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Abstract

Bendability of sheet metals often refers to the ratio of the minimum bend radius to the sheet thickness at which the bending process i
accomplished successfully. Failure here denotes the occurrence of shear bands, localized necking, cracks or ultimately fracture. The conditio
to prevent these types of failures are directly related to the exhaustion of tensile ductility of the outer material fiber at the convex side of
the bent sheet. In the present work the bendability of sheet metals are predicted by considering two types of possible failure conditions
namely shear band formation or micro-necking within the material ligaments between neighboring voids. Such analysis is based on assumin
a material with an initial void fraction together with a formulation for the laws governing void growth in volume and evolution in shape for
porous solids. The results obtained display the effects of hardening as well as anisotropy. The predicted bendability plotted versus ductility i
compared favorably with experimental evidence from the literature for various sheet metals.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction ing and anisotropy on the prediction of bendability which is

still expressed in terms of the measured reduction of area in
Bending is a very common forming process to change tension.

sheets and plates into structural shapes. In addition bend- Inthe presentinvestigation, itisintended to correlate bend-

ing occurs as a part of several forming operations e.g.deepability to ductility of sheet metals. Both parameters are to be

drawing. The bendability of sheet metals often refers to the predicted from analyzing ductile failure due to growth and

minimum die radius over which a sheet with a given thick- coalescence of initially existing voids in the sheet material.

ness can be bent successfully without defét}sThe pro- This analysis will rely on description of plastic deformation

cess is limited by the occurrence of shear bands, thicknessfor voided solids coupled with selected ductile fracture cri-

inhomogeneties, microcracks, and ultimately fracture on the teria.

convex surface of the bent sheet. These defects depend phe-

nomenologically on width to thickness ratio, edge conditions,

cold working, hardening and anisotropy; all affecting ductil- 2. Determination of minimum bend radius

ity of the bent sheet. Most of these factors are related to the

microstructural characteristics of the sheet metal such as the Consider awide isotropic sheetin which a cylindrical bent

presence of inclusions, stringers, voids and fibering. Howeverregion is flanked by flat sheet. For small radius bends the

the prediction of bendability has generally relied on specify- displacement of the neutral axis in bending is significant and

ing the reduction of area in a tension tf&f without much the solution by Hoffman and Sacks] has been employed

insight for the effect of each one of the above parameters. by most investigatorg2,4]. The nonlinear strain distribution

Some investigatorf8,4] have included the effect of harden- gives at the outer tensile fiber

. Ro Ri +1o
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Nomenclature

As reduction in area at fracture

by, by halflength of axis of a shperoidal void and sur-
rounding matrix material transverse to max|-
mum principal stress, respectively

f void volume fraction

m exponent in non-quadratic anisotropic yield
function

n strain-hardening exponent

g1, 02 semi-empirical parameters in Gurson—

Tvergaard yield function
r normal anisotropy parameter
R, Ry, Ry inner, external and neutral bending radii re
spectively
thickness of bent sheet metal

to

Greek letters

o stress ratiao/oq

&f fracture strain

& strain (=1, 2, 3)

&y volumetric strain

g,em  effective macroscopic and effective matrix
strain respectively

Al aspect ratio of a spheroidal void

Oi stressi(=1, 2, 3)

o,oy effective macroscopic and effective matrix
stress respectively

Subscripts

f fracture

i initial

I ligament

M matrix

where

Rn = \/RoRi = \/(Ri + to) Ri

Bendability of the sheet is exhausted when cracks or shea
bands onthe convex surface appear. Atthis moment this strai
1 attains its limiting values; at failure. In terms of the re-

duction in area at failure of a tensile rod

o]

Combining expressions (1) and (2) yields the bendability
of the sheet expressed by the rafRy/{)min [2] as
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This expression is extended to sheets with normal anisotropy
r by Wang et al[3] such that

Ri (11— Ap?F
(") = (4)
fo /min  1—(1— Af)
where
2(1 1/m 3
F = @[14- 1+ 2;)1/(17}7[)]('” 1)/m

2

andm = 1+ rforr < 1and m=2 for > 1[6].

Note thatm is an exponent characterizing the non-
quadratic Hill yield functior[7] for sheet metals possessing
normal anisotropy such that the effective macroscopic stress
is given by

1/m
Ez{ﬁ[mas 01— oal" + (14 2) o1 — ozl’”l}
(5)

A different bendability criterion based on the attainment
of maximum bending moment has been derived by [4u
as

Ri> 1[ 1 ] 1

— = |——1|-= 6
<t0 min 2 EXp(nFl/Z) 2 ()
where

Fo 1+7r

YT iy

Leu established his bendability criterion using Hill's
guadratic yield function for orthotropic anisotropy as given

by [8]
— /3
o]
()

whererg=H/G, rgo=H/F andr = (ro+rgg)/2 are determined
from tensile test-pieces cut along and transverse to the rolling
direction respectively. In the above bendability criteria (3)
and (4),er and hence’s customarily are determined from

2 2 271/2
ro(o2—03)“+rgo(03 — 01)° + rorgo(o1 — 02)
ro + 90 + ror9o

tensile testing. The present work devotes the proceeding sec-

Nions to state the governing equations required to estimate

the fracture strains and hence bendability from micro me-
chanical data of the sheet metal. These equations are based
on assuming that the sheet material initially contains voids
which grow and either form shear bands or coalesce leading
to ductile fracture.

3. Void growth laws

Void growth laws used in the present analysis rely on a
yield function for cavitated solids due to Gurson-Tvergaard
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[9] namely During bending of a wide sheet metal the deformation
mode is that of plane strain i.de2 =0. The stress system
P _ 3 iber i = = =
52 — G’\zﬂ(l 4 qifz) _ 2611fo/| cosh _qui_m ®) at the outer fiber is such thag =0, oo/o1=a, om = (1 +a)/3
270 and
A simplified form has been suggested[t§] and[11] in o1 _ 2(1+7) Lm (13)
order to make the yield function amenable to analytic deriva- ¢ | |1+ a|™ 4+ (1 + 27)|1 — ™

tions especially inthe presence of the added complexity due to
anisotropy. This simplification is obtained by expanding the
hyperbolic cosine term namely; cosh{3m/om)in terms of

its power series. In many deformation processesdg/om) d[|1 Lo+ L+ 21— a|’”]((2/’”)‘1)
is of a magnitude less than unity, hence, the suggested vyiel

as may be found from the yield functigh). This results in
further simplifications in expressioii$1) and(10) so that

function derived from expressid) is (1+27) 11— ot T a|’"‘2}
14 o
o’ =aq(1—q1f)? — 9 fq1q50% (9) ((2/m)-2) @/m),. 2
=M an 279192m =2 A+ qq5f (14a)

whereg is given by Hill's non-quadratic yield functiofb) 2
The inclusion of the parametegs andq, are suggested d_f = Sqa3 /(1= f)A + )

by Tvergaard[9] in order to bring deformation of porous 961 [20®™/(L+ II[|1+ a™!

solids closer to experiments. It has been pointed out by sev- + (1 + 201 — " + fq145(1+ a)

eral investigators e.d12,13] thatg; and g are set to be

dependent on mean stresg and hardening, while g also

be dependent on void shape. This dependence is repre-

sented by semi-empirical relations as given for completeness

(14b)

Similar derivations may be made for orthotropic yield func-
tion (7) applied to plane strain conditions. For brevity the
outcome of this derivation—without details are given as

in Appendix A o 1/2

_ 2 N2
Following the same derivation procedures given in ref. o, {Falroo + roa” + roreo(1 — )71} (15)
[10], a law for void growth is found after lengthy algebraic
: : 2
manipulation as oy } |: 2F2rorgo — 9195 f/2 (15a)
2| Foro(1+ reo) + fq143/4
df _ 99195/ (1 — f)om (10)
der (202 /(1+7)[—|203 — 01 — 0g" der _ Folrorso(l — ) + 2red] + fngs(L 4 o)/4 )
+ (1 + 2)|o1 — 02" ] + 3q145 fom df 3f(1 - f)q1a3(1 + ) /4
The flow rule is derived based on the normality rule of the where
strain vector to the flow potential resulting in the expressions Py — 3/2
given in Appendix A. Specifically the strain along the direc- 2 = 3/2 (0 + 790+ roreo)
tion identifying plane strain is given by
5(2—m) 3
dex = di {ETF) [—|203 — 01— <72|r”7l — (14 2r)|o1 — 02|mfl + EQlQ%f“m} } (11)
An expression governing the rate of change of the matrix
effective strain may be also derived in the form
dew 41— q1f)’
Gy~ 812/ (L= 1) (om/om) (12a) 4. Failure conditions
where the volumetric strain increment is given by Void growth with developing plastic deformation often
ends by coalescence of neighboring voids leading to duc-
df tile fracture. Commonly accepted ductile failure criteria are
dey = 1—f (12b) based on consideration of internal necking in the ligaments

of matrix material between voids. Two versions of this type
Note that all above formulas reduce to simplified of ductile failure criteria are applied in the present work. The
Gurson—Tvergaard expressions for a Mises type matrix ma-first is due to Pardoen and Hutchinson (P&HP] and the
terial whenm= 2 andr = 1 and to classical Mises function second is suggested by Ragab [R)]. They are respectively
form=2,r =1 andf=0. given below
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Condition ‘P&H": and
0.1+ 0.27n + 4.8312 1.24 1—by/b A\ Y3
o, (01402t ) (ba/br — 172 + 51 = 2log ( 2/ 1)(f/ 1) (18b)
oM A2 Vb1/b7 1—boi/b1i ) \ fi/*1i
x [1 = (b1/b2)’] (16a)
5. Method of solution
Condition 'R The objective of the solution is to estimate the failure strain
o1 22 (ba/b1 — 1) e¢ at which the bendability of the sheet metal is exhausted.
E =1+ (a/b1— 1) log| 1+ 7 This is realized by solving the two differential Eq&0)and
1 (12a)to obtain the current values bandey corresponding
7 (b1 2 e \" to a current value of;. Initial values ate1 =0 aref=f; and
x[1— 1 (b_> (8—) (16b) em =0. Obviously the sheet propertiesr andm are to be
2 ! specified. The current values af{ /o) andx are determined

Another ductile failure phenomenon is related to localiza- at each step from Eq$9) and (14a)respectively. With the
tion of deformation into either bulk or surface shear bands. A progress of strain its limiting valug is found by applying
first ductile failure condition developed by McClintock (Mc)  one of the ductile failure criteria given by Eq4.6a) (16b)
[15] considers that deformation shifts from a homogeneous or (17a) (17b). The minimum value ofR/t,) corresponding
flow to that localized in shear bands joining ellipsoidal holes to ¢ and hence?; in expression(3) defines the bendability
within a hardening matrix. This condition has been put by of the sheet metal.

Ragab[11] in the following inequality.

Condition ‘Mc’:
1 dom o /3(1+A2)<f 1_fi>2/3<)\1i+1>2 6. Results
i ° =t it As described by expressioi8) the bendability of the
bii plate is governed by its ductility. The four suggested criteria
: <b_2.> e (172) for prediction of fracture strain as given by E¢s6a) (16b)

and(17a) (17b)are used for typical sheet metal properties
(n=0.2,r=1.0 and m=2) to predict and hences which
give the minimum bend radius rati®(to)min as plotted in
Fig. 1 For realistic values of initial void volume fraction

Another condition for the initiation of surface shear bands
has been put by Hutchinson and Tvergaard (H&Ig] and
Valkonen et al[17] for a power-law hardening material as
Condition ‘H&T":

n < e[l — exp(=2¢r)] (17b)

Note that the above condition was derived by consider-
ing the initiation of shear bands in plane-strain tension as a
bifurcation phenomenon. In the present wefkin expres-
sion(17b)is viewed following McClintock15] as the limit
ligament straire| (see Eq(18b)below) within a shear band
joining ellipsoidal voids.

To apply the above fracture conditions, the evolution of
void shape with straining must be defined quantitatively. Ref-
erencq13] offered semi-empirical relations determining the
current void aspect ratib; as being dependent on its initial
aspect ratid.1j, mean stressp,, initial void volume fraction L
fi and current strairm1. These semi-empirical relations are
listed inAppendix Afor an initially prolate or oblate void.

Furthermore several parameters appearing in Eds) 0
(16b) and (17a) (17b) pertaining to the evolution of void
shape and its surrounding material are given in refergirje
for small values of void fractions as

[

Bendability, (R; / t,) win
[

1t [ E RN
0.0001 0.0010 0.0100 0.1000

Initial Void Fraction, f;

Fig. 1. Predictions of bendabilityR(/to)min for different initial void volume

b 3 6 bi 6 f fractions by various ductile fracture conditions; P&H: Pardoen and Hutchin-
1\ ~ 6f iL) ~ 6fi Mool . -
— ) = —— exp(15e1), — )= — (18a) son[12], Mc: McClintock [15], H&T: Hutchinson and Tvergaarfd 6] and

b AL b AL R: Ragal{14].
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Table 1 7.0 80
Comparison among predictions of the two fracture conditions ‘H&T’ and | n=02.f,=0002, 7=1,m=2 4 -
‘R'for n=0.2,7= 1 andiy =1 @ — Bendability ratio R — 70 3
Fracture condition f,=0.002 f,=0.05 £ 60 -~ Void growth ratio /43
) - s de B
Ar (Rilto)min A (Rifto)min ~ ’ =
Shear band condition ‘H&T.  0.291  1.01 0.124 331 € 50— R, [ls
Eq.(17b), [16] £ L , ] =
Micro-necking condition ‘R’.  0.536  0.28 0.167 2.26 > ’ &
Eq. (16b), [14] < 40 - , —40 3
S L 4 q 5
_g , / c — 30 E
& 30 — ’ | &)
. o =1
close to that observed in sheet metals; 58001, the con- £ L L7 — 20 Z
ditions ‘R’ for internal micro-necking and ‘H&T’ for surface 3; 20 e _ =
shear band formation predict values Bff{o)min in the same E ' P — 10 §
order of those known in industif2]. The other two failure - 4 =
conditions namely ‘P&H’ and ‘Mc’ require much highér 1.0 T N R S E— 0
values to predict reasonabR o) min. The condition ‘R’ pre- 0.00 0.10 020 0.30 0.40 0.50
dicts almost zero value foR{/to)min for an initial fi <10~ Stress Ratio, o= (0,/0,)

which means that a clean sheet metal may be bent almost—as
expected—over itself. Such comparison among failure condi- Fig. 2. Bendability Ri/to)min vs. stress biaxiality ratie = o2/o1 as predicted
tions will be mostly limited in the next sections to one of by two failure co_n_ditions: internal necking fa_ilure condition ‘E1’4] a_nd_
internal necking and one to shear band namm? ‘R’ and shgar band condl_tl_on “Hc?'l'[lﬁ].AIso shown void growth rate vs. biaxiality
. 8 ’ ratio for the condition ‘R’.

‘H&T’ conditions respectively.

Table 1shows a comparison among the predicted bend-
ability (Ri/to)min and the reduction in area at fractukgac- m=1+r for r < 1. This is explained in view of expression
cording to the above two failure conditions. Each reduction (14) indicating a higher value for > 1; thus satisfying the
in area corresponds to a selecfedThe condition ‘H&T’ fracture condition more promptly with smaller predictions
predicts smaller range of reductions in area corresponding toof failure strain and hence lower bendability as seen from
0.002 <f; <0.05. Fig. 4. The slight variation of bendability as predicted from

The bendability of sheet metals is dependent on its width the shear band condition ‘H&T17b), results directly from
to thickness ratio; being better for narrower sheets. This is the change of the exponeRtin expression(4) rather than
mainly related to the ductility of the outer fiber as a func- any variation in the predicte#t which depends solely in this
tion of the degree of stress biaxiality;=o2/c1. For narrow case on the strain hardening of the sheet metal.
sheets the stress state is almost uniaxialO, and ductility
is higher than that for plane strain existing in wide sheets
«=0.5. This is demonstrated Fig. 2 showing lower bend-
ability (i.e. greater Ri/to)min) With increasing biaxiality as
predicted by two fracture criteria. This is an outcome of faster
void growth (as indicated by the dotted line Fig. 2) and
hence coalescence for higher mean stegss o1 (1 +x)/3
under plane strain condition.

The effect of sheet metal properties namelgndr (and
hencem) are displayed ifrigs. 3 and 4The prediction of fail-
ure due to formation of surface shear bands is highly sensitive
to the strain hardening of the metal as seen from condition
(17b). Hence bendability becomes dependent on the value
of n. This observation does not apply to predictions based 1~
on the failure condition pertaining to internal necking of mi-
crovoid material ligaments as showrfig. 3. The sensitivity -
to strain hardening is overestimated by the maximum bend- | |
ing moment condition given by expressig#) due to Ley4]. 0 ' :
Sheet metals with normal anisotropy i-e- 1 possess lower
bendability and vice versa as indicated by the predictions of
Fig. 4for the two failure conditions ‘H&T, and ‘R’ as well Fig. 3. Variation of bendability Ri/to)min with strain-hardening exponent
as that of Wang et 4B]. Note that to obtain the r_eSU|tS plot-  as predicted by three fracture conditions: internal micro-neckind 18],
ted inFig. 4; the exponent m is set as=2 forr > 1 and shear band formation ‘H&T[16] and maximum bending moment ‘Lej4].

£ =000, F=lm=2 Ay =1

Bendability, (R; / t,) min

| !
0.00 0.10 0.20 0.30 040

Strain Hardening Exponent, n
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Table 2
Comparison among bendability of steel sheets with isotropic, orthotropic anisotropy and nomal anisotropy and orthotropic anisotropyy.espécyel
fi=0.005,A1;=1
Condition &f (Ri/to)min/(Ri/to)isotropic
Casel: Isotropig,p =rgp=1 0.413 1
Case2: Orthotropic anisotropy, rolling direction transverse to bendrtretd/G = 1.32,igo=H/F = 1.68[18] 0.389 1.09
Case3: Orthotropic anisotropy, rolling direction along bend liges H/F = 1.68,rgo = H/G = 1.32[18] 0.308 15
Case4: Normal anisotropss, reo, ¥ = [(H/G + H/F)]/2 = 1.5 0.349 1.27
3.0 20
n =02, f, =0.002, A, =1 18 0 H&TIL)
L V Ragab [14]
B 16 O Leu[4]
£ B
5 W E 14
5 20 — P
< & i
J | = 10 Datsko &Yang [2 ]
z =
= H&T £ 8
= = L
| 5 6
s 1.0 — R =] L
< 4
| Bl
- S5
0
I | 0 20 40 60 80
0.0 s s
0.0 0.5 10 15 20 25 Reduction in Area, 4, %

Anisotropy, 7 Fig. 5. Comparison of bendabilityR(/to)min as predicted according to three

failure conditions with experimen{g]. The symbols refer to bendability of

Fig. 4. Variation of bendability R/to)min With normal anisotropy as pre- various sheet metals of properties as giveAgpendix B

dicted by three conditions: internal micro-necking {R4], shear band for-
mation ‘H&T’ [16] and Wang et al.” W{3].

cerning the initial void volume fractiofy a value of 0.005
has been assumed for all alloysHig. 5.

The predictions of the two failure conditions ‘R’ and
‘H&T’ all lie within the experimental band unlike those cal-
culated from the bendability condition of L§4j, expression
h (6)indicating an obvious overestimation or say an upper limit.

In order to differentiate between bendability of an
anisotropic sheet bent with its rolling direction either trans-
verse (case 3 iffable J or along (case 4) to the bend line,
resort has to be made to Hill's orthotropic yield expressions
namely;(7), (15a)and(15b).

A typical cold rolled steel sheet properties are used suc
as H/G=1.32 and H/F=1.688]. Table 2indicates better
bendability predictions for the sheet in case 2 than in case
3; as appreciated in industrial practice. Note that in case 48. Conclusions
which assumes planar isotropy predictions represent an av-

erage value for both cases 2 and case 3. The application of porous plasticity formulation to predict

7. Comparison with experiments

the bendability of sheet metals has confirmed the details of the
empirical practice accepted in industry. The considered ma-
terial model assumes the presence of initial micro-structural

voids which grow in volume and change in shape with ac-
cumulating strain. Fracture due to either shear band forma-
materials were presented by Datsko and Yi@ign the form tion or internal necking between neighboring voids yielded
of (Ri/to)min versus the reduction in area at fractdge No the required bendability-ductility curves. The results indicate
other material data such as hardening exponent, anisotropybetter bendability for materials with higher strain hardening
etc were specified by them. However the hatched band inand small initial void fractions. Anisotropic sheet metals with
Fig. 5 represents the domain within which the experimen- the bend line oriented transverse to the rolling direction man-
tal data of Datsko and Young lie. The bendability of various ifest better bendability than these with their bend line taken
sheet metals for which the material properties are listed in along the rolling direction. Predicted bendability according
Appendix Bare predicted for a wide range of 0.05<0.45, to a micro necking failure condition compares favorably with
0.37<r<4.5and 1.3 m<2. In view of lack of data con-  experimental evidence for a variety of sheet metal properties.

Available bendability experiments for a large variety of
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Appendix A df
dr = TR (A.6)
2 _
The dependence of the parametgrandqg, on (om, A1, 2102 "
n) is suggested in ref§12,13]to take the form
Om om\?2 om\3
a=a+8(T)+c(F) +0(F) Appendix B
where A=2.275— 3.549 n+3.837 n%;, B=—-0.918+1.320 SeeTable B.1
n—0.316 n? C=0529-2.310 n+2.354 12 eelable b.
D=-0.098+0.26%+0.701n> — 1.783n°
. 1 o
Oblate voids{y < 1) : g2 = A for 3% (?m) <2 Table BA
properties of sheet metals as used in predicting bendability in Fig. 6
(A.1)
. Alloy n r
whereg, =[0.206 log €)-0.266]-0.02h Steels
. 1 0 DDQ 018 165
Prolate voidsi; > 1) : gp = Ay for 3= (2)<2 High Strength as 095
o Al—K 0.22 18
(A.2) Rimmed 019 149
h HSLA 0.18 12
where Dual phase a6 1
om om\ 2 Ti-stabilized 024 2
¢p = [_3'484+ 11614(?) - 13'720(?) Interstitial free 03 25
PN o\ 4 Stainless Steels
+6.541(77)" — 1.06( ") } +0.2n 18-18 Aust. o8 1
o o 409 Q2 12
18-8 0433 084
For void shape evolution the following semi-empirical re- Auminums
Ila/téo:i[li] éwith slight modification) are used for the range 3003-0 023 6
<Ajj < Al-Mg 0.19 056
Initially prolate void \1j > 1, 1/3<@m/o) 1100-0 025 062
. 203 Q18 078
log(A1/A1;) = [(—0.535+ 0.0235 sire) log Aq; Pure 024 086
— - Cold rolled 004 076
+(2 — om/om + n)l(1 — £)(1.15 sine) (A.3) AIO— M[}" € 024 066
1 > Al-Mg-Si 0.28 074
Initially oblate void : Aj < 1, = < (=) < 3 Al-Cu-Mg 014 074
3 o Coppers
. Pure Cu w4 Q9
— 10gAgj Om 70/30 Brass @2 085
90-1/21i) [<0.109+ 1.224 sms) +2-7 +”)} Cui 035 08
thers:
x (11— fi)(1.155sine) (A.4) Ti alloys 005 3
The validation of expression®.3) and (A.4) has been  Znalloys 01 05
discussed in refereng&3] indicating their close predictions ;'r:f;"i"oy géé 327

compared to the extensive finite element solution due to Par-
doen and Hutchinsofi2].

The flow rule derived for simplified Gurson-Tvergaard
flow function describing a matrix material obeying Hill non-
guadratic anisotropic yield condition are obtained as

o@m 1 1,3 5
dep = di an —|203 — o1 —02|"" " + (1 + 2r)|or — 02" + Eé]lefUm] }
gm T 1 1,3 5
dsp = di (]-T —|203 — 01— 02|"" " = (1 + 2r)|or — 02" + EQlefUm]}
I A.5)
~(2—m 3 (
g -1 2
de3z = di arn _2|203 —or—o" + 5611612f0mi|}
d
dey = di EQlfI%me} = ﬁ
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