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Evaluation of bendability of sheet metals using void coalescence models
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Abstract

Bendability of sheet metals often refers to the ratio of the minimum bend radius to the sheet thickness at which the bending process is
accomplished successfully. Failure here denotes the occurrence of shear bands, localized necking, cracks or ultimately fracture. The conditions
to prevent these types of failures are directly related to the exhaustion of tensile ductility of the outer material fiber at the convex side of
the bent sheet. In the present work the bendability of sheet metals are predicted by considering two types of possible failure conditions;
namely shear band formation or micro-necking within the material ligaments between neighboring voids. Such analysis is based on assuming
a material with an initial void fraction together with a formulation for the laws governing void growth in volume and evolution in shape for
porous solids. The results obtained display the effects of hardening as well as anisotropy. The predicted bendability plotted versus ductility is
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ompared favorably with experimental evidence from the literature for various sheet metals.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Bending is a very common forming process to change
heets and plates into structural shapes. In addition bend-
ng occurs as a part of several forming operations e.g.deep
rawing. The bendability of sheet metals often refers to the
inimum die radius over which a sheet with a given thick-
ess can be bent successfully without defects[1]. The pro-
ess is limited by the occurrence of shear bands, thickness
nhomogeneties, microcracks, and ultimately fracture on the
onvex surface of the bent sheet. These defects depend phe-
omenologically on width to thickness ratio, edge conditions,
old working, hardening and anisotropy; all affecting ductil-
ty of the bent sheet. Most of these factors are related to the

icrostructural characteristics of the sheet metal such as the
resence of inclusions, stringers, voids and fibering. However

he prediction of bendability has generally relied on specify-
ng the reduction of area in a tension test[2] without much
nsight for the effect of each one of the above parameters.
ome investigators[3,4] have included the effect of harden-

ing and anisotropy on the prediction of bendability whic
still expressed in terms of the measured reduction of ar
tension.

In the present investigation, it is intended to correlate b
ability to ductility of sheet metals. Both parameters are t
predicted from analyzing ductile failure due to growth
coalescence of initially existing voids in the sheet mate
This analysis will rely on description of plastic deformat
for voided solids coupled with selected ductile fracture
teria.

2. Determination of minimum bend radius

Consider a wide isotropic sheet in which a cylindrical b
region is flanked by flat sheet. For small radius bends
displacement of the neutral axis in bending is significant
the solution by Hoffman and Sachs[5] has been employe
by most investigators[2,4]. The nonlinear strain distributio
gives at the outer tensile fiber( ) ( )
∗ Corresponding author. Tel.: +20 2 5703620; fax: +20 2 5703620.
E-mail address:a.r.ragab@link.net (A.R. Ragab).

ε1 = ln
Ro

Rn
= ln

Ri + to

Rn
(1)
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Nomenclature

Af reduction in area at fracture
b1, b2 half length of axis of a shperoidal void and sur-

rounding matrix material transverse to maxi-
mum principal stress, respectively

f void volume fraction
m exponent in non-quadratic anisotropic yield

function
n strain-hardening exponent
q1, q2 semi-empirical parameters in Gurson–

Tvergaard yield function
r̄ normal anisotropy parameter
Ri , Ro, Rn inner, external and neutral bending radii re-

spectively
to thickness of bent sheet metal

Greek letters
α stress ratioσ2/σ1
εf fracture strain
εi strain (i = 1, 2, 3)
εv volumetric strain
ε̄, ε̄M effective macroscopic and effective matrix

strain respectively
λ1 aspect ratio of a spheroidal void
σ i stress (i = 1, 2, 3)
σ̄, σ̄M effective macroscopic and effective matrix

stress respectively

Subscripts
f fracture
i initial
l ligament
M matrix

where

Rn =
√

RoRi =
√

(Ri + to)Ri

Bendability of the sheet is exhausted when cracks or shear
bands on the convex surface appear. At this moment this strain
ε1 attains its limiting valueεf at failure. In terms of the re-
duction in area at failure of a tensile rod

εf = ln

[
1

1 − Af

]
(2)

Combining expressions (1) and (2) yields the bendability
of the sheet expressed by the ratio (Ri /to)min [2] as

(
Ri

to

)
min

= (1 − Af )2

2Af − A2
f

(3)

This expression is extended to sheets with normal anisotropy
r̄ by Wang et al.[3] such that(

Ri

to

)
min

= (1 − Af )2/F

1 − (1 − Af )2/F
(4)

where

F = [2(1 + r̄)]1/m

2
[1 + (1 + 2r̄)1/(1−m)]

(m−1)/m

andm = 1 + r̄ for r̄ < 1 and m = 2 for ¯r > 1 [6].
Note that m is an exponent characterizing the non-

quadratic Hill yield function[7] for sheet metals possessing
normal anisotropy such that the effective macroscopic stress
is given by

σ̄=
{

1

2(1+ r̄)
[|2σ3 − σ1 − σ2|m + (1 + 2r̄) |σ1 − σ2|m]

}1/m

(5)

A different bendability criterion based on the attainment
of maximum bending moment has been derived by Leu[4]
as(

Ri
)

= 1
[

1 − 1

]
− 1

(6)

w

F

ll’s
q ven
b

σ

w d
f lling
d (3)
a m
t sec-
t mate
t me-
c based
o oids
w ding
t

3

n a
y ard
to min 2 exp(nF1/2) 2

here

1 = 1 + r̄√
1 + 2r̄

Leu established his bendability criterion using Hi
uadratic yield function for orthotropic anisotropy as gi
y [8]

¯=
√

3

2

[
r0(σ2−σ3)2+r90(σ3 − σ1)2 + r0r90(σ1 − σ2)2

r0 + r90 + r0r90

]1/2

(7)

herer0 = H/G, r90 = H/F and ¯r = (r0+r90)/2 are determine
rom tensile test-pieces cut along and transverse to the ro
irection respectively. In the above bendability criteria
nd (4),εf and henceAf customarily are determined fro

ensile testing. The present work devotes the proceeding
ions to state the governing equations required to esti
he fracture strains and hence bendability from micro
hanical data of the sheet metal. These equations are
n assuming that the sheet material initially contains v
hich grow and either form shear bands or coalesce lea

o ductile fracture.

. Void growth laws

Void growth laws used in the present analysis rely o
ield function for cavitated solids due to Gurson–Tverga
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[9] namely

σ̄2 = σ̄2
M(1 + q2

1f
2) − 2q1f σ̄2

M cosh

(
3

2
q2

σm

σ̄M

)
(8)

A simplified form has been suggested by[10] and[11] in
order to make the yield function amenable to analytic deriva-
tions especially in the presence of the added complexity due to
anisotropy. This simplification is obtained by expanding the
hyperbolic cosine term namely; cosh(3q2σm/σ̄M)in terms of
its power series. In many deformation processes (3q2σm/σ̄M)
is of a magnitude less than unity, hence, the suggested yield
function derived from expression(8) is

σ̄2 = σ̄2
M(1 − q1f )2 − 9

4
fq1q

2
2σ

2
m (9)

whereσ̄ is given by Hill’s non-quadratic yield function(5)
The inclusion of the parametersq1 andq2 are suggested

by Tvergaard[9] in order to bring deformation of porous
solids closer to experiments. It has been pointed out by sev-
eral investigators e.g.[12,13] that q1 andq2 are set to be
dependent on mean stressσm and hardeningn,while q2 also
be dependent on void shapeλ1. This dependence is repre-
sented by semi-empirical relations as given for completeness
in Appendix A.
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During bending of a wide sheet metal the deformation
mode is that of plane strain i.e.dε2 = 0. The stress system
at the outer fiber is such thatσ3 = 0,σ2/σ1=α, σm = (1 +α)/3
and

σ1

σ̄
=

[
2(1+ r̄)

|1 + α|m + (1 + 2r̄)|1 − α|m
]1/m

(13)

as may be found from the yield function(5). This results in
further simplifications in expressions(11)and(10)so that

[|1 + α|m + (1 + 2r̄)|1 − α|m]((2/m)−1)

[
(1 + 2r̄)

|1 − α|m−1

|1 + α| − |1 + α|m−2
]

= 2((2/m)−2)(1 + r̄)(2/m)q1q
2
2f (14a)

df

dε1
= 3q1q

2
2f (1 − f )(1 + α)

[2σ̄(2−m)/(1 + r̄)][ |1 + α|m−1

+ (1 + 2r̄)|1 − α|m−1] + fq1q
2
2(1 + α)

(14b)

Similar derivations may be made for orthotropic yield func-
tion (7) applied to plane strain conditions. For brevity the
outcome of this derivation—without details are given as

σ̄ = {F [r + r α2 + r r (1 − α)2]}1/2
(15)
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Following the same derivation procedures given in
10], a law for void growth is found after lengthy algebr
anipulation as

df

dε1
= 9q1q

2
2f (1 − f )σm

(2σ̄(2−m)/(1 + r̄))[−|2σ3 − σ1 − σ2|m−1

+ (1 + 2r̄)|σ1 − σ2|m−1] + 3q1q
2
2fσm

(10)

he flow rule is derived based on the normality rule of
train vector to the flow potential resulting in the express
iven in Appendix A. Specifically the strain along the dir

ion identifying plane strain is given by

ε2 = dλ

{
σ̄(2−m)

(1 + r̄)

[
−|2σ3 − σ1 − σ2|m−1 − (1 + 2r̄)|σ1 −

n expression governing the rate of change of the m
ffective strain may be also derived in the form

dε̄M

dεv
= 4(1− q1f )2

9q1q
2
2f (1 − f ) (σm/σ̄M)

(12a)

here the volumetric strain increment is given by

εv = df

1 − f
(12b)

ote that all above formulas reduce to simplifi
urson–Tvergaard expressions for a Mises type matrix

erial whenm= 2 and ¯r = 1 and to classical Mises functio
or m= 2, r̄ = 1 andf= 0.
1 + 3

2
q1q

2
2fσm

]}
(11)

σ1
2 90 0 0 90

= 1

2

[
2F2r0r90 − q1q

2
2f/2

F2r0(1 + r90) + fq1q
2
2/4

]
(15a)

dε1

df
= F2[r0r90(1 − α) + 2r90] + fq1q

2
2(1 + α)/4

3f (1 − f )q1q
2
2(1 + α)/4

(15b)

here

2 = 3/2 (r0 + r90 + r0r90)

. Failure conditions

Void growth with developing plastic deformation oft
nds by coalescence of neighboring voids leading to

ile fracture. Commonly accepted ductile failure criteria
ased on consideration of internal necking in the ligam
f matrix material between voids. Two versions of this t
f ductile failure criteria are applied in the present work.
rst is due to Pardoen and Hutchinson (P&H)[12] and the
econd is suggested by Ragab (R)[14]. They are respective
iven below
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Condition ‘P&H’:

σ1

σ̄M
≥

[
(0.1 + 0.27n + 4.83n2)

λ2
1

(b2/b1 − 1)2 + 1.24√
b1/b2

]

× [1 − (b1/b2)2] (16a)

Condition ‘R’:

σ1

σ̄M
≥

[
1 + 2λ2

1

(b2/b1 − 1)

]
log

[
1 + (b2/b1 − 1)

2λ2
1

]

×
[

1 − π

4

(
b1

b2

)2
] (

εl

ε1

)n

(16b)

Another ductile failure phenomenon is related to localiza-
tion of deformation into either bulk or surface shear bands. A
first ductile failure condition developed by McClintock (Mc)
[15] considers that deformation shifts from a homogeneous
flow to that localized in shear bands joining ellipsoidal holes
within a hardening matrix. This condition has been put by
Ragab[11] in the following inequality.

Condition ‘Mc’:

1

σ̄

dσ̄M

dε̄
≤ n

ε̄
≤

√
3

8
(1 + λ2

1)

(
f

f

1 − fi

1 − f

)2/3(
λ1i + 1

λ + 1

)2

nds
h
V as
C

n
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s
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j
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c ial
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f re
l
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s
f(

and

εl ∼= 2 log

[(
1 − b2/b1

1 − b2i/b1i

) (
f/λ1

fi/λ1i

)1/3
]

(18b)

5. Method of solution

The objective of the solution is to estimate the failure strain
εf at which the bendability of the sheet metal is exhausted.
This is realized by solving the two differential Eqs.(10)and
(12a)to obtain the current values off andε̄M corresponding
to a current value ofε1. Initial values atε1 = 0 aref= fi and
ε̄M = 0. Obviously the sheet propertiesn, r̄ andm are to be
specified. The current values of (σ̄M/σ̄) andα are determined
at each step from Eqs.(9) and(14a)respectively. With the
progress of strain its limiting valueεf is found by applying
one of the ductile failure criteria given by Eqs.(16a), (16b)
or (17a), (17b). The minimum value of (Ri /to) corresponding
to εf and henceAf in expression(3) defines the bendability
of the sheet metal.

6. Results

e
p eria
f
a ties
(
g
F n

F
f chin-
s
R

M M M i 1

×
(

b1i

b2i

)
expε1 (17a)

Another condition for the initiation of surface shear ba
as been put by Hutchinson and Tvergaard (H&T)[16] and
alkonen et al.[17] for a power-law hardening material
ondition ‘H&T’:

≤ εf [1 − exp(−2εf )] (17b)

Note that the above condition was derived by cons
ng the initiation of shear bands in plane-strain tension
ifurcation phenomenon. In the present workεf in expres
ion(17b)is viewed following McClintock[15] as the limit

igament strainεl (see Eq.(18b)below) within a shear ban
oining ellipsoidal voids.

To apply the above fracture conditions, the evolutio
oid shape with straining must be defined quantitatively.
rence[13] offered semi-empirical relations determining
urrent void aspect ratioλ1 as being dependent on its init
spect ratioλ1i, mean stressσm, initial void volume fraction

i and current strainε1. These semi-empirical relations a
isted inAppendix Afor an initially prolate or oblate void.

Furthermore several parameters appearing in Eqs.(16a),
16b) and (17a), (17b) pertaining to the evolution of vo
hape and its surrounding material are given in reference[14]
or small values of void fractions as

b1

b2

)3
∼= 6f

πλ1
exp(1.5ε1),

(
bi1

b2i

)
∼= 6fi

πλ1i
(18a)
As described by expressions(3) the bendability of th
late is governed by its ductility. The four suggested crit

or prediction of fracture strain as given by Eqs.(16a), (16b)
nd(17a), (17b) are used for typical sheet metal proper
n= 0.2, r̄ = 1.0 and m = 2) to predictεf and henceAf which
ive the minimum bend radius ratio (Ri /to)min as plotted in
ig. 1. For realistic values of initial void volume fractio

ig. 1. Predictions of bendability (Ri /to)min for different initial void volume
ractions by various ductile fracture conditions; P&H: Pardoen and Hut
on[12], Mc: McClintock [15], H&T: Hutchinson and Tvergaard[16] and
: Ragab[14].
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Table 1
Comparison among predictions of the two fracture conditions ‘H&T’ and
‘R’ for n= 0.2, r̄ = 1 andλ1i = 1

Fracture condition fi = 0.002 fi = 0.05

Af (Ri /to)min Af (Ri /to)min

Shear band condition ‘H&T’.
Eq.(17b), [16]

0.291 1.01 0.124 3.31

Micro-necking condition ‘R’.
Eq.(16b), [14]

0.536 0.28 0.167 2.26

close to that observed in sheet metals; say≈0.001, the con-
ditions ‘R’ for internal micro-necking and ‘H&T’ for surface
shear band formation predict values of (Ri /to)min in the same
order of those known in industry[2]. The other two failure
conditions namely ‘P&H’ and ‘Mc’ require much higherfi
values to predict reasonable (Ri /to)min. The condition ‘R’ pre-
dicts almost zero value for (Ri /to)min for an initial fi ≤ 10−4

which means that a clean sheet metal may be bent almost–as
expected–over itself. Such comparison among failure condi-
tions will be mostly limited in the next sections to one of
internal necking and one to shear band namely; the ‘R’ and
‘H&T’ conditions respectively.

Table 1shows a comparison among the predicted bend-
ability (Ri /to)min and the reduction in area at fractureAf ac-
cording to the above two failure conditions. Each reduction
in area corresponds to a selectedfi . The condition ‘H&T’
predicts smaller range of reductions in area corresponding to
0.002 <fi < 0.05.

The bendability of sheet metals is dependent on its width
to thickness ratio; being better for narrower sheets. This is
mainly related to the ductility of the outer fiber as a func-
tion of the degree of stress biaxiality;∝ =σ2/σ1. For narrow
sheets the stress state is almost uniaxial∝ = 0, and ductility
is higher than that for plane strain existing in wide sheets
∝ = 0.5. This is demonstrated inFig. 2showing lower bend-
a s
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Fig. 2. Bendability (Ri /to)min vs. stress biaxiality ratioα =σ2/σ1 as predicted
by two failure conditions: internal necking failure condition ‘R’[14] and
shear band condition ‘H&T’[16]. Also shown void growth rate vs. biaxiality
ratio for the condition ‘R’.

m= 1 + r̄ for r̄ < 1. This is explained in view of expression
(14) indicating a higher value for ¯r > 1; thus satisfying the
fracture condition more promptly with smaller predictions
of failure strain and hence lower bendability as seen from
Fig. 4. The slight variation of bendability as predicted from
the shear band condition ‘H&T’(17b); results directly from
the change of the exponentF in expression(4) rather than
any variation in the predictedAf which depends solely in this
case on the strain hardening of the sheet metal.

F nt
a
s

bility (i.e. greater (Ri /to)min) with increasing biaxiality a
redicted by two fracture criteria. This is an outcome of fa
oid growth (as indicated by the dotted line inFig. 2) and
ence coalescence for higher mean stressσm =σ1 (1 +∝)/3
nder plane strain condition.

The effect of sheet metal properties namelyn andr̄ (and
encem) are displayed inFigs. 3 and 4. The prediction of fail
re due to formation of surface shear bands is highly sen

o the strain hardening of the metal as seen from cond
17b). Hence bendability becomes dependent on the v
f n. This observation does not apply to predictions ba
n the failure condition pertaining to internal necking of
rovoid material ligaments as shown inFig. 3. The sensitivity
o strain hardening is overestimated by the maximum b
ng moment condition given by expression(6)due to Leu[4].
heet metals with normal anisotropy i.e. ¯r > 1 possess lowe
endability and vice versa as indicated by the prediction
ig. 4 for the two failure conditions ‘H&T’ and ‘R’ as we
s that of Wang et al[3]. Note that to obtain the results pl

ed in Fig. 4; the exponent m is set asm= 2 for r̄ > 1 and
ig. 3. Variation of bendability (Ri /to)min with strain-hardening expone
s predicted by three fracture conditions: internal micro-necking ‘R’[14],
hear band formation ‘H&T’[16] and maximum bending moment ‘Leu’[4].
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Table 2
Comparison among bendability of steel sheets with isotropic, orthotropic anisotropy and nomal anisotropy and orthotropic anisotropy respectively, n= 0.2,
fi = 0.005,λ1i = 1

Condition εf (Ri /to)min/(Ri /to)isotropic

Case1: Isotropic,r0 = r90 = 1 0.413 1
Case2: Orthotropic anisotropy, rolling direction transverse to bend line,r0 = H/G = 1.32,i90 = H/F = 1.68[18] 0.389 1.09
Case3: Orthotropic anisotropy, rolling direction along bend line,r0 = H/F = 1.68,r90 = H/G = 1.32[18] 0.308 1.5
Case4: Normal anisotropy,r0, r90, r̄ = [(H/G + H/F )]/2 = 1.5 0.349 1.27

Fig. 4. Variation of bendability (Ri /to)min with normal anisotropy as pre-
dicted by three conditions: internal micro-necking ‘R’[14], shear band for-
mation ‘H&T’ [16] and Wang et al.’ W’[3].

In order to differentiate between bendability of an
anisotropic sheet bent with its rolling direction either trans-
verse (case 3 inTable 2) or along (case 4) to the bend line,
resort has to be made to Hill’s orthotropic yield expressions
namely;(7), (15a)and(15b).

A typical cold rolled steel sheet properties are used such
as H/G = 1.32 and H/F = 1.68[18]. Table 2indicates better
bendability predictions for the sheet in case 2 than in case
3; as appreciated in industrial practice. Note that in case 4
which assumes planar isotropy predictions represent an av-
erage value for both cases 2 and case 3.

7. Comparison with experiments

Available bendability experiments for a large variety of
materials were presented by Datsko and Yang[2]. In the form
of (Ri /to)min versus the reduction in area at fractureAf . No
other material data such as hardening exponent, anisotropy
etc were specified by them. However the hatched band in
Fig. 5 represents the domain within which the experimen-
tal data of Datsko and Young lie. The bendability of various
sheet metals for which the material properties are listed in
Appendix Bare predicted for a wide range of 0.05 <n< 0.45,
0.37 <r̄ < 4.5 and 1.37≤m≤ 2. In view of lack of data con-

Fig. 5. Comparison of bendability (Ri /to)min as predicted according to three
failure conditions with experiments[2]. The symbols refer to bendability of
various sheet metals of properties as given inAppendix B.

cerning the initial void volume fractionfi a value of 0.005
has been assumed for all alloys inFig. 5.

The predictions of the two failure conditions ‘R’ and
‘H&T’ all lie within the experimental band unlike those cal-
culated from the bendability condition of Leu[4], expression
(6)indicating an obvious overestimation or say an upper limit.

8. Conclusions

The application of porous plasticity formulation to predict
the bendability of sheet metals has confirmed the details of the
empirical practice accepted in industry. The considered ma-
terial model assumes the presence of initial micro-structural
voids which grow in volume and change in shape with ac-
cumulating strain. Fracture due to either shear band forma-
tion or internal necking between neighboring voids yielded
the required bendability-ductility curves. The results indicate
better bendability for materials with higher strain hardening
and small initial void fractions. Anisotropic sheet metals with
the bend line oriented transverse to the rolling direction man-
ifest better bendability than these with their bend line taken
along the rolling direction. Predicted bendability according
to a micro necking failure condition compares favorably with
experimental evidence for a variety of sheet metal properties.
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Appendix A

The dependence of the parametersq1 andq2 on (σm, λ1,
n) is suggested in refs.[12,13] to take the form

q1 = A + B
(σm

σ̄

)
+ C

(σm

σ̄

)2 + D
(σm

σ̄

)3

whereA= 2.275− 3.549 n+ 3.837 n2; B=−0.918 + 1.320
n− 0.316 n2; C= 0.529− 2.310 n+ 2.354 n2;
D=−0.098 + 0.269n+ 0.701n2 − 1.783n3

Oblate voids(λ1 < 1) : q2 = λ
ζ0
1 for

1

3
≤ (

σm

σ̄
) ≤ 2

(A.1)

whereζo= [0.206 log (σm
σ̄

)–0.266]–0.02n

Prolate voids (λ1 ≥ 1) : q2 = λ
ζo

1 for
1

3
≤ (

σm

σ̄
) ≤ 2

(A.2)

where

ζp =
[
−3.484+ 11.614

(σm

σ̄

)
− 13.720

(σm

σ̄

)2

+ 6.541
(σm

σ̄

)3 − 1.06
(σm

σ̄

)4
]

+ 0.2n

re-
l ge
1

l

I

l

n
d s
c Par-
d

ard
fl n-
q

σ2|m−

σ2|m−

dλ = df

9
2q1q

2
2f (1 − f )σm

(A.6)

Appendix B

SeeTable B.1.

Table B.1
properties of sheet metals as used in predicting bendability in Fig. 6

Alloy n r̄

Steels
DDQ 0.18 1.65
High Strength 0.18 0.95
Al–K 0.22 1.8
Rimmed 0.19 1.49
HSLA 0.18 1.2
Dual phase 0.16 1
Ti-stabilized 0.24 2
Interstitial free 0.3 2.5

Stainless Steels
18-18 Aust. 0.48 1
409 0.2 1.2
18-8 0.433 0.84

A
3
A
1
2
P
C
A
A
A

C
P
7
C
O
T
Z
Z
Z

For void shape evolution the following semi-empirical
ations[13] (with slight modification) are used for the ran
/6≤ �1i ≤ 6

Initially prolate void: �1i ≥ 1, 1/3 < (�m/σ̄)

og(λ1/λ1i) = [(−0.535+ 0.0235 sinε) logλ1i

+(2 − σm/σ̄M + n)](1 − fi )(1.15 sinε) (A.3)

nitially oblate void : λ1i ≤ 1,
1

3
< (

σm

σ̄
) < 3

og(λ1/λ1i) =
[( − logλ1i

0.109+ 1.224 sinε

)
+ (2 − σm

σ̄M
+ n)

]
× (1 − fi )(1.15 sinε) (A.4)

The validation of expressions(A.3) and (A.4) has bee
iscussed in reference[13] indicating their close prediction
ompared to the extensive finite element solution due to
oen and Hutchinson[12].

The flow rule derived for simplified Gurson–Tverga
ow function describing a matrix material obeying Hill no
uadratic anisotropic yield condition are obtained as

dε1 = dλ

{
σ̄(2−m)

(1 + r̄)

[
−|2σ3 − σ1 − σ2|m−1 + (1 + 2r̄)|σ1 −

dε2 = dλ

{
σ̄(2−m)

(1 + r̄)

[
−|2σ3 − σ1 − σ2|m−1 − (1 + 2r̄)|σ1 −

dε3 = dλ

{
σ̄(2−m)

(1 + r̄)

[
2|2σ3 − σ1 − σ2|m−1 + 3

2
q1q

2
2fσm

]}

dεv = dλ

{
9

2
q1q

2
2fσm

}
= df

(1−f )
1 + 3

2
q1q

2
2fσm

]}
1 + 3

2
q1q

2
2fσm

]}
(A.5)

luminums
003-0 0.23 0.6
l–Mg 0.19 0.56
100-0 0.25 0.62
03 0.18 0.78
ure 0.24 0.86
old rolled 0.04 0.76
l–Mn 0.24 0.66
l–Mg–Si 0.28 0.74
l–Cu–Mg 0.14 0.74

oppers
ure Cu 0.44 0.9
0/30 Brass 0.42 0.85
u–Ni 0.35 0.8
thers:
i alloys 0.05 3
n alloys 0.1 0.5
irc alloy 0.12 4.5
n–Ti 0.05 0.37
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