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Abstract

A computer model of the mechanical alloying process has been developed to simulate phase formation during the mechanical

alloying of Mo and Si elemental powders with a ternary addition of Al, Mg, Ti or Zr. Using the Arhennius equation, the model

balances the formation rates of the competing reactions that are observed during milling. These reactions include the formation of

tetragonal C11b MoSi2 (t -MoSi2) by combustion, the formation of the hexagonal C40 MoSi2 polymorph (h -MoSi2), the

transformation of the tetragonal to the hexagonal form, and the recovery of t -MoSi2 from h -MoSi2 and deformed t -MoSi2. The

addition of the ternary additions changes the free energy of formation of the associated MoSi2 alloys, i.e. Mo(Si, Al)2, Mo(Mg, Al)2,

(Mo, Ti)Si2, (Mo, Zr)Si2 and (Mo, Fe)Si2, respectively. Variation of the energy of formation alone is sufficient for the simulation to

accurately model the observed phase formation.
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1. Introduction

Numerous methods have been developed to model the

mechanical alloying process. The models developed to

date may be classified into three broad categories. The

first may be referred to as ‘‘mechanistic models’’, which

focus on the motion of balls, calculations of velocities

and impact energy probabilities, and on the macro

segregation of powder within the mill [1�/9]. This subset

of models have been termed ‘‘global models’’, since they

are specific to the mill device used. A related subset,

referred to as ‘‘local models’’, examine the ball�/powder

interaction, including deformation, fracture and diffu-

sion processes; and with consideration of the material

properties, predict the effect on the powder morpholo-

gies. The second set of models predicts phase formation

and evolution during mechanical alloying by under-

standing the thermodynamic variations. The Miedema

model [10] for example, which can predict amorphous

phase formation and heats of mixing of metastable

phases, provides insight into the formation of amor-

phous materials using MA. These models usually

contain no information on the rate of phase formation.

A final set of models can be termed ‘‘kinetic models’’

[1,11�/16]. These models use chemical reaction rates to

understand the influence of processing parameters, such

as charge ratio, collision frequency, collision energy or

ball mass.

Here we present the development of a computer

simulation that, from basic physical premises, attempts

to quantify the increase in the free energy of the milled

compounds during mechanical alloying. The model is

optimised using an adaptive simulated annealing algo-

rithm. The results from [17] are used as inputs into the

model to yield estimates of the energy of formation of

several metastable compounds and to validate the

model. The model is derived in full in the thesis by

Heron [18], which also contains the complete simulation

code.
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2. The model

The total powder charge is simulated by an arbitrary

number of powder regions or ‘‘packets’’, n , which are
considered to contain exactly 1 mol of Mo atoms and 2

mols of Si and/or Al atoms. After the initialisation of the

variables, the alloy content is randomly distributed

throughout the n packets. For each of the packets in

turn, the mechanical alloying process is performed over

the time step dt. The deformation incurred is modelled

as an increase in the effective processing temperature for

each packet, dTi,t.
Five reactions, shown in Table 1, dominate the phase

formation observed during mechanical alloying. The

reaction rates, rZ (where Z�/comb, trans, t2h, h2t, and

rec), are calculated using Arrhenius equations of the

form:

rZ;i;t�AZe
�

QZ;i;t

RTi;t (1)

where rZ,i,t is the reaction rate, AZ is the reaction rate

constant, QZ,i,t is the activation energy, Ti,t is the

effective reaction temperature and R is the gas constant.

Both AZ and QZ,i,t are determined by comparison and

optimisation against the observed result from the mills

containing Al additions. The following convention is

adopted to identify variables in this model. The sub-

script Z is the reaction designation, i is the packet
designation, t is the time step designation and F is the

phase designation. If one or more of these subscripts are

not associated with a particular variable, then that

variable is constant with respect to that subscript

designation.

The activation energy for each reaction at time step t

is modified from its equilibrium values, QZ,o, by two

parameters: the change in energy due to alloying
additions, dEF,i,t,alloy, and the change due to the

introduction of vacancies from deformation, dEF,i,t,def

(where F, represents the phases t -MoSi2, h-MoSi2 or the

elemental powder). The set of allowable reactions

depends on whether each packet contains predomi-

nantly elemental powder or intermetallic MoSi2, and

also depends on which of the MoSi2 polymorph is the

most energetically favourable. If the combustion of Mo
and Si to form t-MoSi2 occurs within a packet, the

temperature of that packet is increased by the combus-

tion temperature, Tcomb. In order to reflect the propaga-

tion of the spontaneous high-temperature synthesis

reaction, the temperature of the surrounding packets is

increased by an amount governed by the heat transfer
rate, theat. The phase proportions within each packet is

updated by;

fF;i;t� fF;i;t�1�rZ;i;tDt (2)

where fF,i,t and fF,i,t�1 are the phase proportion of the F
phase within the ith packet at time steps t and (t�/1),

respectively. The sum of the phase proportions with

each packet always equals one. Once updated, the phase
proportions are compared with determine the predomi-

nant phase for the next time step. If there is a change in

the principal phase, the effective reaction temperature is

reset to zero in order to simulate the recovery of the

internal strain.

The mechanical alloying event is applied sequentially

to each packet of powder. After each packet has

experienced a milling process for the current time step
t, the phase proportions across the entire mill is then

calculated as the average of the phase proportions over

all n packets. The final routine for each time step is to

diffuse the alloy additions between neighbouring pack-

ets, using a finite difference model. The time step is

advanced by Dt and the mechanical alloying process is

repeated across all the n packets, until the maximum

alloying time, tmax, is reached. The structure of the
model is shown in Fig. 1.

The activation energies for each packet at each time

step, QZ,i,t, is calculated from the base activation energy

for the Z reaction, Qo,Z, less the change in energy due to

alloying addition, DEF,i,t,alloy, and mechanical deforma-

tion, DEF,i,t,def, as shown in Equation (5).

Qcomb;i;t�Qo;comb�DEe;i;t;def

Qtrans;i;t�Qo;trans�DEe;i;t;def

Qt2h;i;t�Qo;t2h�DEt;i;t;def �DEt;i;t;alloy

Qh2t;i;t�Qo;t2h�DQh2t�DEh;i;t;def �DEh;i;t;alloy

Qrec;i;t�Qo;rec�DEt;i;t;def �DEt;i;t;alloy (3)

where DQh2t is the difference in free energy between pure

t -MoSi2 and h -MoSi2 at the base milling temperature.

Table 1

The reactions simulated during the mechanical alloying of Mo and Si

Reaction Description Equation Designation (Z)

1 The combustion reaction of Mo and Si to form t -MoSi2 Mo�/Si0/t -MoSi2 comb

2 The transformation of Mo and Si to form h -MoSi2 Mo�/Si0/h -MoSi2 trans

3 The transformation of t -MoSi2 to h -MoSi2 t -MoSi20/h -MoSi2 t2h

4 The recovery of h -MoSi2to form t -MoSi2 h -MoSi20/t -MoSi2 h2t

5 The recovery of t -MoSi2 to form strain free t -MoSi2 t -MoSi20/t -MoSi2 (rec) rec
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The change in the activation energy due to deforma-

tion, DEF,i,t,def, may be calculated from the number of

vacancies (vF) present at the effective reaction tempera-

ture of the ith packet, Ti,t. The equilibrium number of
vacancies at the milling temperature Tmill, which may be

considered to be room temperature, is given by Cottrell

[19]:

EF;i;t;def �WFvF;i;t

�RTt[(1�vF;i;t)ln(1�vF;i;t)�vF;i;t ln vF;i;t]

(4)

where WF is the formation energy for a mole of

vacancies. Therefore, the increase in free energy due to

deformation is given by:

DEF;i;t;def �EF;i;t�o;def �EF;i;t;def

�WF(vF;t�o�vF;i;t)

�RTt[(1�vF;i;t)ln(1�vF;i;t)�vF;i;t ln vF;i;t]

�RTmill[(1�vF;t�0)ln(1�vF;t�0)�vF;t�0 ln vF;t�0] (5)

The increase in the free energy due to alloying

addition is given by:

Fig. 1. Flow chart for the computer simulation.
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DEF;i;t;alloy�
o GF;Mo:Si�GF;i;t;alloy (6)

The alloy distribution sets up a monotonically in-

creasing function from amin in the first packet to some

maximum value in the n th packet. Therefore, the

packets are subsequently randomly rearranged to form

a one-dimension string. During the tth time step, the

change in the alloy concentration of the ith packet, Dai,t,

may be determined as:

Dai;t

Dt
�Di;t :

@2ai;t

@x2
(7)

where Di,t is the local diffusivity for the ith packet

during the time step t.

The flow of heat takes the form of Laplace’s potential

equation:

DTi;t

Dt
�htrans :

@2Ti;t

@x2
(8)

where htrans is the heat transfer constant. The
@2ai;t

@x2
and

@2Ti;t

@x2
terms were modelled using a finite difference

model.

The unknown factors may be estimated by optimising

the model against the cost function in Equation (9). A

cost function is a user defined function to indicate that

level of fidelity between the simulation and the experi-
mental results. The cost function may be solved for

every combination of the parameters within predefined

bounds. The parameter set with the minimum cost is

considered the optimal solution. One method of finding

the optimal solution is to choose the parameter set at

random, and then use the simulation to calculate its

cost. The cost is stored for that particular parameter set.

A new parameter set is randomly chosen and the cost for
it similarly calculated and compared with the cost for

the first parameter set. The process is continued across

the entire parameter search space with the cost stored

for each iteration. The parameter set with the minimum

cost is considered the optimal estimation.

This approach would be computationally intensive

and a cost effective search and optimisation algorithm

must, therefore, be employed. Adaptive simulated
annealing (ASA) is well suited to this type of problem

[20]. The algorithm may be visualised simply as geo-

graphical terrain. In this case, the cost function, height,

depends on only two parameters; distance in the North

ordinate and distance in the East direction. The ASA

approach to this problem is similar to using a randomly

bouncing ball that initially has a large amount of energy

and can bounce over mountains from valley to valley.
The ball’s energy, or temperature, allows the ball to

bounce very high such that, given enough bounces it can

access every valley (or minima) within the search space.

With consecutive iterations, the temperature becomes

colder and the ball eventually becomes trapped within a

local minima. The cost value (height) of this minima is

stored for later comparison with other local minima to
find the global minima. The ball may then be ‘‘re-

annealed’’ and allowed to find another local minima.

After several iterations, the algorithm uses statistical

analysis to determine the probability that a lower value

of cost than the minima already found may still exist

within the search space. If this probability is less than a

user defined level, the algorithm is exited and the lowest

minima found is considered the global minima. The
interface between the MATLAB development environ-

ment and the ASA core code that is used in the present

study was developed by Drack and Wharington [21].

The cost function is used to determine how well the

results from the extended mechanical alloying model

match the observed results. For the present problem, the

cost for a single ternary alloying species (i.e. Al, Mg, Ti

or Zr) is the sum over all the alloying concentrations,
from 0 to 16.7%. The cost for each alloying concentra-

tion may be defined as the sum across the milling times

(from 0 to 50 h) and across the phases (Mo, Si, X, t-

MoSi2 and h-MoSi2 where X represents the ternary

alloying addition) of the squared residual or difference

between the observed and calculated phase proportions.

CTotal�
X

alloy additions

Calloy (9)

Calloy�W
X

t

X

F
(fF;t;calc�fF;t;obs)

2 (10)

where Calloy is the cost for each alloying addition

(alloy�/0, 1, 4.8, 9.1 and 16.7% Al), and CTotal the

cost of the model as a whole. The phases F that are

summed across are t-MoSi2, h-MoSi2, Mo, Si and Al,

and, for alloy concentrations greater than 0, the times
that are summed across are 0, 2, 5, 10, 20, 50 h. If

alloy�/0 the times used are 2.6, 5, 10, 15, 22, 42 and 50

h.

The relative importance of error between the calcu-

lated and observed phase proportions may be repre-

sented using a weighting matrix, W. As the proportion

of a particular phase decreases, the peaks found by X-

ray diffraction begin to merge with the background
radiation and thereby become more difficult to distin-

guish using Rietveld analysis. Since less confidence can

be placed on the values of the phase proportions found

using the Rietveld method as the phase proportions

decrease, a weighting was given to each of the residuals

proportional to the observed phase proportions. Also,

since the formation of the two MoSi2 polymorphs are of

particular interest, the residuals for these two phases
were given weighting of 4, relative to the weighting for

the elemental phases of 1. These values were chosen

arbitrarily to improve the correlation between the
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calculated and observed phase proportions for the

proposed mechanical alloying simulation.

The cost function for each alloying concentration is

additionally augmented by the difference between the
calculated and observed cross-over times, which is the

time at which the relative proportions of the t and h

phases are equal. This squared difference is multiplied

by a cross-over weighting, wcr�/0.1, to bring it to a

comparable order of magnitude as the phase residual.

Therefore, the cost for a given alloying concentration is

given by:

Calloy�wcr(tcr;calc�tcr;obs)
2�W

X

t

X

F
(fF;t;calc�fF;t;obs)

2

(11)

3. Comparison of observed and simulated results

The model was tested using the milling experiments

from Part 1 [17]. The simulation containing Al ternary

additions was used to ‘‘calibrate’’ the parameters in the

mechanical alloying simulation using the estimates for

the free energies of the tetragonal and hexagonal forms

of MoSi2 and MoAl2 available from Costa e Silva and

Kaufman [22]. The values of the parameters developed
for the Al series were then applied without change to the

Mg, Ti and Zr series. The comparison of the observed

and simulated phase proportions at 16.7% for these

additions are shown in Figs. 2�/4.

In general, the model fits the results closely. The

combustion reaction to form t -MoSi2 during the early

stages of milling is accounted for, as is the formation of

t -MoSi2 as milling progresses. The amount of t-MoSi2
that forms immediately after combustion is shown to

decrease in proportion to the amount of the third

element added, as observed experimentally. There is,
however, some variation between the observed and

simulated data, particularly for the mills containing

Zr. These variations may be due to the difficulties in

determining the relative phase proportions from broad

low intensity patterns during Rietveld analysis. The

extensive broadening of the diffraction patterns may

also indicate that some of the material may be converted

into an amorphous phase. Since Rietveld analysis
cannot estimate the amount of amorphous phase, such

as SiO2, and the results presented are relative phase

proportions of observable material, the proportions of

both t- and h -MoSi2 may be overestimated for these

series.

4. Discussion

There are several parameters that control the beha-

viour and operation of the model, such as the activation

energies and reaction rate constants for the competing

reactions, the activation energy for vacancy formation

within the various phases and the free energy of the fully

alloyed metastable compounds. Given the change in free

energy with the addition of aluminium, the other
unknown parameters can be determined using the

adaptive simulation annealing algorithm. For the most

part, the simulation parameters follow expected trends.

For instance, the activation energy for the combustion

reaction is less than for the transformation reaction; the

vacancy formation energy is lower for the low density,

high temperature, hexagonal MoSi2 form than it is for

Fig. 2. Comparison of simulated with experimentally determined phase proportions for the mechanical alloying of Mo and Si with 16.7% Mg. The

solid lines show the simulated phase proportions while the symbols show the experimentally observed values.
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the tetragonal form; and the reaction rate constant is

low for the transformation reaction, yet high for the

combustion and the tetragonal to hexagonal reactions.

Thus the variation of the free energy of the preferred

metastable phase alone was sufficient to simulate the

phase evolutions observed for the various alloying

additions. This indicates that the methodology may be

valid for other systems and given that the thermody-

namics of the metastable phases are known, it may be

used to predict the phase evolution during mechanical

alloying.

5. Conclusions

A simulation describing the mechanical alloying

process was developed that models the rate of phase

evolution using the Arrhenius equation and is dependent

on the reaction rate constant, the activation energy and

the effective reaction temperature. A simulated anneal-

ing algorithm is used to optimise the unknown para-

meters, which are calibrated against a well characterised

system. The model, which balances the competing

reactions, which occur during mechanical alloying, has

Fig. 3. Comparison of simulated with experimentally determined phase proportions for the mechanical alloying of Mo and Si with 16.7% Ti. The

solid lines show the simulated phase proportions while the symbols show the experimentally observed values.

Fig. 4. Comparison of simulated with experimentally determined phase proportions for the mechanical alloying of Mo and Si with 16.7% Zr. The

solid lines show the simulated phase proportions while the symbols show the experimentally observed values.
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been applied to the milling of Mo and Si to form MoSi2,

alloyed with Al, Mg, Ti or Zr. The calculated phase

proportions, as a function of alloying addition and

milling time, closely match the observed results.
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