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Abstract

While low-order measures of damage have su�ced to describe the sti�ness of bodies with distributed voids or cracks,

such as the void volume fraction or the crack density tensor of Vakulenko, A.A., Kachanov, M., 1971. [Inz. AN SSSR.,

Mekhanika Tverdogo Tela (Mech. Solids) 6 (4), 159], addressing the growth of distributed defects demands a more

comprehensive description of the details of defect con®guration and size distribution. Moreover, interaction of defects

over multiple length scales necessitates a methodology to sort out the change of internal structure associated with these

scales. To extend the internal state variable approach to evolution, we introduce the notion of multiple scales at which

®rst and second nearest-neighbor e�ects of nonlocal character are signi®cant, similar to homogenization theory.

Further, we introduce the concept of a cuto� radius for nonlocal action associated with a representative volume element

(RVE), which exhibits statistical homogeneity of the evolution, and ¯ux of damage gradients averaged over multiple

subvolumes. In this way, we enable a local description at length scales below the RVE. The mean mesoscale gradient is

introduced to re¯ect systematic di�erences in size distribution and position of damage entities in the evolution process.

When such a RVE cannot be de®ned, the evolution is inherently statistically inhomogeneous at all scales of reasonable

dimension, and the concept of macroscale gradients of internal variables is the only recourse besides micromechanics.

Based on a series of ®nite element calculations involving evolution of 2D cracks in brittle elastica arranged in random

periodic arrays, we examine the evolution of the mean mesoscale gradients and note some preliminary implications for

the utility of such an approach. Ó 1999 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Continuum damage mechanics (CDM) provides
a framework for the development of constitutive
equations and damage evolution equations for de-
fected solids. First introduced in the classical stud-
ies of creep rupture in metals by Kachanov (1958)
and Rabotnov (1963), CDM is based on the ther-
modynamics of irreversible processes (Kestin, 1966;

Kestin and Rice, 1970; Rice, 1971), internal state
variable (ISV) theory (Coleman and Gurtin, 1967),
and relevant physical considerations (assumption
of distributed damage, homogenization concepts,
de®nition of the damage variable, formulation of
kinetic laws for damage evolution, etc.; cf.
Krajcinovic (1989, 1996a), for excellent literature
reviews of CDM). A solid that is highly heteroge-
neous at the mesoscale is considered an e�ective
homogeneous continuum at the macroscale.
Adopting the postulate of local action at the rep-
resentative volume element (RVE) scale greatly
simpli®es the governing equations for boundary
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value problems, of course, relative to fully nonlocal
theories. Macroscopic damage variables are judi-
ciously selected to re¯ect the e�ects of mesostruc-
tural level irreversible processes on macroscale
material behavior. Such damage descriptors may be
obtained through a ``low-order'' homogenization
(spatial average) of individual damage entities, ne-
glecting details of the distribution of damage
throughout the RVE. The fact that the theory refers
to an homogeneous continuum, however, presents a
serious obstacle in the development of damage
evolution laws that incorporate e�ects of the het-
erogeneity of the solid at the mesoscale. Whereas
e�ective moduli are somewhat insensitive to the
distribution of microcracks, damage evolution is
highly dependent on the local ¯uctuations in crack
arrangement within the RVE used for sti�ness cal-
culations (cf. Kachanov, 1994). Bazant and Chen
(1997) discuss the scale dependence of energy re-
lease in fracture of heterogeneous, quasi-brittle
solids. In the homogenization process, critical in-
formation regarding the largest ¯aw size, minimum
distance between ¯aws, and distribution of damage
within an RVE is irrevocably lost. Such information
is crucial to the development of viable evolution
equations. Current CDM approaches have been
generally limited to the case of dilute (noninteract-
ing) damage. This limitation suggests the need for a
higher-order continuum description of damage that
retains key aspects of the damage distribution
within an RVE. This work attempts to clarify key
issues associated with the development of such a
higher-order continuum formulation for evolution
of damage. The speci®c case of brittle microcracked
solids is examined in view of its long history of at-
tention from the perspective of e�ective properties
(cf. Budiansky and O'Connell, 1976; Kachanov,
1994; Krajcinovic, 1989, 1996a; Mura, 1991; Ne-
mat-Nasser and Hori, 1993). This study will focus
on isothermal, purely mechanical applications.

2. Implementation of CDM

2.1. Selection of damage variable

The selection of a macroscopic damage variable
may, in principle, be somewhat arbitrary and often

does not necessarily directly re¯ect any of the un-
derlying dissipative or energy transfer processes
occurring at the mesoscale. Commonly, a damage
parameter is selected that can be expressed in
terms of macroscopically measurable quantities
(giving rise to so-called ``e�ective-stress'' or similar
models). Numerous damage models have incor-
porated scalar or tensorial damage variables that
can be characterized at the macroscale, for exam-
ple, by change in compliance (cf. Chaboche, 1984).
An alternative choice of damage variable is one
that incorporates salient aspects of damage mor-
phology in its de®nition. Such ``micromechanical-
ly-inspired'' damage models involving scalar,
tensor, or ``fabric tensor'' representations of
damage have been introduced in the study of
heterogeneous materials containing voids or vari-
ous crack-like surface discontinuities (cf. Onat and
Leckie, 1988; Talreja, 1989, 1991; Nemat-Nasser
and Hori, 1993; Kachanov, 1994; Krajcinovic,
1996a).

Either choice of damage parameter has inherent
limitations that a�ect its utility in a CDM formu-
lation. In general, both macroscopically measur-
able and micromechanically inspired damage
variables neglect the varying e�ects of nonlocal or
``nearest neighbor'' in¯uences (e.g., shielding and
enhancement associated with adjacent ¯aws) that
are essential to formulate damage evolution laws.
Inclusion of such e�ects represents, perhaps, one
of the greatest challenges in the development of a
robust CDM formulation. For these reasons, more
careful consideration of appropriate ISV measures
of damage is warranted.

2.2. RVE de®nition and statistically homogeneous
(SH) response functions

The aforementioned damage descriptors may be
obtained through a spatial average of key features
of individual damage entities contained within a
suitably chosen observation window. Summarizing
the work of Hill (1967), Hashin (1983), Nemat-
Nasser and Hori (1993), and Krajcinovic
(1996a,b), the RVE is commonly de®ned as a cube
of material with dimension, LRVE, subject to the
following conditions (Krajcinovic, 1996a,b):
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where d is the characteristic size of microconstit-
uents, LC is the heterogeneity correlation length, L
is a characteristic macroscopic structural dimen-
sion, r0 is the mean ®eld (volume averaged) stress,
and (x1, x2, x3) are the components of a Cartesian
basis. Here d may also be interpreted as the
wavelength over which the traction or displace-
ment on the RVE boundary ¯uctuate about some
mean value under conditions of uniform dis-
placement or traction, respectively (Hashin, 1983).
Statistical homogeneity, for general purposes, re-
quires that all response functions of interest at the
scale of the observation volume window (Helm-
holtz free energy, w; Cauchy stress tensor, r; small
strain tensor, e; sti�ness tensor, C; etc.) are es-
sentially invariant with respect to window position
(cf. Hashin, 1983; Nemat-Nasser and Hori, 1993;
Krajcinovic, 1996b; Alzebdeh et al., 1997). Note
that statistical homogeneity of elastic moduli, such
that C is relatively independent of whether uni-
form traction or uniform displacement is applied
to the observation window boundary, is a some-
what more restrictive requirement than statistical
homogeneity of ®eld quantities (e.g., r, e). Ostoja-
Starzewski and Wang (1989), Alzebdeh et al.

(1997), Ostoja-Starzewski (1997) and Ostoja-Star-
zewski et al. (1994) provide excellent discussions
regarding the selection of suitable observation
windows for averaging response functions as well
as the in¯uence of observation window boundary
conditions (e.g., uniform versus ``random-period-
ic'' traction and displacement boundary condi-
tions) on the statistical homogeneity of response
functions for a given window size. A majority of
the treatment in the literature addresses determi-
nation of the minimum observation window nec-
essary for statistical homogeneity of elastic
moduli, (RVE)STIFFNESS.

In general, individual response functions must
be averaged over di�erent observation windows
(RVEs) in order to satisfy conditions of statistical
homogeneity. If the initial observation window
(Window A in Fig. 1) is of insu�cient size, then
none of the average response functions will satisfy
conditions of translational invariance with respect
to window origin coordinates. If the observation
window is gradually increased, eventually it may
be of su�cient size (e.g., Window B in Fig. 1) to
permit evaluation of statistically homogeneous
(SH) response functions (e.g., w, r, e, C) that are
relatively insensitive to the distribution of meso-
structural constituents. Such an observation win-
dow, however, may be insu�cient to characterize
SH response functions pertaining to damage evo-
lution (i.e., thermodynamic forces conjugate
to selected ISVs, Y; damage evolution equations,

Fig. 1. RVE window size and statistically homogeneous (SH) response functions.
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_D; and dissipation potential, /) that are governed
by distribution characteristics of mesostructural
entities. Based upon (RVE)STIFFNESS, many evolu-
tion processes are statistically inhomogeneous at
the observation window scale (e.g., distributed
crack growth in monolithics and composites,
growth of void clusters or nonuniform size evolu-
tion of voids in ductile metals, texture evolution at
the grain scale in polycrystals, etc.). Further, an
(RVE)EVOLUTION (Window C in Fig. 1) may not
exist or may be of su�cient size to violate the third
condition in Eq. (1), i.e.,

�RVE�EVOLUTION 6� �RVE�STIFFNESS: �2�
In fact the notion of an (RVE)EVOLUTION for SH

response functions associated with damage evolu-
tion may not be meaningful in many practical
cases. This is a key issue that is often overlooked in
the literature, where the term ``RVE'' typically
refers to the observation window necessary for
sti�ness characterization. This study aims to clar-
ify issues associated with application of CDM to
those practical scenarios where not all response
functions satisfy statistical homogeneity. All future
reference, unless otherwise noted, to ``RVE'' will
denote (RVE)STIFFNESS, and all response functions
will represent RVE-averaged quantities. Further,
local quantities that vary spatially within the RVE
will be denoted with a caret (e.g., p̂).

3. 2D numerical simulation of evolving crack

systems

In order to assess the viability of various mac-
roscopic damage variables in a CDM formulation,
parametric studies were performed to examine the
e�ect of initial crack patterning on non-self-similar
damage evolution for a number of arbitrary crack
distributions in two-dimensional, idealized, brittle
solids under plane strain conditions. Such an ide-
alized problem was used to determine certain
characteristic features and to clearly demonstrate
the relevant issues, although it may be asserted
that these features and issues pertain to much
broader classes of damage in non-linear, history-
dependent materials. The calculations were per-
formed using the special purpose two-dimensional

®nite element code FRANC2D/L (cf. Bittencourt
et al., 1996; James and Swensen, 1997). Lacy et al.
(1997a,b) considered uniformly distributed doubly
periodic crack distributions whereas this study
focuses on arbitrary crack distributions. In each
study, numerical simulations of evolving crack
systems were conducted, and the RVE-averaged
®eld quantities, elastic moduli, damage parameters
and their associated conjugate thermodynamic
forces were calculated at each increment of dam-
age evolution. The reader is reminded that the
term ``RVE'' as used herein denotes the observa-
tion window necessary for statistically homoge-
neous sti�ness determination, (RVE)STIFFNESS; the
condition for statistical homogeneity of elastic
moduli was satis®ed for each initial damage con-
®guration considered. Three relatively simple
damage parameters were considered in order to
evaluate their utility in assessing damage evolution
in arrays of ¯aws of various sizes and spatial dis-
tribution. These include:

(i) A damage variable that may be inferred from
an e�ective sti�ness tensor, analogous to that
proposed by Chaboche (1984), with a component
in the x2-direction (see Fig. 2),

DDE � E0 ÿ E2

E0

� DE
E0

; �3�

where E2 and E0 are Young's moduli in the x2-
direction for the damaged and virgin isotropic
materials, respectively. The thermodynamic force
component conjugate to DDE (generalized energy
release rate) may be expressed as

YDE � ÿq
ow

oDDE
� ÿq

ow
o DE=E0� � ; �4�

where w is the speci®c Helmholtz free energy and q
is the mass density of the solid.

(ii) The 2D crack density tensor (cf. Vakulenko
and Kachanov, 1971; Kachanov, 1980)

Dij � 1

A

XN

k�1

a2
knk

i nk
j ; �5�

where ak is the half-length of the kth crack, A is the
area of averaging, nk is the unit vector normal to
the kth crack, and N is the total number of cracks.
The corresponding conjugate thermodynamic
force to (5) is given by
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Yij � ÿq
ow
oDij
� ÿq

ow

o �1=A�PN
k�1 a2

knk
i nk

j

ÿ � : �6�

(iii) A scalar damage parameter based upon the
total surface area of microcracks, i.e.,

DA � 1

A

XN

k�1

ak �7�

and its corresponding thermodynamic force

YA � ÿq
ow
oDA
� ÿq

ow

o �1=A�PN
k�1 ak

ÿ � : �8�

Eqs. (3)±(8) are representative low-order char-
acterizations of damage. Eq. (3) may be deter-
mined from the damaged elastic modulus. The
latter two ``micromechanically-inspired'' damage
parameters may be evaluated from a knowledge of
the characteristic defect distribution. For the ide-
alized elastic-perfectly brittle materials considered
in this study, YDE; Yij and YA may be interpreted as
the generalized strain energy release rate (ERR)
associated with an increment of damage (evolu-

tion). It is recognized that a damage variable that
is a linear function of the crack lengths in a given
distribution will lead to relatively poor estimates of
elastic moduli (cf. Kachanov, 1994); such a pa-
rameter (7) was included in this study in order to
assess its utility in characterizing the ERR during
distributed damage evolution. Note that irregu-
larly spaced cracks will typically evolve in non-self-
similar fashion. Thus, nonplanar cracks in the
numerical simulations were idealized as slit cracks
with identical crack tip coordinates in order to
evaluate Eq. (5).

3.1. Key numerical results/observations

CDM is typically predicated on the assumption
that an observation window, (RVE)STIFFNESS, ex-
ists that minimally ensures statistically homoge-
neous (SH) response functions pertaining to
sti�ness determination (e.g., r, e, and C). This
suggests that, to within an acceptable tolerance,
these response functions should be unique func-
tions of the damage variable used to characterize
the degraded state of the material. In addition,
CDM implicitly assumes that the RVE-averaged
sti�ness and response are invariant with respect to
variations in microcrack sizes and number densi-
ties for which a given damage variable is ®xed
(Krajcinovic, 1996b).

Lacy (1998) showed that for the idealized case
of uniformly distributed doubly periodic arrays of
cracks, statistical inhomogeneity of response func-
tions pertaining to sti�ness determination (e.g., r,
e, and C) may arise even for the dilute damage case
if crack interactions are signi®cant. Accordingly,
statistical homogeneity of such response functions
is most likely if damage interactions are negligible
or if the e�ects of crack shielding and enhancement
tend to cancel each other when averaged over the
observation window (cf. Kachanov, 1994). More
importantly, Lacy (1998) demonstrated that use of
certain low-order damage parameters such as
those in Eqs. (3), (5), and (7) may result in re-
sponse functions pertaining to damage evolution
(i.e., threshold strain for evolution, and RVE-av-
eraged ERR, Y) that are ¯aw size dependent even
for dilute damage. For a given damage state, DDE

(or D22), an increment of damage extension DDE

Fig. 2. Schematic of typical observation window and associated

boundary conditions used in numerical simulations of damage

evolution.
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(or D22) during uniformly distributed damage
evolution of a crack system with characteristic ¯aw
size a1 will produce more new crack surface area
than an identical increment of damage extension
for a second distribution with characteristic ¯aw
size a2 > a1. This additional creation of crack sur-
face area, for the dilute and noninteractive damage
case, results in a higher RVE-averaged ERR, YDE

(or Y22), for the former distribution. This key
point has been virtually overlooked in much of the
CDM literature.

Lacy et al. (1997a,b) and Lacy (1998) con®rmed
that low-order damage descriptors such as (3), (5)
and (7) are incapable of distinguishing between
various crack distributions that produce markedly
di�erent global responses through an evolutionary
process of damage. Lacy (1998) obtained non-
unique results in the numerical evaluation of ef-
fective moduli, threshold strain for evolution,
residual strength, and thermodynamic forces for
di�erent crack con®gurations with common values
of DDE, D22, or DA; such results call into question
the viability of such damage descriptors in ad-
dressing damage evolution of highly interactive
crack systems in a CDM formulation. This was
true even for cases where the e�ective moduli for
each damage state were essentially statistically
homogeneous with respect to a given window of
observation, (RVE)STIFFNESS.

To illustrate this point, consider the following
results. Fig. 2 shows a schematic of a representa-
tive model containing an arbitrary ``random-peri-
odic'' distribution of cracks in an RVE consisting
of an otherwise linearly elastic, isotropic, homo-
geneous solid. Periodic/symmetry boundary con-
ditions were applied to simulate a repeating
mesostructure. A far-®eld displacement, u12 , was
applied in the x2-direction to the upper model
boundary. The term ``random-periodic'' refers to
the fact that the damage distribution is completely
random within the RVE but is doubly periodic
over the wavelength, LRVE (cf. Ostoja-Starzewski
et al., 1994; Alzebdeh et al., 1997; Ostoja-Star-
zewski, 1997). Such defects placed periodically
about the RVE boundary serve to induce period-
icity of ®eld quantities along the RVE boundary as
well as to minimize defect interaction with overall
model boundaries; the choice of LRVE, however,

de®nes the length scales of material disorder (Al-
zebdeh et al., 1997). Incorporation of random
periodic boundary condition results in statistical
homogeneity of elastic moduli at lower number
densities of heterogeneities than would be neces-
sary when implementing other types of boundary
conditions (Alzebdeh et al., 1997). Note that im-
position of usual periodic boundary conditions
(e.g., via multi-point constraint equations in ®nite
element solutions) may lead to undesirable or
aphysical interactions of defects with model
boundaries. The material was assumed to have no
intrinsic toughening capability, i.e., it was perfectly
brittle. While it is recognized that such an as-
sumption ignores the e�ect of material structure
on evolution, the primary focus of the work was to
establish a framework for addressing damage en-
tity distribution e�ects on the evolution of dam-
age, rather than to model the initiation and
propagation of defects in actual brittle materials.
While Lacy (1998) gives a detailed discussion of
the numerical simulations of non-self-similar
damage evolution, su�ce it to say that the stress
intensity factors KI, KII were determined at each
increment and a mixed mode criterion suitable for
propagation in brittle materials was employed.

Figs. 3 and 4 show the initial and ®nal damage
states associated with eight di�erent random-pe-
riodic crack con®gurations used in the numerical
simulations. It should be emphasized that each
initial crack con®guration satis®ed conditions of
statistical homogeneity of elastic moduli. Analysis
of evolving random-periodic distributions con-
sisting of both randomly oriented and parallel
cracks was performed. In the following discussion,
such crack con®gurations will be referred to as
``random'' and ``random-parallel'', respectively; it
is understood that such designations refer to the
distribution of damage within the RVE. The
boundaries of the RVE for each case are denoted
by the dashed lines in the ®gures. For a given re-
alization of cracks, the initial crack center coor-
dinates and orientation of individual cracks were
random functions of position within the RVE
subject to the condition that overlapping cracks
were not permitted; for random-parallel crack
distributions, all cracks were initially oriented
perpendicular to the x2-axis. Individual realiza-
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tions of random and random-parallel crack con-
®gurations will be designated by Ri and Pi, re-
spectively, where i � 1; . . . ; 4. With the exception
of the random-parallel crack con®guration shown
in Fig. 4(d), each of the con®gurations had a
uniform initial crack length distribution, (ainital)i.
Fig. 4(d) shows a random-parallel crack distribu-
tion consisting of cracks with two characteristic
initial crack lengths. Key aspects associated with
each initial crack con®guration are summarized in
Table 1. The numerical simulations for the ran-
dom-periodic crack distributions were terminated
prior to any crack coalescence. Crack kinking was
permitted.

The initial damage con®gurations shown in
Figs. 3 and 4 were selected to illustrate the e�ect of
variable initial size and spatial distributions of
defects on the subsequent evolution of randomly

distributed cracks in brittle elastic solids. It is clear
from the ®nal damage states associated with each
con®guration shown in the ®gures that all cracks
do not participate equally in the evolution process.
Damage evolution for these random con®gura-
tions consists of growth of a relatively few domi-

Fig. 4. Random-periodic crack distributions consisting of

parallel cracks with arbitrary crack center coordinates used in

numerical simulations of damage evolution: (a) con®guration

P1 (a=LRVE � 0:08); (b) con®guration P2 (a=LRVE � 0:08); (c)

con®guration P3 (a=LRVE � 0:10); (d) con®guration P4

(a=LRVE � 0:04; 0:12).

Table 1

RVE data for random-periodic crack arrays used in the nu-

merical simulations

Case Description ainitial=LRVE

1 Random (R1) 0.08

2 Random (R2) 0.08

3 Random (R3) 0.08

4 Random( R4) 0.06

5 Random-parallel (P1) 0.08

6 Random-parallel (P2) 0.08

7 Random-parallel (P3) 0.10

8 Random-parallel (P4) 0.04, 0.12

Fig. 3. Random-periodic crack distributions consisting of

cracks with arbitrary crack center coordinates and crack ori-

entations used in numerical simulations of damage evolution:

(a) con®guration R1 (a=LRVE � 0:08); (b) con®guration R2

(a=LRVE � 0:08); (c) con®guration R3 (a=LRVE � 0:08); (d)

con®guration R4 (a/LRVE� 0.06).
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nant ¯aws within the RVE. In brittle elastic solids
with no intrinsic toughening mechanisms, local-
ized extension of preferentially arranged defects is
to be expected considering local driving forces for
evolution are largely dictated by local variations in
the crack array geometry (cf. Kachanov, 1994).
Note that for uniformly distributed doubly peri-
odic crack distributions (cf. Lacy et al., 1997a), all
the cracks evolve and actively contribute to the
total energy dissipated during damage evolution.
For these random distributions of cracks, how-
ever, only a select few defects contribute to the
energy dissipated during evolution through their
direct extension; the remainder of the cracks par-
ticipate in the evolution process through their in-
teractions (i.e., shielding or enhancement) as well
as their contribution to stress redistribution (``load
shedding'') within the RVE. Lacy (1998) demon-
strated that for a random-periodic crack system
subjected to uniaxial loading as shown in Fig. 2, it
is reasonable to assume that the entire change in
the free energy associated with an increment of the
crack density tensor in Eq. (5) is attributable to
dD22.

Using the crack density tensor, Eq. (5), to
characterize the damage state of the material, Figs.
5(a) and 6(a) show the degradation in normalized
sti�ness, E2/E0, versus damage data for each of the
four random con®gurations (R1, R2, R3, R4) and
random-parallel con®gurations (P1, P2, P3, P4),
respectively. Note that the sti�ness versus damage
relationships, to within a reasonable tolerance, do
not evolve away from statistical homogeneity (i.e.,
become con®guration dependent) except at higher
crack densities (D22 > 0.16; cf. Figs. 5(a) and 6(a)).
These results are consistent with those obtained by
Kachanov (1992, 1994) who observed that the ef-
fective moduli of solids containing randomly dis-
tributed, strongly interacting cracks are relatively
insensitive to the distribution of cracks within a
given material sample. The thermodynamic force
conjugate to D22, however, is markedly di�erent
for each distribution. Figs. 5(b) and 6(b) show that
the normalized RVE-averaged ERR, Y22/(Y22)REF,
is a non-linear decreasing function of crack density
and displays a strong characteristic crack size de-
pendence. Here (Y22)REF is a reference value as-
sociated with the initial damage state for a

uniformly distributed doubly periodic crack dis-
tribution with an initial crack size ainitial=LRVE �
0:07 (see Lacy, 1998). Similar to the results of Lacy
et al. (1997a,b), the RVE-averaged ERR, Y22, is
signi®cantly larger for the distributions containing
smaller cracks than for those with larger initial
characteristic crack sizes; Y22 also decreases more
rapidly with increasing damage for these cases. It
is likely that both the characteristic size of defects
in a given distribution as well as the relative state
of crack shielding or enhancement present in the
vicinity of critical ¯aws in¯uence the initial mag-
nitude of Y22 for a given distribution as well as the
trajectory of Y22 with increasing damage (cf. Lacy
et al., 1997a,b; Lacy, 1998).

3.2. Implications for CDM

Considering that all the response functions of
interest from the numerical simulations were
evaluated over the observation window necessary
for sti�ness determination, (RVE)STIFFNESS, it is
not surprising that response functions pertaining
to damage evolution (i.e., threshold strain for
evolution, and RVE-averaged ERR, Y) are gen-
erally statistically inhomogeneous (con®guration
dependent) at this scale. It is tempting to assert
that if these quantities are averaged over an ob-
servation window su�ciently enlarged relative to
(RVE)STIFFNESS then statistical homogeneity of
evolution-related response functions would follow
for the case of noninteractive damage. Recall,
however, that the numerical results indicate that
the thermodynamic forces conjugate to the select-
ed damage ISVs are ¯aw size dependent even for
dilute damage. While the response functions relat-
ed to sti�ness determination may be invariant with
respect to variations in microcrack sizes and
number densities for which a given damage vari-
able in Eqs. (3), (5), and (7) is ®xed, the same does
not hold true for the response functions related to
evolution. The existence of an observation win-
dow, (RVE)EVOLUTION, resulting in SH response
functions pertaining to evolution is by no means
assured for a given selection of damage parameter.
Such an observation window, (RVE)EVOLUTION,
did not exist for the brittle crack systems consid-
ered here; this is also likely the case for other

838 T.E. Lacy et al. / Mechanics of Materials 31 (1999) 831±860



realistic cases of materials sustaining various types
of damage.

When attempting to extend CDM to those cases
where the observation window, (RVE)EVOLUTION,
either does not exist or is prohibitively large in
comparison with (RVE)STIFFNESS, perhaps the only
plausible option is to evaluate the response func-
tions pertaining to evolution (i.e., threshold strain
for evolution, and RVE-averaged ERR, Y) using
the observation window necessary for sti�ness
determination, (RVE)STIFFNESS, while acknowl-
edging the lack of statistical homogeneity associ-

ated with these functions. Application of CDM to
the statistically inhomogeneous case minimally re-
quires the introduction of additional ISVs that
account for the e�ect of the nonuniformity of the
size and spatial distribution of damage within the
RVE on the macroscale response. The evolution
process will therefore depend on the initial con-
®guration of damage and associated initial condi-
tions on the damage variable. Such a higher-order
continuum framework remains largely undevel-
oped, especially within the context of statistical
inhomogeneity outlined here. While such a higher-

Fig. 5. (a) Normalized sti�ness and (b) normalized thermodynamic force conjugate to D22 obtained from numerical simulations of

damage evolution in random crack distributions.
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order description may be possible using transmis-
sion factors (Kachanov, 1987, 1992, 1994) or other
such approaches that can be obtained from de-
tailed micromechanical analyses of the RVE, one
goal of a CDM approach is to suggest relatively
straightforward geometric descriptors that do not
require large scale many-body numerical calcula-
tions and associated evolution of interactions in
their formulation. In the remainder of this paper,
preliminary concepts are outlined which may
prove useful in the development of appropriate
higher-order damage descriptors for use in a CDM
approach.

4. Elements of a higher-order continuum formula-

tion

The preceding numerical simulations suggest
that damage evolution in perfectly brittle materials
with randomly distributed cracks involves a rela-
tively small fraction of preferentially arranged
defects within the RVE used for sti�ness determi-
nation. Crack extension in this case is limited to a
number of active subvolumes within the RVE, the
location of which depends on the mesoscale dis-
tribution of defects as well as the nature and se-
verity of crack interactions. The nonuniformity in

Fig. 6. (a) Normalized sti�ness and (b) normalized thermodynamic force conjugate to D22 obtained from numerical simulations of

damage evolution in random-parallel crack distributions.
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the distribution of damage evolution sites within
the RVE, nonlocal in¯uences associated with crack
interactions, and inherent statistical inhomogene-
ity of evolution-related response functions associ-
ated with use of damage variables with an intrinsic
¯aw size dependence all pose serious obstacles to
the application of CDM to characterize the evo-
lution of distributed crack systems in brittle ma-
terials. The fact that damage evolution within
active subvolumes of the RVE depends on the
distribution of mesoscale constituents leads logi-
cally to consideration of various nonlocal/gradient
theories.

In order to facilitate the following discussion of
physical phenomena manifested at fundamentally
di�erent spatial scales, it is useful to introduce
several concepts pertaining to the observation
scale necessary to characterize a particular defor-
mation process. Adopting a notion of various
observation scales similar to that of Krajcinovic
(1996a), the mesoscale refers to the range of
lengths over which the solid is heterogeneous and
piecewise continuous. Individual geometric fea-
tures of the mesostructure (e.g., microcracks,
voids, ®bers, inclusions, grains, etc.) are clearly
recognizable. The deformation patterns are
strongly in¯uenced by the presence of heteroge-
neities at this scale and may be characterized using
a mesoscale coordinate system, x̂ (cf. Fig. 7). In
contrast, the macroscale refers to the range of
lengths over which the solid may be considered in
some sense as an e�ective homogeneous continu-
um (e.g., the range of characteristic lengths that
would exceed the RVE dimension, LRVE); the dis-
crete material structure and texture inherent at the
mesoscale are smeared out at the macroscale. The
deformation at this observation scale may be
characterized using the macroscale coordinate sys-
tem, x (also shown in Fig. 7).

4.1. Nonlocal and gradient approaches

In typical nonlocal approaches, one or more of
the macroscale governing equations involve inte-
grals of state variables as functions of space or
time (cf. Eringen, 1966; Kroner, 1967; Edelen,
1976; Pijaudier-Cabot and Bazant, 1987; Bazant,
1994). These integral expressions generally involve

an in®nitely extended zone of nonlocal action and
may be approximated by truncated Taylor series
expansions, giving rise to so-called macroscale
strain gradient theories (cf. Mulhaus and Aifantis,
1991; Aifantis, 1992, 1994, 1995; Peerlings et al.,
1996). Strain gradient approaches typically retain
terms in the governing equations involving prod-
ucts of higher-order deformation gradients with
coe�cients whose magnitudes ostensibly re¯ect
normalization by characteristic microstructural
lengths associated with the nonlocal continuum.
These terms are often introduced to regularize the
boundary value problem characterizing deforma-
tion in the strain softening regime and require
additional boundary conditions involving the
gradients that lack a clear physical interpretation
(cf. Peerlings et al., 1996).

Macroscale damage gradient approaches at-
tempt to account for the e�ect of a nonuniform
macroscale damage distribution on the macroscale
response by assuming that the thermoelastic
Helmholtz free energy depends not only on the
macroscopic (RVE-averaged) ISV associated with
damage, D, but also on its macroscopic spatial
gradient, ÑD, (cf. Markov, 1995; Fremond and
Nedjar, 1996), i.e.,

w � w�e; T ;D;rD�; �9�

Fig. 7. Macroscopic and mesoscopic observation scales.
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where e is the small strain tensor, T is the absolute
temperature. Generally, the state variables in
damage gradient approaches are no longer inde-
pendent; special care must be used to properly
account for state variable coupling between D and
rD when applying the second law of thermody-
namics. Apparently, in an attempt to address this
issue, Fremond and Nedjar (1996) assumed that
the dissipation associated with an increment of
rD was negligible.

Both strain gradient and damage gradient the-
ories typically assume nonlocal continuum be-
havior at the macroscale. They generally focus on
low-order measures of damage as well. In the
presence of homogeneous macroscopic deforma-
tion or damage ®elds, these approaches result in
governing equations that are consistent with those
of a purely local continuum. In contrast, typical
CDM approaches result in constitutive equations
that satisfy the principle of local action at the
macroscale. For a given value of a macroscopic
damage variable, however, variations in the mac-
roscale response functions associated with RVEs
consisting of di�erent distributions of defects are
attributable to the di�erences in the size, orienta-
tion, and spatial distribution of defects within the
RVEs, i.e., the idealized continuum is nonlocal at
the mesoscale. This sub-RVE con®guration de-
pendence may manifest itself even in the presence
of homogeneous far ®eld deformation ®elds.
Macroscale strain gradient or damage gradient
approaches cannot capture this sub-RVE length
scale e�ect. Moreover, nonlocal action dominantly
occurs over ®nite sub-RVE length scales associat-
ed with defect clustering and nearest-neighbor in-
teractions. For these reasons, the focus here is on
constructing the structure of a nonlocal theory of
CDM based on multiple scales of heterogeneity up
to the order of the RVE dimension.

4.2. Characterization of mesostructural damage
distribution

Damage ISVs should be judiciously selected to
re¯ect the e�ects of mesoscale irreversible pro-
cesses on macroscale material behavior. The goal
in selection of a damage descriptor is to provide a
physically meaningful, yet simple, macroscopic

characterization of key mesoscale features of the
solid. Such a descriptor should retain the minimum
amount of information regarding the sub-RVE
damage distribution necessary to characterize the
problem and should, ideally, be amenable to direct
quanti®cation. Typical CDM approaches using
ISV representations of damage have been de®cient
in this regard with some exceptions. Boyd (1992)
retained a measure of mesoscale con®guration to
account for bending/extensional coupling within
an RVE associated with damage distribution and
Costanzo et al. (1996) used weighted shape func-
tions to characterize the damage distribution in
RVE subvolumes. In general, however, optimum
RVE subvolume averaging procedures for damage
evolution remain undeveloped.

Methods of spatial statistics (i.e., use of multi-
variate distribution functions) provide one possi-
ble framework for discriminating between di�erent
dispersions of damage entities within the RVE and
specifying a purely geometric characterization of
distribution e�ects (cf. Ripley, 1981; Stoyan et al.,
1987; Stoyan and Stoyan, 1994). Such a formula-
tion leads quite naturally to a purely geometric
estimate of the RVE dimension, LRVE, associated
with long range order of the mesoscale damage
distribution (cf. Pyrz, 1994). While such a char-
acterization would facilitate the description of the
alignment of crack-like features that lead to
shielding or enhancement e�ects (cf. Gokhale,
1996), determination of appropriate forms for
ISVs based upon such distribution functions re-
main undeveloped and no clear path is apparent.
For example, characterization of stress redistri-
bution with damage evolution is not directly re-
¯ected by evolving spatial statistics. For these
reasons, use of spatial statistics is not considered
as part this work in spite of the long range po-
tential associated with such an approach. As an
alternative, one may consider the use of mesoscale
gradients to characterize the sub-RVE damage
distribution.

4.2.1. Sub-RVE damage characterization using
mesoscale gradients

Assuming that the ISVs used to characterize
damage can be expressed as smoothly varying and
continuous functions of position within the RVE,
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the RVE-averaged damage variable, D, can be
expressed as a spatial average of the local (sub-
RVE) values of the damage parameter, i.e.,

D � 1

VRVE

Z
VRVE

D̂dVRVE; �10�

where D̂ is the local (sub-RVE) value of the
damage variable evaluated at a point, x̂, within the
RVE. For nonuniform damage distributions, the
local value of the damage parameter, D̂, will ¯uc-
tuate about the mean (RVE-averaged) value, D,
throughout the RVE. Variations in the meso-
structural distribution of damage entities will re-
sult in ®nite gradients in the local (sub-RVE)
damage ®eld, r̂D̂. Here the gradient operator, r̂,
involves spatial derivatives at the mesoscale, i.e.,

r̂ � o
ox̂1

î � o
ox̂2

ĵ � o
ox̂3

k̂; �11�

where î, ĵ, and k̂ are base vectors in the local (sub-
RVE) coordinate system. It is essential to recog-
nize that the gradient term in Eq. (9), rD, involves
spatial derivatives with respect to macroscale co-
ordinates (i.e., x1, x2, x3); hence, the quantities rD
and r̂D̂ involve fundamentally di�erent length
scales akin to the use of multiple scales in the
mathematical theory of homogenization of heter-
ogenous media (cf. Sanchez-Palencia and Zaoui,
1987). Furthermore, if the distribution of defects is
assumed to be random periodic, then there is no
net ¯ux of the mesoscale gradient of damage
across the RVE boundary, i.e.,Z

SRVE

r̂D̂ � n̂dSRVE � 0: �12�

Eq. (12) suggests that the nonlocal in¯uence of
mesoscale gradients manifests itself only within the
RVE in the random periodic case.

Knowledge of mesoscale spatial gradients in the
sub-RVE damage distribution may arguably be
used to distinguish between di�erent distributions
of defects with the same value of RVE-averaged
damage variable in Eq. (10). Andrieux et al. (1996)
proposed a general framework based upon ho-
mogenization theory (cf. Sanchez-Palencia and
Zaoui, 1987) for deriving constitutive equations at
the structure scale (L�LRVE) for so-called gener-

alized standard materials (Germain et al., 1983)
incorporating sub-RVE spatial gradients of ISVs.
Motivated by the work of Andrieux et al. (1996),
this e�ort attempts to use mesoscale gradients of
ISVs to characterize the damage entity distribution
within the RVE.

A measure of the mesostructural variability
within the RVE can be quanti®ed using the ab-
solute value of the mesoscale (sub-RVE) gradient
of damage averaged over the RVE, i.e.,

oD̂

ox̂i

�����
����� � 1

VRVE

Z
VRVE

oD̂

ox̂i

�����
�����dVRVE; i � 1; 2; 3; �13�

where an overbar is used to indicate the RVE-av-
erage of a mesoscale quantity, and it is understood
that the derivatives in Eq. (13) operate on all
components of the tensorial damage parameter D̂
(thus, the tensor r̂D̂ has a three-fold increase in
rank over that of D̂). The RVE-averaged meso-
scale gradient in Eq. (13) may be expressed in

compact form as r̂D̂, where

r̂D̂ � oD̂

ox̂1

�����
�����î � oD̂

ox̂2

�����
�����ĵ � oD̂

ox̂3

�����
�����k̂: �14�

4.3. ISVs based on mesoscale gradients of damage

4.3.1. Inclusion of higher-order ISVs in CDM
formulation

The number and type of ISVs that must be re-
tained in order to minimally characterize the
macroscopic response of damaged solids largely
depends on the problem to be solved. If the pri-
mary interest is determination of e�ective elastic
moduli, then use of a low-order damage variable,
D, may be suitable for this purpose. When con-
sidering both sti�ness reduction and damage evo-
lution, however, inclusion of higher-order ISVs
that retain information regarding the mesoscale
con®guration may be necessary, as suggested by
the numerical simulations summarized in the pre-
vious section. The mean mesoscale gradient of
damage in Eq. (14) provides one type of higher-
order continuum description of the sub-RVE
damage distribution. The components of r̂D̂ may
be used as additional ISVs to augment the
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components of the low-order damage variable, D,
in a higher-order CDM formulation. In such an
approach, the thermoelastic Helmholtz free energy
may be expressed in terms of both sets of ISVs, i.e.,

w � w�e; T ;D; r̂D̂�: �15�
Note that inclusion of the set �D; r̂D̂� in the

constitutive equation (15) that are dependent on
multiple varying spatial scales �x; x̂ � is a similar
construct to that used in homogenization theory
(cf. Sanchez-Palencia and Zaoui, 1987). With
higher-order representations of damage such as
Eq. (14), it is more likely that the theory will ex-
trapolate to conditions not analyzed using low-
order damage descriptors, such as evolution of
nonuniformly distributed interactive crack systems
with variable ¯aw size distributions. Moreover,
such higher-order descriptors may even be useful
in the presence of inelastic ¯ow, time dependent
deformation, or other deformation processes not
amenable to detailed micromechanical analyses.

The inclusion of ISVs characterizing the
mesoscale damage distribution complicates
the formulation, particularly considering that the
higher-order terms must be re-evaluated at every
increment of damage. The total number of state
variables may be reduced, however, if the mean
norm of the mesoscale gradient associated with a
given component of mesoscale damage is used as
an ISV rather than the vector components them-
selves. For example, if a second rank tensor is used
to characterize the damage distribution, the mean
norm of the mesoscale gradient associated with the
D22 component of damage is given by

kr̂D̂22k � 1

VRVE

Z
VRVE

r̂D̂22 � r̂D̂22

� �1=2

dVRVE

� r̂D̂22 � r̂D̂22

� �1=2

: �16�

Inclusion of mean mesoscale gradients as ad-
ditional ISVs does not greatly alter the CDM
formalism. The second law of thermodynamics for
the case of evolving brittle damage may be ex-
pressed in terms of both sets of ISVs, i.e.,

ÿq
ow
oD
� dDÿ qk

ow

o r̂D̂
� � � d r̂D̂

� �
P 0; �17�

where a dot (�) denotes the scalar product of two
tensors. The Lagrange multiplier, k, is necessary
because it cannot be a priori asserted that r̂D̂ is
independent of D. The second term in Eq. (17)
provides an estimate of the in¯uence of the me-
soscale damage con®guration (i.e., size, orienta-
tion, and spatial distribution of defects within the
RVE) on the total energy dissipated during dam-
age extension. While the total energy dissipated
during damage evolution must be non-negative,
the potential coupling between state variables ad-
mits the possibility that the second term in Eq. (17)
may be either positive or negative depending on
the in¯uence of mesoscale con®guration. The de-
pendence on damage gradients in the ®rst term in
Eq. (17) illustrates the in¯uence of mesoscale
con®guration on the energy release associated with
an increment of low-order damage variable, dD;
such dependence is essential to sort out di�erences
between very short and very long crack lengths in
a given distribution as well as the in¯uence of de-
fect interactions.

4.3.2. Practical considerations
The idealization of a smoothly varying and

continuous mesoscale damage ®eld, D̂, clearly
breaks down as one transitions between progres-
sively smaller spatial scales associated with the
macro-, meso-, and microscales, respectively. Once
the size of the heterogeneities at a given spatial
scale reaches a certain fraction of the observation
window size at that scale, then use of continuous
functions to represent material structure becomes
problematic. One may incorporate carefully cho-
sen smoothing functions (cf. Nemat-Nasser and
Hori, 1993) to locally smear out the e�ects of
discrete material structure at a given scale or use
basis functions (cf. Costanzo et al., 1996) to ap-
proximate the distribution of state variables within
observation window subvolumes. As an alterna-
tive to either of these two approaches, one may
characterize the sub-RVE damage distribution at a
point within the RVE by simply considering the
individual damage entities that fall within some
®nite RVE subvolume surrounding the point of
interest.

Fig. 8 shows a schematic of an RVE consisting
of a number of slit cracks in a two-dimensional
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solid. Consider a subvolume of material centered
about an arbitrary point �x̂1; x̂2� in the meso-
structure and having dimension, LSV, such that
LSV6 LRVE. A given mesoscale damage parameter,
D̂SV, may be evaluated at the point � x̂1; x̂2 � in the
RVE by averaging the e�ects of all the cracks that
fall within the RVE subvolume surrounding the
point (cf. Fig. 8), i.e.,

D̂SV � 1

VSV

Z
VSV

gD̂dVSV;

1

VSV

Z
VSV

gdVSV � 1; �18�

where VSV is the volume of material contained in
the RVE subvolume and g is a smoothing operator
introduced to account for discrete mesostructure.
The subvolume averaged quantity, D̂SV, re¯ects
local smearing of structure and, to ®rst order, may
be used to approximate the discrete function, D̂, at
point �x̂1; x̂2� in the mesostructure. Thus, the
variable D̂ will hereafter be used to denote D̂SV for
brevity. The subvolume centroid coordinates may
be translated by some di�erential distance
�dx̂1; dx̂2� and the subvolume averaged damage
parameter may be re-evaluated at the new sub-
volume location. This process may be repeated
until the value of the mesoscale damage parameter
is determined at a number of discrete points
spanning the RVE. Fig. 9 shows an M ´ M square

grid of points uniformly distributed throughout an
RVE comprised of a number of slit cracks in a
two-dimensional solid. Here the rows and columns
of grid points are oriented such that they are
parallel to the mesoscale coordinate axes, respec-
tively, and have spacing, LGRID. Once the value of
the mesoscale damage parameter, D̂, has been
determined at every grid point, the absolute value
of the components of the mesoscale damage gra-
dient, r̂D̂, at each grid point in the RVE may be
approximated using three-point formulas (cf.
Ho�man, 1992), i.e.,

oD̂�x̂1; x̂2�
ox̂1

�����
�����

� D̂�x̂1 � LGRID; x̂2� ÿ D̂�x̂1 ÿ LGRID; x̂2�
2LGRID

�����
�����;

oD̂�x̂1; x̂2�
ox̂2

�����
�����

� D̂�x̂1; x̂2 � LGRID� ÿ D̂�x̂1; x̂2 ÿ LGRID�
2LGRID

�����
�����:
�19�

If the components of the mesoscale damage
gradient evaluated at a point corresponding to the
jth row and kth column of grid points shown in
Fig. 9 can be represented as joD̂�j; k�=ox̂ij, then
the components of the RVE-averaged mesoscale

Fig. 9. Schematic of RVE and corresponding M ´ M grid of

points for use in calculating mesoscale damage variables and

mesoscale gradients.

Fig. 8. Schematic of RVE and corresponding RVE subvolume

for use in calculating mesoscale damage variables and meso-

scale gradients.
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gradient (14) for the two-dimensional case may be
expressed as

oD̂

ox̂i

�����
����� � 1

�M ÿ 1�2
XMÿ1

j�1

XMÿ1

k�1

oD̂�j; k�
ox̂i

�����
�����;

i � 1; 2: �20�
Here the range on the summation is Mÿ 1 be-

cause it is assumed that the distribution of defects
is random periodic.

It is important to recognize that the subvolume
averaged mesoscale damage variables are, by def-
inition, statistically inhomogeneous for LSV < LRVE

and strongly depend on the choice of subvolume
window size used for averaging. As the subvolume
size, LSV, approaches the RVE dimension, LRVE,
then D̂! D and r̂D̂! 0. Furthermore, if the
subvolume dimension is smaller than the charac-
teristic ¯aw size or minimum crack spacing, then
the calculated values of mesoscale damage and
damage gradients cease to represent averaging
over a meaningful length scale. The mesoscale
gradient is dependent on both the subvolume size,
LSV, and spacing between points used to evaluate
the spatial derivatives, LGRID. Minimally, the
subvolume dimension should be somewhat larger
than the grid spacing in order to ensure reasonably
smooth varying estimates of the mesoscale damage
and damage gradient distributions. This suggests
that the mesoscale averaging procedure may be
based on overlapping subvolumes (cf. Fig. 9).
Additionally, in order to minimize the calculation
of spurious gradients resulting from averaging
over subvolumes containing no damage entities,
use of a subvolume dimension greater than two
times the mean center-to-center distance between
cracks in a given distribution, 2dmean, may be de-
sirable; this suggests that on average each subvol-
ume will contain at least one crack. Ideally,
subvolume dimensions should be selected that al-
low for the calculation of meaningful gradients
and re¯ect averaging over appropriate ®nite zones
of nonlocal action within the RVE. In actual ma-
terials with microstructure, the optimum value of
the grid spacing, LGRID, used in the subvolume
averaging procedure could likely be de®ned in
terms of some characteristic microstructural di-
mension (average grain size, ®ber diameter, etc.)

while the subvolume dimension, LSV, could os-
tensibly be speci®ed in terms of an appropriate
measure of the relative distribution of crack center
coordinates within the RVE.

The mean mesoscale gradient in Eq. (20) pro-
vides an inherently nonlocal representation of the
sub-RVE damage distribution manifested in the
dependence of mesoscale gradients on the length
scales associated with subvolume averaging, i.e.,
LSV and LGRID. Noting that a number of subvol-
ume dimensions and grid spacings may be neces-
sary in order to re¯ect averaging over ®nite zones
of nonlocal action associated with ®rst, second,
etc., and nth nearest-neighbor crack interactions as
well as defect clustering within the RVE, it may be
argued that the nonlocal subvolume averaging
technique advanced here admits a multitude of
characteristic mesostructural lengths associated
with the nonlocal mesostructure. Distributions of
defects having multiple correlation lengths associ-
ated with defect clustering or variable size distri-
butions of defects within an RVE may require use
of variable subvolume dimensions in the sub-RVE
averaging process in order to adequately charac-
terize the mesoscale damage distribution, or per-
haps introduction of gradients computed at P
spatial scales, e.g., �r̂D̂��1�, �r̂D̂��2�; . . ., and
�r̂D̂��P� calculated based upon (L

�1�
SV, L

�1�
GRID), (L

�2�
SV,

L
�2�
GRID),. . ., and �L�P�SV ; L�P�GRID�, respectively. Prop-

erly chosen, values of LSV may conceivably repre-
sent ``cuto�''scales for the extent of nonlocal
action within the RVE associated with various
types of damage interactions. This is in contrast to
typical gradient approaches that generally involve
a single characteristic mesostructural length that
enters the macroscale constitutive equations and
implicitly assume an in®nite extent of at least weak
nonlocal action.

In this study, simulation of random-periodic
boundary conditions led to SH response functions
pertaining to sti�ness determination using RVEs
containing a relatively few number of cracks (e.g.,
N � 18). In order to fully assess the ability of the
mesoscale averaging principles outlined here to
distinguish between di�erent crack systems with
highly variable ¯aw size distributions and strong
defect clustering within the RVE, however, it is
desirable to consider RVEs containing signi®-
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cantly larger numbers of cracks. Practical consid-
erations dictate that such large scale numerical
simulations may be best performed using a boun-
dary element approach (cf. Brebbia et al., 1984),
hybrid approach (cf. Annigeri and Cleary, 1984),
robust singular integral technique (cf. Binienda
et al., 1993), or other similar strategy that does not
require the extensive remeshing associated with use
of the ®nite element method to model distributed
damage evolution. Use of two-point statistics (cf.
Stoyan and Stoyan, 1994) to characterize the oc-
currence intensity of inter-entity distances may
provide an ideal framework for assessing appro-
priate length scales for subvolume averaging. In
addition, investigation of various nonlocal weight
functions (cf. Bazant, 1994) for use in the subvol-
ume averaging procedure may be warranted.
These types of issues must be addressed in order to
fully establish the mesoscale averaging principles
outlined here.

4.4. Numerical evaluation of RVE-averaged meso-
scale gradients

4.4.1. Determination of appropriate length scales for
subvolume averaging

For the idealized perfectly brittle material con-
sidered in this study, no characteristic material
dimension exists on which to base the grid spacing
used in the subvolume averaging procedure.
Hence, the only length scales on which to de®ne
LGRID and LSV are those associated with the crack
distribution itself (normalized average crack size,
aave/LRVE, mean center-to-center crack spacing,
dmean/LRVE, and minimum tip-to-tip distance be-
tween cracks, dmin/LRVE, etc.). The mean crack
spacing in a given distribution, to ®rst order, may
be estimated from the RVE dimension and total
number of cracks, N, contained within the RVE,
i.e.,

dmean=LRVE � Nÿ1=2: �21�

While the approximation in Eq. (21) assumes a
uniform distribution of cracks within the RVE,
such a construct may prove useful in comparing
various subvolume dimensions used in the calcu-
lation of mesoscale quantities.

Parametric studies were performed to determine
the e�ect of various values of LSV and LGRID on the
calculated mesoscale damage and damage gradient
distributions, respectively, within an RVE corre-
sponding to the initial damage state associated
with random con®guration (R1) (cf. Fig. 3(a)). The
magnitude of the ¯uctuations as well as the peak
values in both the mesoscale damage and damage
gradient distributions generally increased with
decreasing grid spacing, LGRID, and/or decreasing
subvolume dimension, LSV. A damage parameter
based on the scalar crack density was used to
characterize the RVE-averaged damage distribu-
tion, i.e.,

Dq � 1

A

XN

k�1

a2
k : �22�

A mesoscale damage variable analogous to Eq.
(22) was used to characterize the sub-RVE damage
distribution, i.e.,

D̂q � 1

ASV

XN

k�1

fka2
k ; �23�

where ASV� L2
SV is the averaging area in the RVE

subvolume, and fk is the fraction of the kth crack
falling within a given subvolume. The absolute
value of the mesoscale damage gradient, joD̂q=ox̂ij,
may be determined using Eqs. (23) and (19). For
the two-dimensional case, the ith component of
the mesoscale damage gradient vector may be ex-
pressed using shorthand notation as jD̂q;x̂i j, where
it is understood that the comma notation implies
di�erentiation with respect to the variable that
follows it, i.e.,

D̂q; x̂i

��� ��� � oD̂q

ox̂i

�����
�����: �24�

For illustration purposes, Fig. 10 shows a three-
dimensional mesh plot of the normalized sub-RVE
damage distribution, D̂q=Dq, and normalized x̂1-
component of mesoscale damage gradient,
jD̂q;x̂1

j=Dq, as a function of normalized position,
x̂=LRVE, within an RVE corresponding to the initial
damage state associated with random con®gura-
tion (R1). The mesoscale damage and damage
gradient distributions shown in the ®gure were
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calculated using a subvolume dimension, LSV �
2dmean, and grid spacing, LGRID � dmin. Based upon
the results of the parametric study, these values
may serve to characterize the e�ects of ®rst nearest-
neighbor crack interactions using mesoscale dam-
age gradients. Note that LSV � 2dmean arguably
re¯ects, in an average sense, the zone of nonlocal
action associated with ®rst nearest-neighbor crack
interactions in a given distribution. For these
reasons, a subvolume dimension, LSV=LRVE �
1=2 �� 2dmean=LRVE�, and grid spacing, LGRID=LRVE

� 1=16 �� dmin�, were used to characterize the

mean subvolume gradients for all the random and
random-parallel crack distributions used in the
numerical simulations of damage evolution.

Such a selection of the length scales for sub-
volume averaging is likely suitable for the perfectly
random distributions of cracks considered in this
study. If the distribution of crack centers in a given
damage distribution is correlated, however, use of
a subvolume dimension based on the approxima-
tion in Eq. (21) may be inappropriate. In the latter
case, a subvolume dimension based on a more
precise de®nition of mean crack spacing is likely
more suitable.

4.4.2. Determination of mean mesoscale gradients
for evolving crack systems

In order to calculate the evolving mean meso-
scale gradient for each of the random-periodic
crack distributions considered in this study, it was
necessary to de®ne mesoscale damage variables
corresponding to Eqs. (3), (5), and (7), respectively:

(i) A scalar mesoscale damage variable based on
the degraded elastic sti�ness of the RVE subvol-
ume corresponding to Eq. (3), i.e.,

D̂DE � E0 ÿ Ê2

E0

� DÊ
E0

; �25�

where Ê2 is the magnitude of the reduced YoungÕs
modulus in the direction of the applied loading
averaged over the RVE subvolume. Note that Eq.
(25) usually requires that computational micro-
mechanics be used in order to estimate the meso-
scale sti�ness reduction associated with a given
subvolume damage distribution. For this reason,
calculation of mesoscale gradients based upon the
degradation of sub-RVE elastic moduli, D̂DE, was
not considered as part of this study.

(ii) A mesoscale crack density tensor based
upon the fraction of the total number of micro-
cracks contained within a given RVE subvolume
corresponding to Eq. (5), i.e.,

D̂ij � 1

ASV

XN

k�1

fk a2
k nk

i nk
j : �26�

For the two-dimensional case, Eqs. (19) and
(20) and a relation similar to Eq. (16) may be used
to calculate the vector components and norm,

Fig. 10. (a) Mesoscale damage and (b) mesoscale damage

gradient distributions based upon LGRID=LRVE � 1=16 and

LSV=LRVE � 1=2.
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respectively, of the mean mesoscale gradient as-
sociated with each element of Eq. (26).

(iii) A scalar mesoscale damage parameter
based upon the total surface area of microcracks
contained within a given RVE subvolume analo-
gous to Eq. (7), i.e.,

D̂A � 1

ASV

XN

k�1

fkak: �27�

Again, Eqs. (19) and (20) and a relation similar
to Eq. (16) may be used to calculate the vector
components and norm, respectively, of the mean
mesoscale gradient associated with Eq. (27).

The latter two mesoscale damage variables in
Eqs. (26) and (27) may be evaluated from a
knowledge of the crack array geometry.

Mean mesoscale gradients were calculated for
each of the stable damage states associated with all
of the random-periodic crack distributions (cf.
Figs. 3 and 4) used in the numerical simulations of
damage evolution. Using Eqs. (26) and (27) to
describe the sub-RVE damage distribution, each of
the Figs. 11±14 contain plots of the vector com-
ponents and norm associated with the mean
mesoscale gradients of the sub-RVE damage distri-
bution as a function of corresponding elements of
macroscale (RVE-averaged) damage parameters
(Eqs. (5) and (7)) for the given crack con®gura-
tions. A comparison of these ®gures reveals that
the essential character of the mean mesoscale
gradient versus macroscale damage relationship
(i.e., distinct initial values of the components of the
gradient and the trajectory of evolution) is pre-
served if the mean norm of the mesoscale damage
gradient is used to describe the sub-RVE damage
distribution. Again, an advantage of using the
norm of the mesoscale gradient to characterize
the ¯uctuation in the sub-RVE damage distribu-
tion is that the total number of higher-order ISVs
is reduced and the explicit dependence of the high-
er-order ISVs on the choice of mesoscale coordi-
nate system, x̂, is eliminated. Hence, it appears
desirable to de®ne higher-order damage ISVs based
upon the mean norm of the mesoscale gradients
rather than the vector components themselves.

Using the mesoscale crack density tensor (26) to
depict the sub-RVE damage distribution, Figs.

11(a)±(c) show the vector components and norm,
respectively, associated with the mean meso-
scale gradient, rD̂22, as a function of the macro-
scale (RVE-averaged) component of crack density
tensor, D22, for all the random-periodic crack dis-
tributions considered in this study. Figs. 11(a)±(c)
indicate that the vector components and norm,
respectively, of the mean mesoscale gradient, rD̂22,
are generally increasing functions of the macroscale
damage parameter, D22, for each crack con®gura-
tion. Note that the initial value of the vector com-
ponents and norm of the damage gradients and the
evolution of the gradient terms are distinct for each
of the random-periodic crack distributions. This
suggests that mean mesoscale gradients may be used
to distinguish between di�erent damage con®gura-
tions that have the same value of macroscale (RVE-
averaged) damage parameter, D22. In addition, Fig.
11(c) indicates that the norm of the mean mesoscale
gradient, kr̂D̂22k, is a fairly linear function of the
macroscale damage parameter, D22, for each of the
random-periodic crack distributions. Note that the
rate of change in the norm of the mean mesoscale
gradient with increasing low-order damage is
nearly constant for each of the random-periodic
crack distributions shown in Fig. 11(c). These key
features may prove useful in formulating evolution
equations for higher-order ISVs that are based the
mean mesoscale gradients of damage.

Figs. 12 and 13 show the vector components
and norm of the mean mesoscale gradient associ-
ated with the macroscale (RVE-averaged) com-
ponents of the crack density tensor, D11 and D12,
respectively. Note that the macroscale damage
parameter and corresponding components of the
mean mesoscale gradient associated with the ma-
jority of the random-periodic crack distributions
do not evolve appreciably from their initial values
(D11 and D12 are essentially nonevolving compo-
nents of the RVE-averaged crack density tensor
for these cases). The component of the macroscale
damage variable, D12, and corresponding meso-
scale damage gradients associated with random
con®gurations (R1) and (R3), however, do evolve
slightly from their initial values (Fig. 13). The
variations in the calculated values of D12 and rD̂12

are likely an artifact of the way the components
of the macroscale and mesoscale crack density
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tensors are calculated (i.e., kinked cracks are ap-
proximated by slit cracks with identical crack tip
coordinates); close inspection of the ®nal damage
states shown in Figs. 3(a) and (c) indicate that
damage extension is basically normal to the di-
rection of applied loading for each case.

Using the scalar mesoscale damage variable
based on the total surface area of cracks (27) to
depict the sub-RVE damage distribution, Figs.
14(a)±(c) show the vector components and norm
associated with the mean mesoscale gradient,
rD̂A, as a function of the corresponding macro-

Fig. 11. (a) x̂1- and (b) x̂2-components of the mean mesoscale damage gradient; (c) mean norm of the mesoscale damage gradient

�LGRID=LRVE � 1=16; LSV=LRVE � 1=2�.
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scale (RVE-averaged) damage parameter, DA, for
all of the considered random-periodic crack dis-
tributions. Similar to the previous case, the mean
norm of the mesoscale gradient, kr̂D̂Ak, is a
fairly linear function of the macroscale damage
variable, DA, for each of the random-periodic

crack distributions. Hence, it appears that, for the
random-periodic crack con®gurations and meso-
scale damage variables under consideration, use
of the mean norm of the mesoscale gradient to
characterize the sub-RVE damage distribution
tends to smooth out any non-linear dependence

Fig. 12. (a) x̂1- and (b) x̂2-components of the mean mesoscale damage gradient; (c) mean norm of the mesoscale damage gradient

�LGRID=LRVE � 1=16; LSV=LRVE � 1=2�.
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of the individual components of the mesoscale
gradients on the macroscale damage parameter
(cf. Figs. 11 and 14). Similar to the results shown
in Fig. 11, the initial value of kr̂D̂Ak is distinct
for each of the random-periodic crack distribu-
tions (cf. Fig. 14(c)).

4.4.3. Key observations based upon mesoscale gra-
dient calculations

The preceding numerical analyses indicate that
the mean norm of the mesoscale gradient of damage
predicated on an overlapping subvolume averaging
technique may be used to distinguish between dif-

Fig. 13. (a) x̂1- and (b) x̂2-components of the mean mesoscale damage gradient; (c) mean norm of the mesoscale damage gradient

�LGRID=LRVE � 1=16; LSV=LRVE � 1=2�.
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ferent distributions of defects with the same value of
low-order RVE-averaged damage parameter. For
the considered random periodic crack distributions,
the relationships between the higher-order damage
descriptors (i.e., mean norm of the mesoscale gra-
dient, kr̂ D̂22k and kr̂ D̂Ak) and corresponding

low-order damage variables (D22 and DA, respec-
tively) are, to ®rst order, fairly linear throughout
the entire range of damage evolution (Figs. 11(c),
14(c)). Thus, the evolution of the higher-order
ISVs depends only on the initial conditions of the
mesoscale damage distribution. Of course, it may

Fig. 14. (a) x̂1- and (b) x̂2-components of the mean mesoscale damage gradient based on total surface area; (c) mean norm of the

mesoscale damage gradient �LGRID=LRVE � 1=16; LSV=LRVE � 1=2�.
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only be adopted as an hypothesis at this stage,
based on limited results. If a second rank tensor is
used to characterize the state of damage in a ma-
terial, then the relationship between the D22 com-
ponent of the higher-order ISV associated with
mesoscale con®guration and the corresponding
component of the RVE-averaged damage variable
may be approximated as

kr̂D̂22k � a0 � a1 � D22; �28�
where a0 de®nes the initial damage state
( kr̂D̂22kinit, (D22)init) of the material and a1 is the
slope of the line de®ning the kr̂D̂22k versus D22

relationship. The evolution equation for the
higher-order ISV may be expressed in terms of the
low-order ISV simply as

kr̂D̂22k
�

� a1 � _D2: �29�
This preliminary yet promising development

may facilitate the inclusion of higher-order ISVs in
a CDM formulation and provides some evidence
that CDM may be extended to the statistically
inhomogenoeus case involving interactive damage.

Several subtle results from the numerical sim-
ulations suggest that incorporation of higher-or-
der ISVs based on the overlapping subvolume
averaging technique may eventually provide a
framework for addressing the statistical inhomo-
geneity of the RVE-averaged ERR associated with
distributions of cracks with variable size distribu-
tions. If the macroscale and mesoscale crack
density tensors in Eqs. (5) and (26) are used to
characterize the state of damage in a material, it
appears that the initial value of the mean norm of
the mesoscale gradient is sensitive to the size
of defects in a given distribution. Consideration of
the initial values of the mean mesoscale gradients
shown in Fig. 11(c) indicates that the random-
periodic distribution with the smallest initial
characteristic ¯aw size (R4) also had minimum
initial value of kr̂D̂22k. Furthermore, the random-
periodic con®gurations with the largest charac-
teristic ¯aw sizes (P3, P4) had the largest initial
values of kr̂D̂22k. Noting that the initial values of
both the RVE-averaged ERR and the higher-or-
der ISVs are inversely proportional to the char-
acteristic ¯aw size in a given distribution (cf. Lacy

et al., 1997a,b; as well as Figs. 5(b), 6(b), and 11),
it is conceivable that the inclusion of higher-order
ISVs in a CDM formulation may be used to sort
out the di�erences in the RVE-averaged ERR as-
sociated with evolution of crack distributions with
fundamentally di�erent ¯aw sizes. It should be
emphasized, however, that the aforementioned
¯aw size dependence manifests itself only when the
macroscale and mesoscale crack density tensors in
Eqs. (5) and (26) are used to characterize the
damage state of the material; Fig. 14(c) shows that
the initial value of the mean norm of the meso-
scale gradient based on the total surface area of
cracks, kr̂D̂Ak, demonstrates no apparent ¯aw
size dependence. Thus, D̂A likely represents a poor
choice of mesoscale damage parameter. By impli-
cation, porosity may also be inferior to other
damage descriptors that appreciate the void size
distribution at the mesoscale.

Recall that the numerical simulations of dam-
age evolution were terminated when crack coal-
escence was imminent. While prediction of
damage coalescence/localization at the mesoscale
is highly desirable, it is not obvious that such
events can be discerned from consideration of
mean mesoscale gradients (cf. the ®nal damage
states associated with each of the curves shown in
Fig. 11). This information may not manifest itself
in the extreme values of the mesoscale gradients
within the RVE �r̂D̂extreme� either, since there
appears to be essentially no correlation between
the minimum distance between ¯aws, dmin, and
crack extension (cf. Fig. 15). An investigation of
various mesoscale coalescence criteria based upon
critical values of D̂ is likely warranted to address
this issue; such an evaluation is not considered as
part of this work. Note that as cracks evolve to-
ward coalescence, the minimum distance between
¯aws will decrease with increasing low-order
damage (there will also be a step discontinuity in
the dmin versus D curve at the instant of crack
coalescence). This may require rede®nition of
LGRID in order to capture coalescence events
using mesoscale gradients of damage.

While the selected values of the averaging pa-
rameters LGRID and LSV were predicated on the
assumption that the calculated gradients would
re¯ect averaging over the zone of nonlocal action
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associated with ®rst nearest-neighbor crack inter-
actions, an exhaustive study of the e�ect of various
choices of these parameters on the calculated val-
ues of the mesoscale gradients remains to be per-
formed. Using a subvolume grid spacing,
LGRID=LRVE � 0:0625, and corresponding subvol-
ume sizes, LSV=LRVE � 0.3, 0.5, and 0.7, respec-
tively, Figs. 16(a)±(c) show the e�ect of various
subvolume dimensions on the calculated values of
the higher-order state variable, kr̂D̂22k, as a
function of low-order damage, D22. Consistent
with earlier observations, increasing the subvol-
ume dimension used in the averaging process
generally lowers the magnitude of the mean
mesoscale gradients. It is important to recog-
nize, however, that the relative positions of the

kr̂D̂22k versus D22 curves associated with di�erent
random-periodic crack arrays may change when
the subvolume dimension is altered.

4.5. Horizons: development of a multi-scale nonlocal
continuum theory

Arguably, the problem of stable microcrack
evolution in initially isotropic brittle solids exam-
ined in this study may best be addressed using
micromechanics. When other types of damage are
considered in heterogeneous materials, however,
micromechanical solutions become less tractable.
In principle, the concepts outlined here may be

readily applied to multi-phase materials with a
wide array of damage mechanisms and may also
be used to characterize the sub-RVE distribution
of stationary (nonevolving) mesostructure; such
information may prove useful in describing the
distribution of potential damage nucleation sites
within the RVE or when including toughening
e�ects associated the presence of inclusions, ®bers,
or other second phase particles. In addition, it may
be possible to experimentally quantify the initial
damage states and subsequent damage evolution
in various materials using high-resolution micros-
copy and standard stereological methods (cf. Un-
derwood, 1970; Weibel, 1979).

The thermomechanical response of a damaged
solid at a given spatial scale arguably may depend
on deformation mechanisms that are manifested at
that scale as well as a number of successively smaller
spatial scales. The central focus of this work has
been to develop the structure of a gradient theory of
CDM based on multiple scales of heterogeneity up
to the order of the RVE dimension. In the current
formulation, inclusion of damage gradients de®ned
at a given spatial scale arguably may be used to
account for nonlocal in¯uences at that scale; such
gradients, in general, do not explicitly provide any
information regarding nonlocal in¯uences or
damage localization manifested at a higher length
scale. Thus, the e�ect of mesoscale damage gradi-
ents on nonlocal continuum behavior and damage
localization at the macroscale is unclear.

Fig. 15. Minimum nearest-neighbor distance between adjacent ¯aws for the random-periodic crack distributions used in numerical

simulations.
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The inclusion of mesoscale gradients (or other
ISVs predicated on the higher-order moments of
the sub-RVE damage distribution) into a CDM
formulation potentially allows for treatment of
the statistical inhomogeneity of evolution associ-
ated with use of certain common damage vari-

ables; it is noted that macroscopic gradients are
also evident in many practical applications. It is
conceivable that nonlocal e�ects and/or damage
localization may occur simultaneously at a num-
ber of di�erent spatial scales. Thus, it may be
desirable to establish a strategy for addressing

Fig. 16. Mean norm of the mesoscale damage gradient for LGRID=LRVE � 1=16. and (a) LSV=LRVE � 0:3, (b) LSV=LRVE � 0:5, and (c)

LSV=LRVE � 0:7.
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nonlocal continuum behavior at multiple scales
within the framework of CDM using ISVs. In
general, this may involve the inclusion of ISVs
averaged over various spatial scales into the
Helmholtz free energy, i.e.,

w � w�e; T ;D;rD; r̂D̂�: �30�

Dependence on the gradient terms rD and r̂D̂
is introduced, for illustration purposes, to ac-
count for nonlocal in¯uences associated with
nonuniformity in the damage distribution at the
macroscale and mesoscale, respectively. The
presence of a homogeneous damage ®eld at a
given spatial scale does not necessarily preclude
nonlocal in¯uences manifested at a fundamentally
di�erent length scale. Note that the assumption of
random-periodic boundary conditions in this
work ensured that there was no net ¯ux of the
mesoscale gradient across the RVE boundary;
such a constraint would e�ectively prevent cou-
pling between rD and r̂D̂. For su�ciently large
ratio of LRVE to LSV (e.g., LSV ± extent of non-
local action), it is likely that the net ¯ux of r̂D̂
across the RVE boundary is suitably small to
ignore. If it turns out that the adoption of mac-
roscale gradients is meaningful (i.e., nonlocal ac-
tion can occur at or in excess of the scale LRVE),
then they may be introduced as in other current
theories (cf. Markov, 1995; Fremond and Nedjar,
1996) as evidenced in Eq. (30). Such an approach
employing macroscale gradients leads to compli-
cations related to their extent of interaction; in-
deed, boundary conditions become an issue in
this case. Clearly, employment of macroscale
gradients must be subject to their scale of non-
local action relative to mesostructure. The au-
thors leave open the possibility that the physical
basis for introduction of macroscale gradients
(without introducing the distinct notions of
strong interaction length scales, statistical homo-
geneity, or cuto� radii) is relatively undeveloped.
In addition, it is not obvious that higher-order
state variables averaged over di�erent spatial
scales should be independent. Further study is
necessary in order to determine the role of non-
local in¯uences at the micro- and mesoscales on
eventual damage localization at the macroscale.

5. Summary

Key issues pertaining to the development of
viable damage evolution equations using a CDM
approach employing low-order ISVs that can be
expressed either in terms of macroscopically mea-
surable quantities or through a spatial average of
the geometric features of individual damage enti-
ties have been addressed. Implementation of either
type of ISV e�ectively ``smears out'' the e�ect of
variations in the mesostructure within the RVE;
such variations play a crucial role in damage
evolution and, in general, cannot be ignored. Nu-
merical simulations of evolving random-periodic
crack systems in two-dimensional perfectly brittle
solids indicate that low-order damage models are
inadequate in characterizing the e�ective moduli
and damage evolution in brittle microcracked
solids when the damage consists of cracks of
variable size and/or spatial distributions. Statisti-
cal inhomogeneity of sti�ness related response
functions may arise for these crack systems when
damage interactions become signi®cant.

While a low-order CDM approach may allow
for reasonably reliable estimates of elastic moduli
for randomly distributed crack systems with fairly
substantial crack densities, the domain of validity
of such an approach to characterize damage evo-
lution is suspect. The existence of an observation
volume which is associated with SH response
functions for damage evolution is by no means
assured for a given selection of damage parameter.
Use of certain low-order damage variables leads to
response functions related to evolution that have
an intrinsic ¯aw size dependence. Hence, damage
evolution in this case is an inherently statistically
inhomogeneous process. Application of CDM to
the statistically inhomogeneous case is problem-
atic, but may minimally require the introduction of
additional ISVs that account for the e�ect of the
sub-RVE damage con®guration on the macroscale
response.

An argument for implementing ISVs based on
higher-order moments of the damage distribution
within the RVE used for sti�ness determination
has been presented. A form for higher-order ISVs
based upon the gradient of the mesoscale damage
distribution has been proposed. An approximate
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method has been suggested for calculating the
mean gradient of the mesoscale damage distribu-
tion using an overlapping RVE subvolume aver-
aging procedure involving two nonlocal length
scales corresponding to the subvolume dimension
and grid spacing, respectively, used in the averag-
ing process. While the selection of optimum length
scales for mesoscale averaging requires further
study, it seems reasonable that such dimensions
should be predicated on key features of the crack
array geometry (minimum tip-to-tip distance,
mean crack spacing, etc.), characteristic material
dimensions (mean grain size, ®ber diameter, etc.),
or other lengths linked to the extent of nonlocal
in¯uence within the mesostructure.

The introduction of the mesoscale gradient
concept in this work suggests (at least) two
important length scales: (i) a subvolume scale
associated with strong nearest and second nearest-
neighbor interactions of highly nonlocal character,
and (ii) the RVE scale of su�cient size to warrant
(in some cases) SH properties or evolution of
properties within. Through the introduction of
these two scales and the notion of RVE-averaged
mean mesoscale gradient of damage, a ``cuto�''
scale for the extent of nonlocal action (�LSV) is
e�ectively introduced by adopting a local formu-
lation at the RVE scale.

The higher-order state variables were calculated
for every stable damage state associated with each
of the random-periodic crack con®gurations con-
sidered in this study. In each case, the higher-order
ISVs were distinct functions of corresponding low-
order damage ISVs. Hence, the higher-order ISVs
were able to distinguish between di�erent meso-
scale damage con®gurations leading to the same
value of low-order damage parameter. Further-
more, the mean norm of the mesoscale gradient of
damage for the cases considered was a reasonably
linear function of the corresponding low-order
damage variable. This potentially allows for the
formulation of fairly elementary evolution equa-
tions for the higher-order ISVs. While still pre-
liminary and requiring further development, use of
higher-order ISVs based on the mesoscale gradi-
ents of damage may provide a framework for ex-
tending CDM to the statistically inhomogeneous
case involving interactive damage.
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