normalization factor due
to the finite size of the specimen.

negative electric field, which was opposite to the poling
direction, was produced by the application of a positive
electric potential on the edge AB.

4.1. Positive electric field

In order to study the stress distributions under posi-
tive electric load, an electric potential of — 100 V was
applied on the face AB and the lower face CD was
grounded (Fig. 1). Fig. 3 shows the angular distribu-
tions of the radial and tangential stresses ¢,,, 0,, and
0,o under plane strain conditions for the mechanical
boundary condition at the crack surface defined by Eq.
(1). These stresses are normalized by the factor 1/
D ./2rjax 10%, where D is the equivalent electrical
displacement corresponding to the applied electric field
E, ie., D =¢5; x E. These stress distributions are simi-
lar to those calculated theoretically by Sosa for PZT-4
(Fig. 4 in Ref. [6]) and Pak for PZT-5H (Fig. 7(b) in
Ref. [7]) except a normalization factor due to the finite
size of the DEN specimen. Sosa’s and Pak’s calcula-

“tions are valid for a finite size crack in an infinite
piezoelectric medium. For a positive applied electric

field, the hoop stresses developed are compressive for
all values of 4. The maximum value of the negative
hoop stress occurs at an angle 8 ~ 82°, Fig. 4 shows the
deformed mesh of the DEN model for the negative
applied electric field. The displacements shown in
figures are scaled to produce the deformed shape. The
scale factor is one-tenth of the maximum model dimen-
sion [20]. For comparison, the difference between the
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y-displacement of the node at the right-hand side of the
crack surface and the y-displacement of the node at the
right-hand side of the lower crack surface, d, is shown
in Fig. 4. The crack opening d is 6.612 x 10 ~° whereas
the width of the specimen is 1.0.

Due to the piezoelectric effect, a positive applied
electric field causes an increase in the length along the
applied electric field direction. Only the upper half of
the model on the right hand side, i.e., region I (Fig. 1),
is under a positive electric field in the yp-direction,
whereas the total length of the model ( = 25) on the left
hand side (i.e., regions IT and III) is under the same
magnitude of the applied positive electric field in the
y-direction, and most of the lower-half region on the
right hand side (i.e., region IV) experiences compara-
tively small electric field. This causes an expansion in
the y-direction of the regions II and III which is about
twice that of the region I and there is a negligible
expansion of region IV. The greater expansion in the
y-direction of regions II and III causes a pulling of the
crack tip towards the left hand due to the Poisson
effect. Hence, the crack tip moves up, i.e., the y-dis-
placement of the crack tip is positive, and it is also
pulled slightly towards the left hand side, i.e., x-dis-
placement of the crack tip is negative. As the expansion
in the y-direction of regions II and III is large as
compared with that of region IV, there is a crack
opening. As shown in Fig. 3, the crack opening stress,
i.e., 0gg, 18 zero for #=0; hence, the crack does not
grow along @ =0, and this causes a compressive stress
in the upper and lower halves near the crack tip due to

Fig. 4. The deformed mesh of the DEN model for applied positive
electric field under the mechanical boundary conditions at the crack
surfaces as defined by Eq. {1). The right-hand-side figure is the
enlarged view of the deformed mesh near the crack tip. The direction
of positive applied field was perpendicular to the crack surface and
was the same as the direction of poling. See text for the magnification
factor of the displacement shown. The relative displacement 4 shown
in the figure is equal to 6.612 x 10~° whereas the width of the
specimen is 1.0.

the compressive effects of the crack opening in the right
half, i.e., both upper and lower crack surfaces compress
the material in their respective halves.

4.2. Negative electric field

An electric potential of 4100 V was applied on the
face AB and the lower face CD was grounded in order
to study the stress distributions under negative electric
load (Fig. 1). Fig. 5 shows the angular distributions of
the radial and tangential stresses oy, o,, and ,, under
plane strain condition for the mechanical boundary
condition at the crack surface defined by Eq. (1). These
stresses are the negative of the stresses developed for
positive applied electric field (Fig. 3). For a negative
applied electric field, the hoop stresses developed are
tensile for all 4. The maximum value of the tensile hoop
stress occurs at an angle § ~ 82°. Hence, this will cause
the crack to propagate in an oblique direction.

Fig. 6 shows the deformed mesh of the DEN model
for the negative applied electric field. As the effect of a
negative applied electric field on the model would be
the opposite of that of a positive applied electric field,
the crack closure under a negative applied field can be
explained along the same lines as the crack opening
under a positive applied electric field described in Sec-
tion 4.1. Due to the piezoelectric effect, there would be
a decrease in the length of the model in the y-direction
under a negative applied electric field. As the total
length (=2b) of the model in regions II and III is
under the negative applied electric field, and the upper
half (region I) and lower half (region IV) on the right
hand side are under the same negative applied eletric
field and a very small electric field, respectively, there is
a decrease of the length in the y-direction of regions II
and III, and this decrease is about twice of the decrease
in length in the y-direction of region I. In the lower
half, in the right hand side (region 1V), there is a very
small decrease in the length along the y-direction. This
causes a positive x-displacement and a negative y-dis-
placement of the crack tip, i.e., the crack tip moves to
the right and dips in the y-direction. Also, the y-dis-
placements of the nodes at the upper and lower crack
surfaces are negative. However, the magnitude of the
negative y-displacement of a node at the upper crack
surface is more than that of the corresponding node
(i.e., having the same x and y coordinates in the
undeformed mesh) at the lower crack surface, and this
causes the upper crack surface to go under the lower
crack surface. As shown in Fig. 5, the crack opening
stress, i.e., gy, 18 zero for 6 = 0; hence, the crack does
not grow along # =0 and this causes a tensile stresses
in the upper and lower halves near the crack tip due to
the tensile effects of the crack closure in the right half,
i.e., both upper and lower crack surfaces tries to elon-
gate the material in their respective halves. This also
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Fig. 5. Angular variations of the stresses ¢y, o,, and o,, at the crack tip for applied negative electric field under plane strain conditions and for
the mechanical boundary conditions at the crack surfaces as defined by Eq. (1); r,  and angle 0 are defined in Fig. 1. The stresses were normalized

by the equivalent electrical displacement D (= g, x E) corresponding to t

was opposite to the direction of poling.

causes the hoop stress to be maximum at an oblique
angle, 6. Hence, the assumption of crack surfaces to be
free of surface traction as the mechanical boundary
condition is not valid for the negative applied electric
field.

4.3, Physical interpretation

The deformation of the DEN specimen near the
crack tip under positive and negative electric field can

] }

Fig. 6. The deformed mesh of the DEN model for applied negative
electric field under the mechanical boundary conditions at the crack
surfaces as defined by Fig. 1. The right-hand-side figure is the
enlarged view of the deformed mesh near the crack tip. The direction
of negative applied field was perpendicular to the crack surface and
was opposite to the direction of poling. See text for the magnification
factor of the displacement shown.

he applied electric field E. The direction of the applied electric field £

be explained with the help of Fig. 7(a) and (b). Due to
the increase in the electric field in the uncracked region
in the neighborhood of the crack tip, the uncracked
region has a tendency to elongate more in the y-direc-
tion relative to the cracked region (where the electric
field is almost zero) for a positive applied electric field.

Compressive Compressive

Stress Stress
Tensile Tensile
Stress Stress
- - - 1_ 1 = { -r - -
| !
Uncracked Cracked Uncracked Cracked
Region Region Region Region

/o 0
Crack Tip Crack Tip

a) For Positive Applied

b) For Negative Applied
Electiic Field

Electiic Field

Fig. 7. Physical interpretation of the deformation of the DEN speci-
men under applied electric field. Stresses near the crack tip (a) for a
positive applied electric field and (b) for a negative applied electric
field. Solid and dashed horizontal lines denote the free and con-
strained elongations, respectively, in the y-direction.
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Fig. 8. The deformed mesh of the DEN model for applied negative
electric field under the mechanical boundary conditions at the crack
surfaces as defined by Egs. (18) and (19). The right-hand-side figure
is the enlarged view of the deformed mesh near the crack tip. The
direction of negative applied field was perpendicular to the crack
surface and was opposite to the direction of poling. See text for the
magnification factor of the displacement shown.

This results in compressive stress in the uncracked
region and tensile stress in the cracked region for the
positive applied electric field. The reverse stresses will
develop under a negative electric field. The right-hand
side figure in Fig. 6 clearly shows the effects of the
tensile and compressive stress fields in the uncracked
and cracked regions, respectively. The deformed line,
marked by two arrows, was parallel to the crack in the
undeformed mesh.

4.4. Mechanical boundary condition at the crack
surface

As we have seen in the last section, the surface
traction free mechanical boundary condition defined by
Eq. (1) for the crack surfaces is not valid for the
negative applied electric field. In this case, electric field
causes the crack surfaces to close. Hence, we modified
the mechanical boundary condition for the crack sur-
faces for the negative applied electric field and used the
following equation for the displacement field at the
crack surfaces (Fig. 1),

w,(x, b7 )=u,(x,b%), x>(c—a) (18)

where, 5~ and b* denote the lower and upper crack
surfaces, respectively, and u,(x, y) is the y-displacement
at (x, ). Apart from Eq. (18), we assumed that the
shear stress along the crack surfaces is zero, i.e.,

6 =0 (19)

Fig. 8 shows the deformed mesh for the negative
applied electric field under the new mechanical
boundary conditions at the crack surfaces. Fig. 9 shows
the angular distributions of the radial and tangential
stresses oy, 0, and o,, at the crack tip for the negative

applied electric field. As shown in Fig. 9, the hoop
stress gy, is tensile in nature for the negative applied
electric field. The hoop stress is maximum at & =0° (as
compared with at 9 0° in Fig. 6 for the mechanical
boundary condition defined by Eq. (1)). This will pre-
dict the propagation of the crack in a straight line

-(rather than at an oblique direction, for the mechanical

boundary condition of Eq. (1)). Also, under this new
mechanical boundary condition at the crack surfaces,
the magnitude of the maximum hoop stress is much
higher than those under mechanical boundary condi-
tion of Eq. (1); hence, the crack will propagate more
rapidly. The right-hand side figure in Fig. 8 clearly
shows the effect of the highly tensile stress region near
the crack tip. Under these new mechanical boundary
conditions too, the hoop stress, o, at the crack sur-
faces are zero although we restricted only the y-dis-
placements of the two crack surfaces to be the same.

5. Conclusions

The two-dimensional finite element technique was
used to study the angular distributions of the radial and
tangential stresses ¢4y, 0,, and o,y at the crack tip under
the applied electrical loads on a double edge-notched
specimen. The crack surface was assumed to be perpen-
dicular to the poling direction. Electric fields were
applied along the poling direction. The calculated stress
distributions were in conformity with those predicted
by the theoretical analyses of Sosa [6] and Pak [7]. For
the negative applied electric field, the analysis of the
deformed mesh showed that the mechanical boundary

e astld

ot

6./D (2r/a)'? x 10

y

5.0 ISR B
180 240 300 360

Angle 6

<
=)
(=4
I
(=]

Fig. 9. Angular variations of the stresses oy, 0,, and g,, at the crack
tip for applied negative electric field under plane strain conditions
and for the mechanical boundary conditions at the crack surfaces as
defined by Eqs. (18) and (19); r, a and angle 4 are defined in Fig. 1.
The stresses were normalized by the equivalent electrical displacement
D (=g x E) corresponding to the applied electric field E. The
direction of the applied electric field E was opposite to the direction
of poling.
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condition at the crack surfaces defined by Eq. (1) (i.e.,
crack surfaces to be free of surface traction) only was
not valid. For a negative applied electric field, the crack
tended to propagate in a straight line under the me-
chanical boundary condition at the crack surface
defined by Eqgs. (18) and (19) (i.e., for a closed crack),
rather than at an oblique angle predicted under the
mechanical boundary condition of Eq. (1) only.
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