

Available online at www.sciencedirect.com

applied surface science

Applied Surface Science 253 (2007) 4390-4395

www.elsevier.com/locate/apsusc

Study on the mechanisms of photoinduced carriers separation and recombination for Fe^{3+} –TiO₂ photocatalysts

Baifu Xin^{a,b}, Zhiyu Ren^a, Peng Wang^b, Jia Liu^a, Liqiang Jing^a, Honggang Fu^{a,*}

^a School of Chemistry and Materials Science, Heilongjiang University, Xue Fu Road No.74, Nan-gang, Harbin 150080, PR China ^b School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China

> Received 6 October 2005; received in revised form 14 May 2006; accepted 25 September 2006 Available online 25 October 2006

Abstract

The iron(III)-ion doped TiO₂ (Fe³⁺–TiO₂) with different doping Fe³⁺ content were prepared via a sol–gel method. The as-prepared Fe³⁺–TiO₂ nanoparticles were investigated by means of surface photovoltage spectroscopy (SPS), field-induced surface photovoltage spectroscopy (FISPS), and the photoelectrochemical properties of Fe³⁺–TiO₂ catalysts with different Fe³⁺ content are performed by electrical impedance spectroscopy (EIS) as well as photocatalytic degradation of RhB are studied under illuminating. Based on the experiment results, the mechanism of photoinduced carriers separation and recombination of Fe³⁺–TiO₂ was revealed: that is, the Fe³⁺ captures the photoinduced electrons, inhibiting the recombination of photoinduced electron–hole pairs, this favors to the photocatalytic reaction at low doping concentration (Fe/Ti $\leq 0.03 \text{ mol}\%$); while Fe³⁺ dopant content exceeds 0.03 mol%, Fe₂O₃ became the recombination centers of photoinduced electrons and holes because of that the interaction of Fe₂O₃ with TiO₂ leads to that the photoinduced electrons and holes of TiO₂ transfer to Fe₂O₃ and recombine quickly, which is unfavorable to the photocatalytic reaction.

© 2006 Elsevier B.V. All rights reserved.

PACS: 73.50.Pz; 73.90.+f; 84.37.+q

Keywords: Fe³⁺ doped TiO₂; Photocatalysis; Photoinduced carrier characteristics

1. Introduction

Titanium dioxide is broadly used as a photocatalyst because it is photochemically stable, non-toxic and cost little [1–5]. However, the efficiency of photocatalytic reactions is limited by the high recombination rate of photoinduced electron–hole pairs formed in photocatalytic processes and by the absorption capability for visible light of photocatalysts. Many studies have been devoted to the improvement of photocatalytic efficiency of TiO₂, such as depositing noble metals [6–14] and doping metal or non-metal ions [15–22]. In particular, Fe³⁺–TiO₂ has been the topic of many investigation including preparation, characterization, dynamics of charge transfer, trapping and recombination, and photocatalytic behavior, etc. [23–35]. In these studies, however, the recombination mechanism of photoinduced carriers of Fe³⁺–TiO₂ has not been distinct.

0169-4332/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.apsusc.2006.09.049

All reports referring to the recombination mechanisms are devoid of sufficient experimental evidence.

The surface photovoltage (SPV) method is a wellestablished contactless technique for the characterization of semiconductors, which relies on analyzing photoinduced changes in the surface voltage [36,37]. Signal of SPS is variational value of surface voltage before and after illumination during the test. It is a powerful tool for semiconductor surface characterization. It can offer important information about semiconductor surface, interface and bulk properties, including: surface band bending; surface and bulk carrier recombination: surface state distribution, etc., mainly reflecting the carrier separation and transfer behavior with the aid of light [36], especially when the SPS technique is combined with the electric field-modified technique [38]. The sensitivity of this method is about $10^8 q/cm^2$, or about one elementary charge per 10^7 surface atoms [39]. It is obvious that SPS is more sensitive than X-ray photoelectron or Auger spectroscopy, which makes its scope of applications wider [40].

^{*} Corresponding author. Tel.: +86 451 86608458; fax: +86 451 86673647. *E-mail address:* fuhg@vip.sina.com (H. Fu).

Electrochemical impedance spectroscopy (EIS) is a very important technology for studying the mechanism and kinetics of complicated electrode reaction. EIS data is generally analyzed in terms of an equivalent circuit model. By fitting of this impedance spectrum to a model or an equivalent electrical circuit, we can obtain some information about electrochemical properties of TiO_2 catalysts.

In this work, TiO₂ photocatalysts with different doping Fe³⁺ content were prepared by the sol–gel method. The mechanisms of photoinduced carriers separation and recombination of Fe³⁺– TiO₂ were investigated by means of SPS, FISPS and EIS.

2. Experimental

2.1. The preparation of Fe^{3+} -TiO₂ nanoparticles and electrodes

Specimens of Fe³⁺–TiO₂ containing different amounts of Fe³⁺ were prepared by sol–gel method. 7.6 mL of Ti(OBu_{*t*})₄ was dissolved in 5.5 mL of CH₃OH containing different amount of Fe(NO₃)₃·9H₂O under vigorous stirring. In order to control the hydrolyzation, 3 mL of CH₃COOH was added to the solution before suitable amount of water (2 mL) was added to it. The resulting transparent colloidal liquid was continuously stirred till the gel was formed. The gel was dried at 100 °C for 6 h, calcined at 400 °C for 2 h in air and ground to obtain the Fe³⁺–TiO₂ nanoparticles. The Fe³⁺ concentrations in the samples were 0, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5 mol%, respectively.

The organic pastes of Fe^{3+} -TiO₂ are prepared as follow steps: 0.01 mL of acetylacetone, 0.05 mL of 10 wt% OP-10 and 1 mL of 20 wt% PEG-20 M are added to 4 mL of deionized water, then the above mixture solution are added to 1 g asprepared Fe^{3+} -TiO₂ nanoparticles in an agate mortar while grinding with an agate pestle. The electrodes of Fe^{3+} -TiO₂ are prepared by spreading above paste of Fe^{3+} -TiO₂ on the ITO glass (<15 Ω /square) by means of a doctor-blade method reported by Smestad and Gratzel [41]. After sintering at 450 °C in air for 30 min, the electrodes of Fe^{3+} -TiO₂ with different Fe^{3+} content can be obtained.

2.2. Characterization of samples

TiO₂ and Fe³⁺–TiO₂ powders were examined by Raman spectra of Renishaw RM1000 excited at 514.5 nm. XPS spectra was recorded with an Escalab MK II (VG Company, UK). All binding energies (BE) were calibrated by the BE (284.6 eV) of C1s, which gave BE values within an accuracy of ± 0.1 eV. Energy dispersive X-ray spectroscopy (EDS) was recorded on a KYKY2000 SEM. The SPS instrument was assembled at Jilin University, monochromatic light was obtained by passing light from a 500 W xenon lamp (CHF-XQ500W, China) through a double-prism monochromator (SBP300, China). The slit widths of entrance and exit were 2 and 1 mm, respectively. A lock-in amplifier (SR830, USA), synchronized with a light chopper (SR540, USA), was employed to amplify the photovoltage signal. The powder sample is sandwiched between two ITO glass electrodes.

The EIS test are performed in a three-electrode system, in which Fe^{3+} -TiO₂/ITO electrodes with different Fe^{3+} content act as the working electrode (area 1.2 cm^2), Saturated calomel electrode (SCE) and platinum sheet (area 2 cm^2) are used as the reference electrode and the auxiliary electrode, respectively. A 160 W high-pressure mercury lamp is used as the light source, illumination being from the TiO₂ side. An IM6e impedance analyzer (ZAHNER-electrik) is used to perform the EIS test. The frequencies for EIS measurement are scanned from 10^5 to 0.1 Hz using a perturbation of 50 mV over the open circuit potential and without any applied dc voltage. The experimental data are analyzed using the IM6e system software. The solution used for EIS test is 10 mg/L RhB with 500 mg/L KCl. The pH of test solution is 6.

2.3. Evaluation of photocatalytic activity of Fe^{3+} -TiO₂

The photocatalytic degradation of RhB over Fe^{3+} -TiO₂ was carried out in an home-built reactor. A 160 W high-pressure mercury lamp was used as light source, whose intensity was 17.1 mW/cm². In each run 0.15 g Fe³⁺-TiO₂ catalyst was added into 20 mL RhB solution of 10 mg/L. After premixing for 20 min, the light was turned on to initiate the reaction. A HITACHI U-2000 UV-vis spectrometer was used to determine the concentration of RhB solution before and after photocatalytic degradation.

3. Results and discussion

3.1. Characterization of Fe^{3+} -TiO₂

The Raman spectrum for TiO₂ and the 5 mol% Fe^{3+} -TiO₂ (Fig. 1) show peaks at 144, 397, 516 and 639 cm⁻¹. The bands at 639 cm⁻¹ and about 144 cm⁻¹ are assigned to the E_g modes and the band at 397 cm⁻¹ to the B_{1g} mode of TiO₂ anatase. The band at 516 cm⁻¹ is a doublet of A_{1g} and B_{1g} [42]. There are no peaks that indicate the presence of Fe₂O₃ within the limit of detection after iron ion doping. However, the EDS spectra of the 5 mol% Fe-TiO₂ sample (Fig. 2) shows that there is iron

Fig. 1. Raman spectra of TiO_2 and the 5 mol% Fe^{3+} - TiO_2 samples.

Table 1 Raman shift and FWHM of TiO_2 and the 5 mol% Fe^{3+} - TiO_2 samples

TiO ₂				
Raman shift (cm ⁻¹)	144.2	397.4	515.5	639.1
FWHM (cm^{-1})	12.1	24.6	22.4	27.8
5 mol% Fe ³⁺ -TiO ₂				
Raman shift (cm ⁻¹)	145.1	398.9	516.8	640.8
FWHM (cm^{-1})	14.5	26.2	28.9	31.8

element in the sample. This means that Fe_2O_3 dispersed uniformly in the bulk of TiO₂, and did not form the continuous phase of Fe₂O₃. From Fig. 1 and Table 1, a broadening of the Raman bands can be observed for the doped one. The reasons for this fact maybe have two factors: one is due to a small crystal size; another is due to the distortion of crystal lattice. Our previous work suggested that the crystal size of doped samples (10.25 nm) are not obviously decreased comparing with the pure TiO₂ (11.48 nm) [43]. So this broadening mainly originates from that doped iron ions diffuse into the crystal lattice of TiO₂ because atom radius of Fe³⁺ and Ti⁴⁺ are very closed, which results in the variation of the structure of the crystal lattice and decrease of crystal symmetry, leading to cleavage of vibration phonon modes.Fig. 3 shows XPS spectra of Ti 2p of TiO₂ and the 5 mol% Fe–TiO₂. Form Fig. 3 we can

SGOVAISEDE 457.6 457.6 5 mol%Fe-TiO₂ 7 mol%Fe-TiO₂

Fig. 3. XPS spectra of Ti 2p of TiO₂ and the 5 mol% Fe-TiO₂.

see, the Ti 2p binding energy of the 5 mol% Fe–TiO₂ sample is increased in compared with that of pure TiO₂. This is because that the Fermi level of Fe₂O₃ is lower than that of TiO₂ so that the electrons of TiO₂ can transfer to highly dispersed Fe₂O₃ in TiO₂, which results in decrease in the outer electron cloud density of Ti ions. This fact suggests that there is an intense interaction between TiO₂ and Fe₂O₃.

3.2. Mechanisms of photoinduced carriers separation and recombination

Figs. 4 and 5 show the SPS and FISPS spectra of the pure TiO₂ and Fe³⁺-TiO₂ contain different Fe³⁺ content without and with 0.6 V external electric field, respectively. In general, the SPS intensity relating to Fe₂O₃ is lower because that the recombination ratio of the photoinduced electron-hole pairs of Fe₂O₃ is very high [44], which results in that the SPS response of Fe_2O_3 cannot be seen, namely, we can only see one response originates from the band-band electron transition of TiO₂ at about 350 nm in Fig. 4. However, under an appropriate external electric field, the band-band electron transition of Fe₂O₃ can be promoted. So, the remarkable changes of SPS response from 400 to 550 nm assigned to the band-band electron transition of Fe_2O_3 [45] can occur in the presence of an external electric field as shown in Fig. 5. From Fig. 5, it can be seen: at lower Fe^{3+} content region $(\leq 0.03 \text{ mol}\%)$, we could only see one response originates from the band-band electron transition of TiO₂ at about 350 nm, which is decreased with increasing of the Fe^{3+} dopant content. This is because that Fe^{3+} dispersed uniformly in the bulk of TiO₂, which can capture the photoinduced electrons and holes transfer from bulk to surface, and generates Fe^{2+} and Fe^{4+} , respectively. This phenomena indicates that doping of Fe^{3+} at lower concentration region inhibits the recombination of photoinduced electron-hole pairs, and results in the photoresponse of TiO₂ decrease. When the Fe^{3+} dopant content exceeds 0.03 mol%, however, we can observe a new SPS signal from 400 to 550 nm assigned to the band-band electron transition of Fe₂O₃, which did not appear in absence of external electric field as shown in Fig. 4. Moreover, Fig. 5 shows that the characteristic response of TiO₂ at 350 nm gradually goes down, but that of Fe₂O₃ around

Fig. 4. SPS spectra of pure TiO_2 and Fe^{3+} - TiO_2 with different doping content.

Fig. 5. FISPS spectra of pure TiO_2 and Fe^{3+} – TiO_2 with different doping content under 0.6 V external electric field.

400 nm increases with increase in Fe³⁺ dopant content. The main reasons for this phenomena are as follows: the amount of Fe₂O₃ increase with increase in Fe³⁺ dopant content (>0.03 mol%), so the photoresponse of Fe₂O₃ from 400 to 550 nm increased. Meanwhile, because of the level of conduction band of TiO₂ is higher than that of Fe₂O₃, but the level of valence band of TiO₂ is lower than that of Fe₂O₃, thus, when the phase of Fe₂O₃ forms, the electrons of conduction band and the holes of the valence band of TiO₂ can transfer to Fe₂O₃, then, these electrons and holes can recombine quickly, leading to the SPS signal at 350 nm depress continuously with increase in the Fe³⁺ dopant content. The experimental results suggests that Fe₂O₃ is recombination centers of photoinduced electrons and holes when Fe³⁺ dopant content exceeds 0.03 mol%.

The Nyquist plots of Fe^{3+} –TiO₂ with different Fe^{3+} content in 10 mg/L RhB solution with 500 mg/L KCl are shown in Fig. 6. It can be seen that, for the RhB photoelectrochemical degradation, only one arc can be observed on the EIS Nyquist plot, suggesting that such a degradation reaction appears to be a simple electrode reaction and electron transfer, hole transfer or

Fig. 6. EIS Nyquist plots of RhB photoelectrochemical degradations for Fe^{3+} -TiO₂ anodic film with different doping molar ratio: RhB concentration = 10 mg/L, KCl concentration = 500 mg/L, illumination, no bias, pH 6.

Fig. 7. The equivalent circuits of the 0.03 mol% Fe^{3+} -TiO₂ anodic film: R_s , the solution resistance; R_{ct} , the electron-transfer resistance; CPE, the constant phase element.

the recombination of electrons and holes is "rate-determining" [46]. The Equivalent circuit is obtained as shown in Fig. 7 and $R_{\rm s}$ is the solution resistance; $R_{\rm ct}$ is the electron-transfer resistance; CPE is the constant phase element, it is considered a capacitance of double layer here because the values of *n* are all close to 1. The fitting results for equivalent circuits of Fe^{3+} -TiO₂ with different Fe^{3+} content are shown in Table 2. From the Nyquist plots and the fitting results, it is found that the diameters of the semicircle and the values of R_{ct} decrease with increasing Fe³⁺ content, and the diameters of the semicircle and the values of R_{ct} of 0.03 mol% Fe³⁺ doped sample is the lower than that of others. However, when the Fe³⁺ dopant content exceed 0.03 mol%, the diameters of the semicircle and the values of R_{ct} increase. The size of the semicircle and the value of R_{ct} can demonstrate an effective separation of photogenerated electron-hole pairs [47] and the effective photoelectrocatalytic degradation of RhB.

The experimental results of EIS test obtain the same conclusion of SPS, namely, at lower Fe³⁺ dopant content region, Fe³⁺ acts as the traps of capture the photoinduced electrons and holes, and inhibit recombination of photoinduced electrons and holes, leading to photogenerated charge carrier concentration rise, so the diameters of the semicircle and the values of $R_{\rm ct}$ decrease. Otherwise, when the Fe³⁺ dopant content exceed 0.03 mol%, Fe₂O₃ become the recombination centers of photoinduced electrons and holes so that photogenerated charge carrier concentration decrease and the diameters of the semicircle and the values of $R_{\rm ct}$ so that photogenerated charge carrier concentration decrease and the diameters of the semicircle and the values of $R_{\rm ct}$ increase.

Fig. 8. Photocatalytic degradation ratio curve of RhB over different Fe^{3+} -TiO₂ photocatalysts.

Parameters	Fe/Ti molar ra	Fe/Ti molar ratio									
	0%	0.01%	0.03%	0.05%	0.1%	0.3%	0.5%	1%			
$R_{\rm s}(\Omega)$	9.82	14.45	14.96	10.27	12.64	11.37	10.03	8.46			
$R_{\rm ct}(\Omega)$	2316	894.5	871.6	903.9	1092	3168	5640	18190			
CPE (µf)	11.9	18.03	18.75	16.75	14.98	7.704	7.006	3.331			
n	0.9121	0.8716	0.9156	0.9365	0.9583	0.8608	0.8343	0.9041			

Fitting results for equivalent circuits of different doping molar ratio Fe³⁺-TiO₂ anodic film

3.3. Evaluation of photocatalytic activity

Fig. 8 shows the photocatalytic degradation curves of RhB over Fe³⁺-TiO₂ photocatalysts with different Fe³⁺ dopant content. It can be found that the photodegradation ratio of RhB is increased with increase in Fe3+ dopant content. Over 0.03 mol% Fe^{3+} -TiO₂, the degradation ratio of RhB is the highest. When the Fe^{3+} dopant content exceeds 0.03 mol%, however, the degradation ratio markedly go down. Which could be attributed to the following: appropriate amount of the doped Fe^{3+} (<0.03 mol%) in TiO₂ can effectively capture the photoinduced electrons and holes, which inhibits the combination of photoinduced carriers and improves the photocatalytic activity of photocatalysts. While Fe³⁺ dopant content exceeds 0.03 mol%, Fe₂O₃ becomes the recombination centers of the photoinduced electrons and holes, which is unfavorable to photocatalytic reactions. It can be seen that the photocatalytic activity well corresponds to the results of SPS and EIS discussed above. The mechanisms of photoinduced carriers separation and recombination mentioned above are further confirmed by the photocatalytic experimental evidence. This also demonstrate that there is a close relationship between the photocatalytic activity and the SPS and EIS measurements. So the activity of photocatalyst may be estimated by the SPS and EIS measurements.

4. Conclusion

The different doping ratio $\text{Fe}^{3+}-\text{TiO}_2$ were prepared by a sol–gel method. The mechanisms of photoinduced electrons and holes separation and recombination are investigated by SPS, FISPS and EIS measurements and photocatalytic reactions. The results reveal that Fe^{3+} acts as the traps to capture the photoinduced electrons, which inhibits the combination of photoinduced carriers and improves the photocatalytic activity of photocatalysts at low doping content ($\leq 0.03 \text{ mol}\%$); while Fe^{3+} dopant content exceeds 0.03 mol%, Fe_2O_3 becomes the recombination centers of the photoinduced electrons and holes, which is unfavorable to photocatalytic reactions.

Acknowledgements

This project is supported from the Key Program Projects of National Natural Science Foundation of China (no. 20431030), the Program for New Century Excellent Talents in University (NCET-04-0341), the National Natural Science Foundation of China (no. 20301006), the Foundation for Excellent Youth of Heilongjiang Province (2002) and Heilongjiang University (2005), the Natural Science Foundation of Heilongjiang Province (no. B0305), for which the authors are very grateful.

References

- A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1 (2000) 1–21.
- [2] Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Nature 414 (2001) 625–627.
- [3] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.
- [4] S. Malato, J. Caceres, A. Agüera, M. Mezcua, D. Hernando, J. Vial, A.R. Fernández-Alba, Environ. Sci. Technol. 35 (2001) 4359–4366.
- [5] K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Environ. Sci. Technol. 38 (2004) 1600–1604.
- [6] M. Bowker, D. James, P. Stone, R. Bennett, N. Perkins, L. Millard, J. Greaves, A. Dickinson, J. Catal. 217 (2003) 427–433.
- [7] Y.X. Li, G. Lu, S. Li, J. Photochem. Photobiol. A 152 (2002) 219-228.
- [8] J.M. Herrmann, J. Disdier, P. Pichat, J. Catal. 113 (1988) 72-81.
- [9] Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, J. Photochem. Photobiol. A 126 (1999) 117–123.
- [10] E. Stathatos, P. Lianos, P. Falaras, A. Siokou, Langmuir 16 (2000) 2398– 2400.
- [11] T.G. Schaaff, D.A. Blom, Nano Lett. 2 (2002) 507-511.
- [12] H. Einaga, T. Ibusuki, S. Futamura, Environ. Sci. Technol. 38 (2004) 285– 289.
- [13] B. Sun, A.V. Vorontsov, P.G. Smirniotis, Langmuir 19 (2003) 3151-3156.
- [14] S. Kim, W. Choi, J. Phys. Chem. B 106 (2002) 13311-13317.
- [15] S. Jeon, P.V. Braun, Chem. Mater. 15 (2003) 1256-1263.
- [16] X.P. Zhao, J.B. Yin, Chem. Mater. 14 (2002) 2258-2263.
- [17] O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates Jr., J. Phys. Chem. B 108 (2004) 6004–6008.
- [18] M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B 108 (2004) 17269–17273.
- [19] S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815-2819.
- [20] A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Chem. Mater. 15 (2003) 3650–3655.
- [21] J. Premkumar, Chem. Mater. 16 (2004) 3980–3981.
- [22] J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, J. Am. Chem. Soc. 126 (2004) 11640–11647.
- [23] W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98 (1994) 13669– 13679.
- [24] M.I. Litter, J.A. Navío, J. Photochem. Photobiol. A 98 (1996) 171-181.
- [25] J.A. Navío, G. Colón, M.I. Litter, G.N. Bianco, J. Mol. Catal. A 106 (1996) 267–276.
- [26] K.T. Ranjit, B. Viswanathan, J. Photochem. Photobiol. A 108 (1997) 79– 84.
- [27] J.A. Navío, G. Colón, M. Macías, C. Real, M.I. Litter, Appl. Catal. A 177 (1999) 111–120.
- [28] J.A. Navío, J.J. Testa, P. Djedjeian, J.R. Padrón, D. Rodríguez, M.I. Litter, Appl. Catal. A 178 (1999) 191–203.
- [29] N. Uekawa, Y. Kurashima, K. Kakegawa, Y. Sasaki, J. Mater. Res. 15 (2000) 967–973.

- [30] J. Araña, O. González-Díaz, M. Miranda-Saracho, J.M. Doña-Rodríguez, J.A. Herrera-Melián, J. Pérez-Peña, Appl. Catal. B 32 (2001) 49–61.
- [31] J.Q. Wang, B.F. Xin, H.T. Yu, Z.Y. Ren, P.F. Qu, H.G. Fu, Chem. J. Chin. U. 24 (2003) 1093–1096.
- [32] J.Q. Wang, B.F. Xin, H.T. Yu, Y.T. Xie, B. Zhao, H.G. Fu, Chem. J. Chin. U. 24 (2003) 1237–1240.
- [33] H.G. Fu, J.Q. Wang, Z.Y. Ren, P.F. Yan, H.T. Yu, B.F. Xin, F.L. Yuan, Chem. J. Chin. U. 24 (2003) 1671–1676.
- [34] J. Araña, J.M. Doña-Rodríguez, O. González-Díaz, E.T. Rendón, J. Mol. Catal. A 215 (2004) 153–160.
- [35] J.F. Zhu, W. Zheng, B. He, J.L. Zhang, M. Anpo, J. Mol. Catal. A 216 (2004) 35–43.
- [36] L. Kronik, Y. Sapira, Surf. Sci. Rep. 37 (1999) 1-206.
- [37] Q.Z. Zhai, S.L. Qiu, F.S. Xiao, Z.T. Zhang, C.L. Shao, Y. Han, Mater. Res. Bull. 35 (2000) 59–73.
- [38] X.M. Qian, X.T. Zhang, Y.B. Bai, T.J. Li, X.Y. Tang, E.K. Wang, S.J. Dong, J. Nanopart. Res. 2 (2000) 191–198.

- [39] H.C. Gatos, J. Lagowski, R. Banisch, Photogr. Sci. Eng. 26 (1982) 42-49.
- [40] L.Q. Jing, X.J. Sun, J. Shang, W.M. Cai, Z.L. Xu, Y.G. Du, H.G. Fu, Sol. Energ. Mat. Sol. C. 79 (2003) 133–151.
- [41] G.P. Smestad, M. Gratzel, J. Chem. Educ. 75 (1998) 752-756.
- [42] T. Ohsaka, S. Yamaoka, O. Shimomura, Solid State Commun. 30 (1979) 345–347.
- [43] P.F. Yan, J.Q. Wang, X. Jiang, D.R. Zhou, H.G. Fu, Mater. Sci. Technol. 10 (2002) 28–31.
- [44] X.M. Qian, H.H. Lű, X.T. Zhang, Y.S. Li, Y.B. Bai, T.J. Li, X.Y. Tang, Acta Sci. Nat. Univ. Jilin 2 (1999) 87–92.
- [45] X.T. Zhang, Y.A. Cao, S.H. Kan, Y.M. Chen, J. Tang, H.Y. Jin, Y.B. Bai, L.Z. Xiao, T.J. Li, B.F. Li, Thin Solid Films 327–329 (1998) 568– 570.
- [46] J.M. Kesselman, G.A. Shreve, M.R. Hoffmann, N.S. Lewis, J. Phys. Chem. 98 (1994) 13385–13395.
- [47] H. Liu, S.A. Cheng, M. Wu, H.J. Wu, J.Q. Zhang, W.Z. Li, C.A. Cao, J. Phys. Chem. A 104 (2000) 7016–7020.