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1. Introduction

Let us begin by recalling the celebrated Brudnyi-Krugljak K-divisibility theorem (cf. [6], [7, p. 325, Paragraph C and
Theorem 3.2.7]).

Theorem 1.1. Let /Q\q: (Ao, A1) be a Banach couple, and let N be either a fixed natural number or oco. There exists a constant Cy;,
depending only on A and N, which has the following property: Suppose that a is an arbitrary element of Ap + A1 whose Peetre
K -functional satisfies the estimate

N
K(t.a; A)< Y ¢n(t) forallt >0, (11)

n=1

where the functions ¢, are each positive and concave on (0, o) and Z,’;’=1 ¢n(1) < oo. Then there exists a sequence of elements
an € Ag + Aq such thata = 2111\121 an (where this series converges in Ag + A1 norm) and

K(t,an; Z\) < CNgn(t) forallt >0andeach1<n <N +1. (1.2)

The main interest of Theorem 1.1 resides in the special case when N = co, but we will also need to consider other values
of N below. We refer to [7] and also to remarks in the introductions of [9] and [11] for more details about Theorem 1.1 and
its applications. Its original proof appears in [7]. Various alternative proofs using the so-called “strong fundamental lemma”
can be found in [9,4], cf. also [3]. _

We shall use the notation yn(A) for the infimum of all numbers Cy having the property stated in Theorem 1.1. This
number may be called the N-term K-divisibility constant for A. When N = oo, we follow the notation and terminology of
previous papers and simply write y (A) instead of yn(A) and speak of the K-divisibility constant of A. It is not hard to check
that these constants satisfy

1<yiA) <yj(A) <yA), 1<i<].

(Strictly speaking, the first inequality is only true if A is non-zero. “Non-zero” means that we exclude the trivial cases
where Ao = A1 and this space consists solely of the zero element of some Hausdorff topological vector space. In these cases
y(A)=0.)

All Banach spaces in this paper will be assumed to be over the reals, except when it is explicitly stated otherwise. But it
is clear from the statement of Theorem 1.1 that if Ag and A; happen to be complex Banach spaces, then the value of y (A)
will be the same, independently of whether we consider the underlying scalar field to be R or C. For a related comment
see Remark 2.6. .

Our main goal in this paper is to calculate the exact value of, and obtain new estimates for y (A) for some particular
“natural” choices of the couple A. Some of the auxiliary results which we obtain en route to this goal may perhaps also be
useful in the future for other purposes, including the determination of y (A) for other couples.

Theorem 1.1 is one of the most important and useful results in real interpolation theory, and potentially also has inter-
esting applications beyond that theory, for example in the study of various kinds of moduli of continuity. In its applications
so far, the precise value of y(A) does not seem to play a crucial role. However, as has turned out to be the case with other
important theorems in analysis, we believe that searching for optimal constants, and thus optimal proofs, can also enhance
our general understanding of this very significant result.

It is known (cf. [11]) that

1<y (A) <3 +2v2~5.8284 (1.3)

for every non-zero Banach couple A. R
It has been shown [10] that, in the case where A is a non-zero couple of Banach lattices (or complexified Banach lattices)
of measurable functions on the same underlying measure space, the estimate (1.3) can be sharpened to

1<yA) <4

A number of couples A are known to be exactly K-divisible, i.e. to have the property that y(;\) =1. These include (L', L)
and the “weighted” LP couples (L},VO, L},V]) and (La,oo, La,o]), for all choices of weight functions wg and wi. The proof that
y(?\) =1 for the first of these couples can be found in [16]. It also follows from an obvious generalization of the proof of
Lemma 5.2 of [15, p. 44]. The proof for the latter two couples is contained in Proposition 3.2.13 of [7, p. 335]. Let us also
mention another collection of trivial examples of exactly K-divisible couples. These are the non-zero couples A= (Ag, A1)
for which Ag = A1 isometrically. (For such a couple, every element a € Ag + A; satisfies K(t,a; A) = min{1, t}|lal a,. So, if

a satisfies (1.1) and we choose a,; = %a for each n € N, then it is obvious that we obtain (1.2) with Co, =1 when
m=1%m

t =1, and consequently also for all t > 0.)
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On the other hand it is also known that y(A) > 1 for certain couples A. The first example to be given of such a couple

was A = (C, 1y, studied by Krugljak in [18]. Subsequently Podogova [20] showed that this same couple satisfies y (A) >
34242
1 2f

= (S0, S1) whose 2-term K-divisibility constant satisfies y2(§) f*;‘/f— He takes S to be R? equipped with the £°°-norm

and S; to be a one-dimensional subspace of R? whose unit ball is a line segment which makes an angle of % with one of
the coordinate axes. Furthermore, Shvartsman shows that this couple is “extremal” among all couples A= (Ao, A1) satisfying
AjC R? for j =0, 1, in the sense that all such couples satisfy yz(A) 3+§§ It will follow from one of our results in this

paper that y(S) 24/2/3~1.6330, and thus that the exact value of y(S) lies somewhere in the interval (1.52,1.64).

Apparently, neither (C,C!) nor Shvartsman’s finite-dimensional couple can be realized as couples of Banach lattices on
a measure space. But it turns out that there also exist couples of lattices whose K-divisibility constant is bigger than 1. The
first examples of such couples were found in [12]. They are somewhat “exotic” couples A = (Ag, A1) where the spaces Ap
and A; are both contained in R3. They each satisfy y(ﬁ) > 1 as a consequence of the fact that they do not possess another
property, almost exact monotonicity, which is defined on p. 30 of [12].

In this paper we deal with what could be considered two of the simplest, “nicest” and most “natural” couples among
those which are not already known to be exactly K-divisible, namely a couple H= (Ho, H1) of Hilbert spaces, and the
lattice couple (L2, L°). In addition to its other good properties, (Hg, H) is known, as shown in [2], to be an exact Calderén
couple. (L2, L®) is also a Calderén couple [19] and the optimal decomposition for obtaining its K-functional exactly is quite
simple to describe. But it turns out, perhaps rather surprisingly, that neither of these couples are exactly K-divisible in
general, and one can even find two-dimensional versions of each of these couples for which exact K-divisibility does not
hold.

The paper is organized as follows: In Section 2 we recall some definitions and collect some general preliminary results
which will be needed in other sections. In Section 3 we find the exact value of y(Y) where Y is the simplest non-trivial
version of a couple of Hilbert spaces. Our result is that )/(17) =2/+/3. After considering various generalizations of this result,
we consider all other couples of (real) Hilbert spaces which are contained in R?, and we prove a (rather more crude) upper
estimate for their K-divisibility constants, namely y(a) <2

Finally, in Section 4 we consider the couple (L2, L) and, in particular, the case where the underlying measure space
consists of two atoms of equal measure, i.e. the two-dimensional couple X = (2, £5°). It turns out to be quite easy to show
that X is an exact Calderén couple and that y()?) > 1. But the determination of the exact value of y(i() is a much longer
and as yet unfinished story. We obtain some (rather complicated) equations which in principle could be solved to obtain
the exact value of y (X). Numerical experiments suggest that maybe y (X) is approximately equal to 1.03. The sharpest

) ; X) < 443v2
estimates which we have are 1 < y(X) < YN A 1.2071.

These examples demonstrate that there are in general no tight connections between the properties of being an exactly
K -divisible couple and of being an exact Calderén couple.

For the reader’s convenience, we list and indicate the sizes of some of the numerical constants which appear frequently
in the paper. We have that

1.5224. As announced in [21], Pavel Shvartsman has produced a different and much simpler example of a couple

y(N)=2/V3~1.1547, 1S = 342V2 1 s,
1+2v2

. . 4432
¥ (S) < 2y/2/3~1.6330, y(X)<+4f%1.2071.

4422

2. Some definitions and general preliminary results

_ For the basic notions of the real method of interpolation, we refer, e.g. to [4], [5] or [7]. For any given Banach couple
A= (Ap, A1), we let Aj” denote the Gagliardo completion of Aj, j =0, 1, i.e. the Banach space of elements a of Ap+ A1 which

are limits in Ag + A1 norm of bounded sequences in A; or, equivalently, for which the norm ||a\|A17 =sup;.o K(t,a; ;\)/tj

is finite. Obviously Ay + A7 = Ao + A1. We also recall that the couple A= (Ao, A1) and the corresponding couple of its
Gagliardo completions A~ = (Ay, A7) have identical K-functionals, i.e. K(t,a; ;\) =K(t,a; ;\”) for all a e Ap + A7 and all
t > 0. Consequently we also have y(;\) = y(;\N).

There is a close connection between K-divisibility and couples of weighted L' spaces which we wish to exploit. Our
point of departure is the following lemma.

Lemma 2.1. et A = (Ao, A1) be an arbitrary Banach couple and let a be an arbitrary element of Ag + A1. Then there exist a measure
space (£2, S, ) and measurable functions wj:$2 — (0, 00] for j = 0,1 and a measurable function fq:$2 — [0, 0o0) such that
K(t,a; A) = K(t, fa; P) forall t > 0, where P is the couple of weighted L! spaces P = (Lyyy (1), Ly, ().
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The straightforward proof of this result, which uses [5, Lemma 5.4.3, p. 117], can be found in [9, pp. 46-47]. It should not
be overlooked that the weight functions wg and w1 in Lemma 2.1 have the slightly exotic property that they are permitted
to assume the value +oc0. Since every function in L}NO (w) —|—L},‘,1 () vanishes a.e. on the set where wo = w1 = oo, we always
can and will assume that this set is empty. We also mention that the proof in [9] shows that (£2, S, 1) and wo and wq can
be chosen rather simply and qu1te explicitly, and we can also, for example, arrange things so that fg is a constant function.

It turns out that for each A and each a € Ao + A1 and each corresponding P and fa with the properties just specified,
there exists a bounded linear operator T : P — A~ such that a = Tfq. Let 7, denote the set of all such operators T for some
given choice of a and f;. Then it turns out that

y(;\) sup c¢g wherecg _ca(A) = 1nf ||T||P%AN. (2.1)
acAp+Aq

This formula, whose proof will be briefly recalled below, turns out to be particularly suitable for our calculations of
K-divisibility constants in this paper. R .

It is sometimes convenient to re-express (2.1) slightly differently. For A, a, P and f, as above, let A4 be the set of linear
operators T: P — A~ with ||T|3_, 3~ <1 such that Tf, = Aa for some positive number A = Ar. Then obviously (2.1) is the
same as

y(?\): sup (inf i) (2.2)

aeAg+A; \T€Aad AT

Remark 2.2. Clearly 7;; = 7; and so c¢q = ¢, for all scalars t # 0. Furthermore, if, as is the case for most couples considered
in the paper, Ag and A; are both Banach lattices of measurable functions on the same underlying measure space, then it is
easy to see that, in the formula (2.1), the supremum can be replaced by the supremum over all non-negative functions a in
Ag + Aq.

Indeed, we have for every a € Ag + A1 that ¢g =cq.

At first sight it seems that there could be some ambiguity in (2.1), because the set 7, depends on our par-
ticular choices of the measure space (£2,S,u) and the associated functions f;, wo and wi. The key to showing
that in fact there is no such ambiguity is the theorem of Sedaev-Semenov [23] (see [13] for an alternative proof)
or, more precisely, the generalization of that theorem [9, Theorem 3, pp. 47-49] to the case of weight functions
which are permitted to take the value +oo. It follows immediately from that theorem, that if (Z,),0) is a sec-
ond measure space and vg and vq are weight functions and g, is a non-negative measurable function such that
K(t. ga: Ly, (0), Ly, (0)) = K(t, fa: L}y, (), Ly, () for all t > 0 then, for each € > 0, there exist two linear operators
U:(Lyy(0), Ly (@) = (L (), Ly, (1)) and V : (Ly, (1), Ly, (W) = (L} (0), Ly, (o)) which satisfy Uge = fa, Vfa = ga,
Ul .18, @0 Whg oL, oy S T €A NV Q1 o 11, oyl @)L}, @) S T+,

By composing the operators U and V with other suitable operators, we readily see that the quantity infrez, |T|_, 5~ is
independent of the choices of the measure space, weight functions and the function f;.

For the convenience of the reader who may not be familiar with these details, we mention that the fact that 7, is
non-empty and the formula (2.1) are both obtained by considering the following theorem which, as we shall explain, is
intimately related, in fact equivalent, to Theorem 1.1 (cf. [14, Proposition 1.40]).

Theorem 2.3.Let A = (Ag, A1) be an arbitrary Banach couple. Then there exist constants M1, My and M3, depending only on A, with,
respectively, the following properties:

(i) For each a € Ap + Ay, there exists a sequence {a,}ycz of elements in Ay U AT which satisfies a =, ., a, (convergence in
Ap + A1 norm) and also

> “min{|la, |z tllayllar } < MiK(t.a: A) forallt > 0. (2.3)

VEZ

(ii) Let wo and wq be arbitrary weight functions on an arbitrary measure space (82,8, ). Let P be the couple of weighted L' spaces
(L o (). L L (). Suppose that the elementsa € Ap+ Ay and f € L ot L}Nl satisfy

K(t,a; A) < K(, f; P) forallt > 0. (2.4)

Then there exists a bounded linear operator T : P — A™ such that ITlp_ 3~ SMaand Tf =a.
(iii) Suppose that (£2, S, 1), wo, w1, f and a are exactly as in part (ii), except that instead of (2.4) they satisfy

K(t,a;A)=K(t, f;P) forallt> 0.

Then there exists a bounded linear operator T : P — A~ such that ITlp_ 3~ SM3and Tf =a.



134 Y. Ameur, M. Cwikel / J. Math. Anal. Appl. 360 (2009) 130-155

In fact the infima of all constants M1, My and M3 satisfying (i), (i) and (iii) respectively, coincide, and they all equal y(;\), the
infimum of the constants C, for which Theorem 1.1 holds.

For a proof of part (ii) of this theorem, which uses Theorem 1.1 and gives the value M, = C, + € for any choice of € > 0,
see [7, Theorem 4.4.12, pp. 586-588]. We mention in passing that part (ii) has an important and immediate consequence.
It provides a simple description of all relative interpolation spaces for operators mapping from any weighted L' couple into
any Banach couple A which satisfies Ajw =Ajfor j=0,1.

Part (i), also known as the “strong fundamental lemma”, is proved in [9, Theorem 4, pp. 54-59] for M1 ~ 8 and, with
a better constant M &~ 3 +2+/2, in [11, pp. 73-77]. Cf. also [10] for more explicit versions of some of the steps of the proof
in [11]. (Note that in (2.3) we adopt the conventions that ||av||AJ7 =ooifag Aj” and that min{¢, oo} = min{co, o} = o for
every « € R.)

Part (ii) can be deduced from part (i), and with My = M + € for any choice of € > 0. This can be done, using (an obvious
modification of) an argument which appears in [9, pp. 54-55] cf. also [15, Theorem 4.8, p. 38]. Moreover, this result, and
also part (iii), are also both valid in the case where either or both of the weight functions wo and wq are permitted to
take the value 400 on some subsets of §2. The proof in [9] makes use of the generalized version [9, Theorem 3, p. 47]
of the Sedaev-Semenov theorem already mentioned above. (The Sedaev-Semenov theorem is also the main, perhaps only,
ingredient of the “obvious modification” mentioned above.)

The connection between parts (ii) and (iii) is a simple matter. Obviously (ii) implies (iii) with M3 = M;. On the other
hand we can also easily obtain that (iii) implies (ii) with My = M3 + € for any choice of € > 0. This is done by first using
Lemma 2.1 to obtain f; and then using the generalized version of the Sedaev-Semenov theorem to find a linear map U
between appropriate couples of weighted L! spaces, which satisfies Uf = f, and has norm arbitrarily close to 1.

Theorem 1.1, with Coc = My can be deduced from part (ii) of Theorem 2.3, again using arguments from [9, pp. 54-55]
and using the more general version where the weight functions are permitted to take infinite values.

Conversely, as mentioned in [11, p. 71] and shown more explicitly in [14, Proposition 1.40], it is also possible to deduce
part (i) (and consequently also part (ii)) of Theorem 2.3 from Theorem 1.1, with M1 = C + € for any choice of € > 0.

It should be noted that part (iii) of the above theorem, together with the connections described above between the
constants M1, M and M3 for which parts (i)-(iii) of the theorem hold, give us the formula (2.1).

Remark 2.4. Let a € Ag + A1 be a fixed element. By an adaption of the proof of Theorem 2.3, one can show that the infima
of the constants My, M3 and M3 fulfilling the conditions (i)-(iii) for this particular choice of a, coincide, and their common
value is c4(A).

For most couples A= (Ao, A1) which we study in this paper, Ag and Ay are both finite-dimensional. For such couples
it is clear that A; = Aj isometrically for j =0, 1. It is also helpful to know, as the following lemma shows, that, for such
couples, the infimum infre7, [ T|3_, ; appearing in (2.1) is actually attained for each fixed element a. This of course implies
that the infimum infrea, 1/A7 in (2.2) is also attained for each a. We will refer to any operator T for which this latter
infimum is attained as an optimal element of A,. Obviously such an operator satisfies ||T|_ ; =1.

Lemma2.5. [et F = (Fo, F1) and A= (Ao, A1) be Banach couples and suppose that Ao+ A1 is a finite-dimensional space. Let a and f
be arbitrary fixed elements of Ag + A1 and Fo + F1 respectively. Suppose that the class 7 of all bounded linear operators T : F — A
which satisfy Tf = a is non-empty. Then there exists an operator S € T such that ||S||z_, ; = infre7 [IT Iz, 4-

Proof. Let N be the dimension of Ag+ A1 and let {ek},’:’:1 be a basis of Ag+ A1. Then every bounded operator T : Fg + F; —
Ag + A1 defines and can be defined by a collection A1, Ay, ...,An of N linear bounded linear functionals on Fy + Fq, via
the formula Tg = Z,’:’zl M (g)ey for each g € Fo + Fq. Consider a sequence of elements {Ty}nen in 7 such that ||Tyllz_ 5 <
Ca + 1/n, where ¢q = infrez, [ Tllz_, 4. Let An denote the bounded linear functional on Fo + Fy defined for each n € N and

each ke {1,2,..., N}, such that T,g = Z,’:’:] Ank(g)ex for each g € Fo + F1. Now let us define the operator S by

N
Sg= Z)\*,k(g)ek foreach g € Fo + F1q,
k=1
where the N linear functionals A, 1, A« 2, ..., A« N are given by

Aek(8) = B({}Ln,k(g)}neN)

for each g € Fg + F1, where B € (£°°)* is a Banach limit (i.e. an element of (£°°)* which satisfies |B({up}nen)| <
limsup,,_, oo |un| for all {up}peny € €°° and also B({unlnen) = limy_ o Uy for every convergent sequence {up}nen). It easy to
see that each sequence {1, x(g)}nen is indeed in £°° and it is straightforward, if a little tedious, to verify that the operator S
has all the required properties. We leave these matters to the reader. O
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Remark 2.6. For all the couples A= (Ao, A1) considered in this paper, Ap and A; are both Banach lattices of real valued
measurable functions with the same underlying measure space. As usual, we can define the complexification of such a lat-
tice A;j to be the space, which we may denote by A?, consisting of all complex valued measurable functions g such that
gl € Aj, with the obvious norm. It is easy to see that the complexified lattice couple A = (A, AT) satisfies y (AC) = y (A).
(Use the fact that for any function a € Ag + A(? we have K(t,a; AC) = K(t, |al; ;\).)

3. On the K-divisibility constant for Hilbert couples
3.1. The K-divisibility constant for the couple Y = (Yo, Y1) = (¢2, %)
The purpose of this subsection is to prove the following theorem.

Theorem 3.1. Let Y = (Yo, Y1) be the Banach couple of subspaces of R? obtained by taking the unit ball of Yq to be the disk
{(x,y) € R%: x* + y*> < 1} and the unit ball of Y1 to be the line segment {(x,0) € R?: —1 < x < 1}. Then the K-divisibility con-
stant of the couple Y is given by

y(¥) = (3.1)

2
V3
Proof. Consider the point @ = (cosa, sina) € Yo + Y1 where a € [0, 27). Let E, be the set consisting of every number which

is the norm | T|3_ y of some bounded linear operator T from some couple P of weighted L! spaces into Y, which satisfies
Tf =« for some element f € Po+ P for which

K, f;P)=K(t,a;Y) forallt>O0. (3.2)

Note that the weight functions wg and wq used in the definition of Py and P; are permitted to assume the value 4+o00 on
some sets of positive measure. We shall explicitly need this option here.
Let ¢q = infEq. It follows from Remark 2.2 that ¥ (Y) = supgeo /2] Ca- We claim that in fact

y(f/): sup Cg. (3.3)
ae(0,7/2)

To show (3.3) we first observe that, since K(t, Tf; )7) < Tl K@, f; 13) for all t > 0 and for every bounded operator
T:P— }7, we must have ¢, > 1 for every a € [0, 7t /2]. It turns out to be rather easy to show that c; <1 in the two special
cases, a =0 and a = /2, and this will of course imply (3.3). -

In the case where a =0, i.e., @ = (1, 0), we use a very simple couple P where the underlying measure space consists of
a single point b which has measure 1 and |h||p, = ||h|lp, = |h(D)| for every h € Pg + P1. (Le., wo(b) = w1(b) =1.) We also
use the “function” f € Po+ P; defined by f(b) =1 which clearly satisfies

K(t, f; P)=min{1,t} = K(t, (1,0); Y) forallt> 0.

Then we use the operator T defined by T (h) = (h(b), 0) for all h € Py + P; to show that ¢y < 1.

In the case where a = /2, ie,, @« = (0, 1), it is convenient, once again, to use an underlying measure (£2, X, i) space
containing (at least) one point b which is an atom of measure 1. But this time the weight functions wg and w; for which
P;= L}Nj () should be chosen to satisfy wo(b) =1 and wi(b) = +oco. This means that every function h in Py satisfies
h(b) =0 and so the linear map T defined by Th = (0, h(b)) maps P; into Y; with norm 0 and Py into Yo with norm 1.
Furthermore the function f = x5 satisfies Tf = (0,1) and K(t, f; 13) =1=K(t, (0,1); 37) for all t > 0. This shows that
czs2 <1 and so completes the proof of (3.3).

In the light of the preceding calculations it remains to calculate or estimate ¢4 for values of a € (0, 77 /2). So let us indeed
fix a € (0,7/2) and set a = (cosa, sina) = («1, ®y). It is easy to see that the error functional E(t,«;Y) = inf{[la — Blly,:
BeY1, lIBlly, <t} is given by the formula

Et,oa:Y) =1V t—a?+a3, tel0,a],
a2, t>oq.

Now we will describe a particular couple of weighted L! spaces P= (Po, P1) on the (non-empty) interval [0, «1], for
which the function f = xjo,«,] satisfies (3.2). Once again we use the fact that (3.2) is equivalent to

Et, f;P)=E(t,a,Y) forallt>O0. (3.4)
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To make (3.4) hold, we choose a measure i on [0, ®1] which coincides with Lebesgue measure on [0, 1) and such that the
singleton set {1} has measure p({or1}) = 1. Then we take Pj = Lw;([0, 1], ) for j =0, 1, where the weight functions wg
and wy are defined by

d v o —t
—zEto;Y)=—1——, te[0,a),
WO(t)={ a J@1—0H2+a3
a2, t=aq

and

1, te[0,aq),
+o0, t=0w1.

wi(t) = {
Since wy is decreasing on [0, 1) it is easy to obtain that

Ee.fh= [ wedu= [ wodutas
[min(t,aq),01] [t,00)N[0,0¢1)

for each t > 0 which immediately also gives us (3.4) and (3.2). =
Let us now define E; to be the subset of E, consisting of the numbers ||T||;_, ; obtained in the special case where P is
the particular couple

P = (L}, (10. a1, ). L}, (10, 011, 1))

which we have just defined, and the function f for which Tf =« is given by f = X[0,«,]. In view of the generalized version
of the Sedaev-Semenov theorem in [9], it is clear that cq is also the infimum of the set E}.

Any bounded linear operator T : P — Y for this particular choice of P must be given by the formula

rn:( / g1(&Hh(E) d& + prh(r), / gz(“?)h(é)d‘v;'-i-ﬂzh(oh)) (3:5)
[0,01) [0,01)

for all h € Pg + P1. Here g1 and g3 are suitable bounded measurable functions on [0, «1) and 87 and B are real numbers.
For all h € P; we have h(cq) = 0. But all such functions h must also satisfy f[O,on) 22(&)h(&)d& + Brh(aq) = 0. Consequently
g2 =0 ae. on [0, ). Thus the norm ||T|p,—y, equals ||g1llr>[0,«;). The norm ||T| p,—y, is the supremum of

61 /(g1X[o,a1)+/31X{a1})hdl«b+92/32h(a1)= / (0181 X10.01) + 0181 + 6282) Xy} ) d L
[0,01] [0,a1]

as h ranges over the unit ball of Py and (07, 6,) ranges over the unit circle. Let us first calculate the supremum, for a fixed
choice of (61, 6), as h ranges over the unit ball of Pg. The standard duality between L! and L™ gives us that this supremum
equals

We now claim that

g18)
wo (%)

’ 16181 + 6221 } (3.6)

o2

0181 X10,a1) + (0181 + 0282) Xjay)
wo

= max{91 esssup

L°([0,01], 14) §€l0,01)

LAY 37

o2

’

g1(§)

[IT|lpy—y, = mMaxy esssup
£c[0,a1)| Wo(£)
This is because the expression in (3.6) equals the expression on the right side of (3.7) for a suitable choice of (61, 62) on the
unit circle (either (1,0) or ( b ‘3—2)). Furthermore it is dominated by the expression on the right side of (3.7) for

SB[+
all other points (61, 62) on the unit circle.
Since wqg (&) < 1 for all & € [0, @q), we have that

TPy, = II811lL[0,0)

= esssup|g1(§)| < esssup &) .
[0.a1) gel0,a1)| Wo(§)

This means that the norm [|T||;_, ; is also given by the expression on the right side of (3.7).
Of course here we are only concerned with those operators T for which T xj0,¢,] = (01, &t2), i.€.

g1(§)de+pr=a1 and fr=ay. (3.8)
[0,a1)
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By Lemma 2.5 there exists such an operator T which satisfies || T||;_ y = cq.
Evidently the functions g; and numbers 8y and B, which are used in the formula defining T must satisfy |g1(§)| <

cawo(§) for ae. £ € [0, 7)) and ,/;312 + ﬁ% < cqp. Consequently, substituting from (3.8), we have

o = f g1(E)dE + pr < / cawo(€)dE + /202 — B2

[0.a1) [0.a1)

=ca(yo? +af —az) +oa/cd —1=ca(1 —az) +azy/c2 — 1.

In the special case where a =7 /6, i.e. when 1 =+/3/2 and « = 1/2, the previous inequalities immediately imply that

«/§§Cn/6+,/c7zr/6—1.

This is false if ¢z /6 < 2/+/3. Le., we have shown that
Crs6 = 2/V3. (3.9)

We shall now prove that ¢; < 2/+/3 for all a € (0, 7w /2). Having chosen such a value of a, we set o1 = cosa and o = sina.
Since

aq +oc2:\/af+2a1a2 + o3 >\/a%+a§:1,

o]

to 1 on the interval I = [0, o1 +

we have that 12312 > 1. It is clear that the function ¢ (x) := 7=~

op — 1]. This in turn means that the continuous function ¥ (x) := a2+/$2(x) — 1 — x is also decreasing on the same interval.
Since ¥ (0) >0 and ¥ (1 + o2 —1) =1 — 1 — o < 0, there exists a number B in the interior of I such that ¢ (81) =0, i.e.

2
B =a> <O“_ﬁ1> _1. (3.10)

1—ay

We shall use this number in the formula (3.5) to define an operator T : P — Y where we choose the other numbers and
functions in the formula by setting g>(¢) =0 (as we are obliged to do) and also

,31

g16) = wo(g) forall & € [0, 1) and B2 = az. (3.11)

Observe that, with these definitions,

T X10,011 = ( 1 — P (1 —o2) + B, 062) = (01, a2),

i.e. the quantity C, := ||T||13~>§’ belongs to E;. In particular, cq < Cq. But, in view of (3.7) and (3.10), we have
a —
c, =4 B .
1-— (0]

This in turn can be substituted in (3.10) to give

Br=0a2/C2—1

and so

c = F -y —1
¢ 1—0o> 1—0o '

We deduce that

o> (651
JCE—-1= 3.12
+1—O[2 1—ay’ ( )

We claim that (3.12) implies that
Ca <2/4/3. (3.13)
If this is false, then

(03] 2 n (0%) 4 1 1 24 o)
> — ——1=—
11—z /3 1-02V3 V3 1—a

Ca
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and so v/3aq > 2(1 — az) + az =2 — a. Consequently, 3a? > 4 — 4a; + 3. Since a? + a3 =1 it follows that 3 — 3a3 >
4 — 4y +a§, i.e. that 4a% — 403 + 1 < 0. But this cannot hold for any real number «;. This contradiction establishes (3.13).

We immediately deduce that ¢, < 2/+/3 for all a € (0, w/2). Combining this with (3.9) and (3.3) gives (3.1) and completes
the proof of the theorem. 0O

3.2. Generalizations and further remarks
We have the following generalization of Theorem 3.1.
Theorem 3.2. Let U and V be non-trivial Hilbert spaces and consider the couple W= (U@ V,U). Then y(W) = Z/ﬁ.

The proof is very similar to the case of Y. We sketch the changes necessary to make the proof work in the general case.
Each norm one element of U @ V can be written in the form oiu + ayv where u € U and v € V are unit vectors and
the numbers o7 and o satisfy a7 >0, a2 >0 and o? + a3 = 1. It is easy to see that

K(t, au+aav; W) =K(t,a;Y) = K(t, f; P), t>0,

with f = xj0.0y) and P = (L}, . L}, ) defined as before. For w € Wo + W1 let c,, = cw (W) be the quantity defined by (2.1).

It follows from Remark 2.2 that

V(W) = SUP{Coyutayv}

the supremum being taken over all points (o1, @) of the unit c1rcle such that a1, 02 >0 and all unit vectors ucU, ve V.
For fixed u, v and « = (a1, @) as above we now choose T : P> W as

Th= ( / g1(5)h(&)d§ +ﬁ1h(a1))u + azh(ar)v (3.14)
[0.01)

where the functions g1 and the number B, are defined by (3.10) and (3.11). Clearly, Tf = o1u + oz v. Moreover, as in the
case for Y, one verifies that this operator T satisfies

g1(8)

ﬂlz-l—a%}

o2

Tl @ = max{ess sup
£€[0,a1)

By the reasoning at the end of the proof of Theorem 3.1, we now obtain that ¢y y+a,v < Tl 5 < 2/+/3, proving that

Y (W) < 2/4/3.
In order to prove the reverse inequality, we observe that an arbitrary operator S : P — W such that S f=oaqu+ayv can
be represented in the form

Sh= ( | cremede+ Blh(om) & (ashen)v)
[0,001)
where h € Pg + P; and G € L*°([0, 1), U) and B € U. Putting g1(§) = (G1(§),u) and By = (B1,u), we obtain a corre-
sponding operator T of the form (3.14) also satisfying Tf = «ju +azv and such that ||T||z_, < ||S|\PﬁW Now, in the case

when a1 =+/3/2 and ay = 1/2, the estimate 1Tl w = 2/+/3 follows exactly as in the case for Y.
It seems plausible that couples of the above form are extremal amongst all Hilbert couples in the sense that their
K -divisibility constant is maximal. Thus we have the following open question.

Question 1. Does y(H) 2/+/3 hold for every Hilbert couple H?

For a comment related to this question, see Remark 3.8 below.
We now turn to another consequence of Theorem 3.1. We have the following result:

Theorem 3.3. Let X = (Xo, X1) be a Banach couple such that Xg is two-dimensional and X; is one-dimensional and X1 C Xg. Then

y(X) <242/3.

Note that Shvartsman’s couple S [21], where Sg is R? equipped with the £-norm and S; the one-dimensional subspace
of R? whose unit ball makes an angle of 77 /8 with the positive x-axis, is of the form occurring in Theorem 3.3 and satisfies

y(§) ‘Tiy (At this point it may be helpful to glance back at the table giving the sizes of numerical constants, which

appears at the end of Section 1.)
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We shall see that Theorem 3.3 can be deduced using the relation (2.1), i.e., y(f() = SUPgexy+X; ca(f(). To this end, we
need a way to keep track of how the numbers ¢, change under suitable maps. We will first prove that every so-called “rigid
map” leaves ¢, unchanged.

Definition 3.4. Let A = (Ap, A1) and B= (Bo, B1) be two Banach couples. A linear operator T :Ag + A1 — Bg + B1 which
is one-to-one, and, for j=0 and j=1, maps A; onto Bj and satisfies ||Tallp; = cjllalla; for all a € A; and some positive
constant cj, is called a rigid map of A onto B. If such a map exists, then we say that Bisa rigid image of A. (This is of
course the same as saying that A is a rigid image of B.)

A classical and much used example of two couples which are rigid images of each other, goes back to the paper [25] of
Stein and Weiss, where it was pointed out that, in the terminology of Definition 3.4, any couple of weighted LP spaces B =
(Lbo v (82, X, 1), Lo . (£2, X, u)) on some measure space (£2, X, u) where 1< pg < p1 < 00, is a rigid image of an unweighted

couple A= (LPo (.Q, X, v),LP1(£2, X, v)) for some other measure v on the same measure space.

Fact 3.5. If§ is a rigid image of;\ then y(f}) = y(;\). Furthermore we have that ca(;\) = cTa(E)for alla € Ag+ A1, where T is a rigid
map of A onto B.

In order to prove Fact 3.5, we first note that standard arguments show immediately that K(t, Ta; B) =coK (C” a; ;\) for
all t >0 and all a e Ag + A;. .

Put b = Ta and suppose that K(t,b; B) < Y n2; ¥n(t) for all t > 0, where the functions vy, : (0, 00) — (0, 00) are all
concave and Y o2, ¥n(1) < co. Then CoK(Clt a; ;\) < Y2  Yn(t). Since ¢n(t) := Co wn C"t) is concave for each n and
o 1#n(1) < oo it follows from Remark 2.4 that, for each € > 0, there exists a sequence of elements {ap}nen in Ag + A1
such that a = Zﬁ; a, with convergence in Ag + A1 norm and K(t, an; ;\) < (ca(;\) + €)pn(t) for all t >0 and all n e N. If
we set b, = Ta, for each n then it is clear that b = Z,‘i‘; b, with convergence in Bg 4+ B1 norm and

K(t, bn,A)_c0K< at an,?\) < (60(7\)+e)c0¢n<%t) = (ca(A) + €)Yn(t)
Co 0

for all t > 0 and all n € N. This shows that cb(é) < ca(;\) + € for each positive €. It follows that cb(f?) < ca(Z\) and of course
an analogous argument using T~! in place of T shows that c4(A) < cp(B). This finishes the proof of Fact 3.5.

To further study the action of linear maps on the quantities ¢4, it is convenient to introduce the counterpart of the
classical Banach-Mazur distance for Banach couples.

We have the following definition.

Definition 3.6. Let A — (Ap, A1) and B= (Bo, B1) be Banach couples. If A; is isomorphic to Bj for j=0,1, then the
Banach-Mazur distance between A and B is defined by

d(A; By =inf{IT 1 51T 54}

the infimum being taken over all linear isomorphisms T : A — B. If there is no such isomorphism, we put Q(A; E) =
Similarly, we define the distance between two elements a € Ag + A1 and b € By + By relative to A and B by

disty 5(a,b) = inf {ITI;_5|T""5_}

Let us return to Theorem 3.3 and consider a couple X of the form stated there. We use John’s theorem to choose
a two-dimensional Hilbert space Zg such that || - ||z, < | - ||X0 <V2 - Iz, and let Zy = X1. The couple Z is then a Hilbert

couple, necessarily isometric to a rigid image of the couple Y. Thus we have y(Z) 2/+/3. The proof of Theorem 3.3 is now
completed by the statement of the following proposition.

Proposition 3.7. Let A and B be Gagliardo complete Banach couples. Fix a € Ag + A1 and b € By + By. Then
ca(A) < cp(B) dist; 5(a, b). (3.15)
In particular, y(ﬁ) < y(E)d(;\; ﬁ).

Proof. Write ¢, = ca(Z\) and cp = cb(ﬁ) Assume that C = dist; 4.5 b) is finite. Take € > 0 and let T: A —> B be an isomor-

phism such that Ta=b and ||T||||T Ni<c +e. Let P and Q be welghted L!-couples and f € Pg + P] and f e Qo+ Q1
be elements such that K(t, f; P) K(t,a; A) and K(t, f Q)_K(t b; B) for all t > 0. Then K(t f Q) IT|IK(t, f; P)
for all t > 0 and it follows from the Sedaev-Semenov theorem that there is a map S: P — Q such that S f=f and
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IS < |IT||+¢€. Let R: Q —~Bbea map such that Rf =b and ||R|| < cp+¢. Put Ug =T 'RSg for g € Py+ P1. Then Uf =a
and ¢, < ||U|| < Ccp + O(¢). This proves the estimate (3.15).
The last statement of the proposition follows by considering the suprema over a and b in (3.15). O

Remark 3.8. Let H be a finite-dimensional Hilbert couple. Then it is easy to see that there exists a finite sequence
A= (M)}, C [0, 00] such that H is isometric to the weighted ¢2-couple (£2, ZZ(A)) A generalization of this statement to
the case of infinite-dimensional Hilbert couples has been given by Sedaev [22]. By this latter observation, the interpolation
of Hilbert couples becomes essentially the same as that of weighted ¢2-couples. (Cf. also [17,2,1].)

3.3. Calderén constants for finite-dimensional couples

In this subsection, we prove estimates for the relative Calderén constants for couples of a given finite dimension. The
definition of these constants, which generalizes the notion of the K-divisibility constant, is the following.

Definition 3.9. Let K be either R or C and assume in the following that all Banach spaces are over the field K.
Let C be a non-negative constant. Two couples A, B are relative C-monotonic couples if for every ¢ >0, all @ € Ag + A1
and B € Bp + B1 such that

K@, B:B)<K(t,a;A), t>0, (3.16)
there exists a K-linear operator T =T, : A — B such that
Ta=pg and |T|;_53<C+e.

The smallest constant C satisfying this implication is called the Calderén constant relative to A and B and is denoted by
c(A; B). We also put

n(K) = sup{c(?\; B): dimgk(A;) <nand dimg(B;) <n, i =0, 1}.
Calderén constants for pairs of weighted LP spaces were studied at length in [24].
As for the case of K-divisibility constant, it is advantageous to think of the Calderén constants as functions of Banach
couples under the Banach-Mazur metric. We have the following lemma.
Lemma 3.10. Let A’ and B! be non-zero Banach couples fori =1, 2. Then
C(Al; lg']) < d(;\]; AZ)C(Z\Z; Ez)d(é]; Ez)

Proof. We may assume that both of the Banach-Mazur distances above are finite, because otherwise the statement is trivial.
Take a € A} + Al and B € B} +Bl such that K(t, B; B1) < K(t,a; A!) for all t > 0. Let To:A! — A% and Tg:B! — B2

be isomorphisms such that || TallIT" || < d(A'; A%) + € and || T|l|IT5 || < d(B'; B?) + €. It follows that
ITsI " K (¢, Ts(B); B?) < K(t,o; A) < || T K(t, Ta(e); A2)

for all t > 0. Take € > 0. It then follows that there exists an operator Tp: A2 32 such that To(Ta(cx)) = Tg(B) of norm
at most (c(A2; B2) + €)||Ts ||||TA . The operator T:A! — B! defined by T = T;'ToT4 then fulfills T(e) = g and ||T|| <

Ty Vll(c(A?; B?) + €)|I Ts TR ITall < d(A'; A%)c(A%; BAd(B'; BY) + O(e). D
We have the following theorem. The result as well as the method of proof is closely related to that of [8, Section 3].
Theorem 3.11. ¢, (C) =n and n/~/2 < cu(R) <n foralln € N.

Remark 3.12. In [8], Brudnyi and Shteinberg introduce the quantity x, defined by
#n = sup{c(A; A): dim(A;) <nfori=0,1},
where the supremum is taken with respect to Banach couples over the reals. In [8, Theorem 3.1], it is shown that n/2+v/2 <

an < /2. Since of course x, < cp(R), our result provides a somewhat better upper estimate for ;.

Proof of Theorem 3.11. “<”: Let A and B be couples such that all the spaces A; and B; are of dimension at most n (scalars
can be real or complex). Let o € Ao + A1 and B € Bo + B1 be elements satisfying (3.16). Use John’s theorem to find Hilbert
spaces H; and K; such that d(A; H) < +/n and d(B; K) < +/n. By Lemma 3.10

C(A' B) nc(H' K)
But Hilbert couples are exact relative Calderén couples, i.e., C(H K) 1 by Theorem 2.2 of [2]. Thus c(A B)
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“>": First assume complex scalars and define the space ¢2"(q) for suitable fixed values of p, g and r by the norm

n
p —kr,, |P n n
X = E x|, x=(x)]eC".
l ”lﬁ'r(q) : 1‘q k‘ (Xk)7
k=

For fixed p and q we also define the couple 57,’1’ Q= (Zﬁ’o(q), Zﬁ‘l(q)). (The usual conventions apply for the case p = c0.)
Choose a fixed ¢ > 1 and put h = (,/q, \/—27 ey ﬁ") € C". As is shown in [8], we have

n
. _ q—1 -
K (. h; £2(q)) K2 minf1,q~*¢} < Y= L e n i (q)). 3.17
K(t,h; €l(q k;q {Q}ﬂ+1( (@) (3.17)
(It is convenient to first prove the inequality in the cases t =¢', and then use the concavity of the K-functional.)
By (3.17) there exists an operator T :Zﬁo(q) — Z}l(q) such that T(h) =h and ||T|| < yﬂc(ﬁ‘”(q) £1(q)).
Since we are assuming complex scalars, the Riesz-Thorin theorem can be applied. It yields that

\/ﬁ"" 1 700 (. 71
1Tl o172y g1172g) < ﬁ_lc(ﬂn @1 £ (@)
This in turn yields
Vat1 Vit 71
n=Mhlga g < 7o @: @) Ikl gern =21 e(62@: G@).

It follows that ¢, (C) > c(€°°(q) ! (@) = n[Jrl Since q can be chosen arbitrarily large, this gives ¢, (C) > n. The modifica-
tions necessary to treat the real case are carried out as in [8]. O

We end this subsection with an open question.
Question 2. Is ¢, (R) =n?
3.4. On the case of a regular two-dimensional Hilbert couple

Let r be a positive number and let G= (Go, G1) be the couple for which Gy = K% and Gp is the weighted version of E%

with norm ||(x, )|, = VX% +1y2.

In this subsection we will prove a rather simple estimate: y(a) <2

Let us remark first that in the trivial case where r =1 we obtain y (¢3, 62) =1. In the general case, Proposition 3.7 yields
that y(G) is a continuous function of r and y (G) < max(«/7, 1/4/7). (This is because the Banach-Mazur distance between G
and (¢£3,¢%) is max(J/r, 1/4/1).)

Fix a point @ = (b, ¢) = (cosa, sina) € Go + G1 where a € [0, 27r). In fact, by Remark 2.2, we only need to consider the
case where a € [0, 7T /2].

We will look for a parametric representation of the curve which is the boundary 97" () of the Gagliardo diagram of «.

First let us fix some t > 0 and determine the point z = (x, y) for which the infimum K(t, @; Go, G1)? = inf 2cR? \|z||G

tlloe — z||é] is attained. The point which we are looking for is of course the unique critical point of the function ¢ (x, y) =
X+ y?+t(x—b)? +tr(y —c)? ie x={2 and y = {<..
It is clear that, for this choice of z, the point (\|z||%o, e — z||%1) belongs to a7 («), and that, furthermore, as t ranges

over (0, 00) we obtain all points of 91" (o) N {(x0,x1): X0 > 0, x; > 0} in this way. We note that b —x = —bﬂtf’gtb = 1_+r and
c—y=SHEEE — ot follows that
aT (@) N {(x0,x1): X0 >0, X1 >0} ={(yo(t), y1(1)): 0 <t < o0}, (3.18)

where the functions yp and y; are given by

2 2,2 2 2
t)=t b + re and = b + i forallt € (0, 00)
WO=Naro2 T arme U=V ayxor T atme »o0):

Obviously y(t) is a strictly decreasing function of t. Since yo(1/t)* =

increasing function of t.
Considering the limits of yp and y; as t tends to 0 and to oo, we deduce that dI"(«) is the union of the curve specified
n (3.18) with the two rays on the coordinate axes

{(0,v): VB2 4+rc2<v<oo} and {(v,0): 1< v <oo}. (319)

(t+1)2 + (t+r)2 it is also clear that yp(t) is a strictly
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Next we define two functions wo and w1 by wo(t) := p{(t) and w(t) := —y;(t) for all t € (0, c0). These will turn out to be

convenient weight functions to use in a couple of weighted L' spaces on (0, c0) as an essential step for calculating y(a).
We note that (3.19) implies

o0 o0
/ wo()dt =1 and / wq(t)dt =+/b% +rc2. (3.20)
0 0

We will see that routine calculations show that wg and wq are given explicitly by

b2 rZCZ
3 3
wi(t) =07 407 for j=0,1and ¢ € (0, 00). (3.21)
b2 122

1402 7 (1+r1)?

The proof of this in the case j =1 is immediate. For the case j =0 we can first observe that

. J b2 22
"1/t) - — = —— 1/0)) = _(+0? T @+n?
V0 5 == (o(1/n) = 2T

which implies that

3b? 3r2c? B2 N 22
3 3 T3 —
WO(l/t) — (1+t) (t+r) _ (1/t4+1) a+r/o
- T

(1+t)2 (t+1)2 (1/t+1)2 A1r/0?

which immediately gives (3.21) for j =0.

Note that wg and wq are both strictly positive on (0, c0).

We will use the couple P = (Po, P1) of weighted L' spaces on the measure space (0,c0) (equipped with Lebesgue
measure) where Po =L} wo and P1 = Ll . w,- Let f be the function which equals 1 identically on (0, c0). We will show that

K, f;P)=K(t, a;G) forallt>O0. (3.22)

For each t > 0 it is well known and very easy to check that
o0
K, f; ﬁ):/min{wo(s),twl(s)}ds (3.23)

and that an optimal decomposition f = for + f1, for which the infimum in the calculation of (3.23) is attained, is given
by fot = X, and f1,t= X(0,00)\E;» Where

E¢={s>0: wo(s) <twi(s)}. (3.24)

We need to consider the function

wo(t)? (1+t>2 + (1+rr>2 (r—r?c? (3.25)
w2 B» 2e 24 1ry2 4 202 '
1 o + ano b*(r+ {77)* +rec

In the trivial cases where (b, c) is either (0,1) or (1,0) this is a constant function, and it a simple matter to check that
(3.22) holds. (In the first case the K-functionals on the left and right sides of (3.22) both equal min{1, t} and in the second
case they both equal min{1, t\/r}.)

In the remaining non-trivial case when b and c are both non-zero it is easy to see from (3.25) that, for any r € (0, c0)
with r#£1,

wo(t)
w1 (t)

is a strictly increasing continuous function of t on (0, c0). (3.26)

(The two cases r <1 and r > 1 have to be considered separately.)
We introduce and calculate two “limiting” values of t by setting

2 2y 2 2 2
5 . wo(s) (r—r4)c b +rc
t; ;= lim =1 = 3.27
0= M W2 > +12¢2 b2 4122 (327)
and
2 _2y2
2 g Yo®) r—r)c b+, (3.28)

00 = L0 W1 (s)2 = r2(b2 + c2)
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The property (3.26) implies that the set E; defined in (3.24) is an open interval of the form E; = (0, u(t)), where u is
a non-decreasing function of t. By (3.27) and (3.28) we see that u(t) =0 for t < tg and u(t) = oo for t > t, and, for each
t € (to, teo), U(t) is the unique number in (0, co) for which wo(u(t))/wq(u(t)) =t.

We can now deduce that, for t € (to, teo), |l focllp, = 0”(0 wo(s)ds = Ou(t) Yo(9)ds = yo(u(t)) — ¥o(0) = yo(u(t)) and

I f1ellpy = [y wi(9)ds = = [ ¥{ () ds = y1((®) — limr—s.o0 1 (1) = y1 ((0)).

This shows that, as t ranges over the interval (to, ts), the point (|| focllpy, Il f1,cllp,) ranges over the curve (3.18), ie,
I'(f) = I' («). By the well-known relation between K-functionals and Gagliardo diagrams (see [5, Section 7.1]), this implies
that (3.22) holds. - -

It is clear that every bounded operator T :P — G uniquely determines and is uniquely determined by a suitable pair of
(equivalence classes of) measurable functions g;: (0, 00) — R for j =0, 1, via the formula

Th= (f go(s)h(s)ds, / g1(s)h(s) ds) forallhe L}, +L,, . (3.29)
0 0

When it is necessary to explicitly indicate the connection between the operator T and the functions gy and g which define
it via (3.29), we will use the notation Tg, ¢, in place of T.

Of course we need to be more explicit about the conditions that the functions go and g; must satisfy. Straightforward
arguments (exactly like the proof below of the equivalence of conditions (4.9) and (4.11) using the Lebesgue differentiation
theorem and a suitable form of Minkowski’s or Schwarz’ inequality) show that the norm of T is given by

T = { 75 i % } (3.30)
»_, ¢ = IMax, esssup .
P—G j=0,1 (0,00) wj

and so go and gi must be such that this expression in finite.

Remark 3.13. For our purposes, we can without loss of generality assume that r > 1, since for each r < 1, the couple G
is a rigid image of the corresponding couple where r has been replaced by 1/r. (Use Fact 3.5 and the rigid map (x, y) —

Y/ X))

Now we will consider the class 7 = 7p . of all bounded operators T: P — G which satisfy Tf =« and consider the
quantity ¢, = cq(G) =inf{||T|: T € 7}. We first make a simple observation:

Proposition 3.14. We have co = ¢z 2 = 1 and if a € (0, 7 /2) then ¢, < +/1 + b2. In particular, y(f;) <2.

Proof. By Remark 3.13 we can and will assume that r > 1.

Ifa=0, ie, if (b,c) =(1,0), then we have that w%(t) = w%(t) = ﬁ and the operator T =Tg, o, defined by go(s) =
ﬁ and gq(s) =0 satisfies Tf = (b,c) and ||T| = 1. Thus co = 1. The proof of the fact that c;,, =1 is equally simple. It
uses the functions go(s) =0 and g1(s) = m

Now let a € (0, r /2). We claim that it suffices to consider the operator T = Tg, o, given by go(s) =bwo(s) and gi(s) =
cw1(s)/v/b? +rc2. Indeed Tf =« by (3.20), and furthermore, by (3.27),

K6 +eis) A owis)? o, PPriE
2 = 2 2 2 S ¢ 2 2z <b°+ 1.
wg(s) b4 4+ rc? wo(s) (b% +r1c?)
Similarly, (3.28) yields the estimate
2 2 2 2 2

s)+rgi(s we(s rc rc

go()2 g]():bz (2)() LC (0P + 5 < b 41,
wi(s) wi(s) b*+rc b% +rc

We conclude that ¢, < /b2 + 1. It follows that y(é) < +/2 (the function a — ¢ is continuous by Proposition 3.7). O

Remark 3.15. The above proposition combined with a simple application of Proposition 3.7 and John's theorem, and also
with Theorem 3.3, shows that y (X) < 2 for every two-dimensional (real) Banach couple X.

3.4.1. Further discussion

From here onwards, in view of Remark 2.2, and since we have seen that co = cz/2 =1, we need only consider the case
where a € (0, 7 /2) and so the numbers b and c are strictly positive.

We will also suppose that r > 1 (cf. Remark 3.13).
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Let T =Tg, ¢, be a member of 7, . for which the infimum
ce= inf ||T|5_ 7 331
o= inf ITl5c (331)
is attained. Lemma 2.5 guarantees that such an operator T exists.
The exact value of ¢, evades us at this point, but we hope that the following remarks will provide a step on the way

towards calculating c, and therefore also y(a). We will show below that the functions go, g1 possess certain properties.
We will also prove the estimate cq < (1 4 +/7)/2. This will imply, in view of Proposition 3.14, that

y(G) <min{1+2ﬁ,\/§}. (3.32)

1o~ gj(s)ds|
Jo lgj®)lds
is also in 7p ¢ and that [Tz, 7 3¢ < I Tg.gll5_¢-

Hence, we can and will assume that go and g; are non-negative a.e. The conditions on T imply that

Let gp and g; be the functions defined by g; := |gjl for j =0, 1. It is easy to check that the operator T= T35

+g2<c2w? andalso

gO g] a 02 ) (333)

gO + rg <c? wi atalmost every point of (0, 00).
We introduce two subsets Eg, E1 of (0, c0) defined by

Ei={s€(0,00): go(s)> +r'gi(s)* =c2wi(s)?}, i=0,1.

The following simple fact is true.
Fact 3.16. The set Eg U Eq contains almost every point of (0, 00).
Proof. Suppose on the contrary, that there exists a set E C (0, oo) of positive measure, such that gé + g1 < czw(z) and also

gO —|—rg1 < czwf at every point of E. Then we can suppose, replacing E if necessary by a smaller subset also having positive

measure, that, for some positive €,

gﬁ + g% <(1- e)cgw% and also g(z) + rg% <(1- e)czwf at all points of E. (3.34)
For j=0,1 we define the function g; = \/g]zi—l—dy where
2 [wy wi
¢:eca)(5m1n{7,1—+r}. (3.35)
It follows easily from (3.33)-(3.35) that, for j =0, 1, we have
B+rgi=gi+rig+(1+r)p<ciws (3.36)

at every point of E and at almost every point of (0, co)\E.
Since wg and wq are both strictly positive on (0, co) and E has positive measure, it follows that

o0 o0 o0 o0
E::/Eg(s)ds>b=/go(s)d5 and E::/"g’1(s)ds>/g1(s)ds=c (3.37)
0 0 0 0

and so the operator S defined by S =Ty, v, where vo = %Eo and vi = £g; satisfies Sf = a. In view of (3.36), (3.37)

and (3.30), its norm satisfies ||Sllz_ ¢ < max{%, %}ca < ¢q. This contradicts the minimal property of cq, i.e. (3.31), and so
proves Fact 3.16. O

It is convenient to restate Fact 3.16 slightly differently as:
fora.e.s € (0,00) the point (go(s), g1(5)) € 3Qs,
where the sets Q; are defined by

Qs:=={(xy): x>0, y>0, ¥+ y> <cZwj(s), ¥ +ry* <ctwi(s)}.

The boundary of Qs consists of a segment of the x-axis, a segment of the y-axis, and subsets of the quarter circle C;
of radius c,wo(s) and of the quarter ellipse I's with semi-axes of lengths c,w1(s) and fcaw1(s) in the directions of the

x- and y-axes respectively.
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Since r > 1 we see from (3.25) that
wo(s) < wi(s) (3.38)

and so, on and slightly above the x-axis, the points of Is lie strictly to the right of Cs. On the other hand, since we shall
show that

1
wo(s) > —w1(s), 3.39
0(s) NG 1(8) (339)
it will follow that the points of Cs on and near the y-axis lie strictly above Is. The sets Cs and [ intersect at a single
point (x(s), y(s)) whose exact coordinates will be calculated in a moment. In view of (3.38) and (3.39) we will be able to
assert that, apart from parts of the x- and y-axes, the boundary of Q; consists of the circular arc C; of radius c,wo(s) from
(cawo(s), 0) to (x(s), y(s)) and the portion I';* of the quarter ellipse Iy from (x(s), y(s)) to (0, %ﬁcawﬂs)).

Let us now prove (3.39). Using (3.26) and (3.27) we see that it suffices to show that bz‘”czz > % which is clear, since

b2+r2c
rh? > b2,
To obtain explicit expressions for x(s) and y(s) we simply solve the two equations
x(s)2 + y(s)2 = cﬁ wo(s)2 and x(s)2 + ry(s)2 = c§w1 (s)2 (3.40)
which gives y(s)% = w and then x(s)2 = cg(rwo(sr)il—wﬂs)z). From this we deduce that
b(1+rs
X($) = Caw; () a+rs =01, (3.41)
Vb2(1 +18)2 +r1+ic2(1 4 5)2
and
cy/r(1+5) .
() =cqwj(s) j=0,1. (3.42)

VB2 £ 5)2 +r1+ic2(1 4 15)2

Remark 3.17. In addition to Fact 3.16 it is now plain that, for the optimal functions go and g; we have

go(s) = x(s) and gi(s) <y(s) onkEg

and likewise

go(s) <x(s) and gi(s) = y(s) onkj.
At first glance one might suspect that Eg = E1 = (0, 00), i.e., that go(s) = x(s) and g1(s) = y(s). However, if this were the
case, we would have that

o0 o0

/@ds>l>L and /y(s)ds>l>i,
Obca G V2 ccq a2

where we have used Proposition 3.14. On the other hand, a numerical calculation making use of the explicit formula (3.41)
with the values r =1000, b = ﬁ/Z and ¢ =1/2 yields fooo(x(s)/cab)ds ~ 0.6896 < 1/«/§. Thus the functions x and y are
not optimal in general.

We shall now use the operators T = Tyc,,y/c, t0 obtain some new information about y(é). From (3.40) and (3.30) it is

evident that ||T||z_ z = 1. In order to prove the estimate ¢g < (1+ J/1)/2 it clearly suffices to prove that (Tf); > —2b_ and

1+/1
(T2 > 175, ie,
o0 o0
X s> 2 and /y(s)ds> 2 (3.43)
) bcg 1+ 1 ) cca 1+1

In order to prove (3.43), we observe that, for j =0, 1, the functions

1+7rs . (145)2
- . =1/\/b2+r1+1c27( + )2
Vb2 +15)2 +1r1+ic2(1 + 5)2 (1+rs)
are increasing on (0, oo) and, likewise, the functions
Jr(1+5)
vi(s):= -
Vb2(1 + )2 + r1+ic2(1 +rs)?

uj(s) :=
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are decreasing on (0, 00). By (3.41) we obtain

00 © 1/ 00

X(S
/st= / ug(s)dyo(s) + / uo(s)dyo(s)
0 0 NG

> ug(0)(Yo(1/4/1) = ¥0(0)) + uo(1/4/1)(1 — yo(1/4/1))
! .m+l.<l_m>

N T 1+

=1+]_7 ‘b2+rCZ>1+1_\/F= 2 )
141 14+ 1441

Similarly, by using (3.42), we get

/ ycf) ds > v1(1/v/r)(y1(0) = 1 (/1) + vi(eo)n (1/3/7)
0
1 Jr N
- (VP2 1 - 1
N ] (m 1+ﬁ>+]+ﬁ NG
V(1 =2
SRR ) B e e

This establishes (3.43) and so indeed we have c; < (1 ++/7)/2 and can deduce (3.32).
4. The two-dimensional couple X = ((%, £§°)
4.1. Terminology, notation and some preliminaries

In this section we will study the couple (¢2, £5°) which we will always denote by X or (Xp, X1). We have seen that the
couple Y = (62,6%) is an exact Calder6n couple (see [2]) which is not exactly K-divisible, i.e., for which y(Y) > 1. In this
section, we shall see that X is another example of a couple having both these properties.

Lemma 4.1. X is an exact Calderén couple.

Proof. Suppose that f = (fo, f1) and g = (g0, g1) are two points in R? which satisfy K(t, g; 5() < K(t, f; X) for all t > 0.
We will show that there exists an operator T : X — X with norm ITl5_, 5% <1 such that Tf = g. We can of course assume
without loss of generality that fo > f1 > 0 and go > g1 > 0. The K-functional inequality satisfied by f and g is equivalent
to an E-functional inequality which can be written as

(fo —min(t, fo))’ + (f1 — mint, f1))* > (g0 — min(t, g0))” + (g1 — mint, g1))°

and which holds for all ¢t > 0.
It is clear that fo > go. (Otherwise we get a contradiction by choosing t = (fp + go)/2.) By setting t = 0 we also have
that f2 + f? > g3 + g7. This means that the condition

t t
f () ds > / g*(5)2ds (41)
0 0

holds for t =0, 1 and for all t > 2. (Here, our spaces 6% and £5° coincide with L? and L* on a measure space consisting of
two atoms each of measure 1. So the rearrangements of f and g are f* = fox[0,1) + f1X[1.2) and g* = gox[0,1) + &1 X[1,2)-)

Since both sides of (4.1) are affine functions on [0, 1] and [1, 2] it follows that (4.1) holds for all t > 0. Then we can
apply the theorem and proof of Lorentz and Shimogaki [19] to construct the required operator T. O

Consider the point a = (a, 1) € Xo + X1 where a > 1. Let E(t, «; )?) be the error functional

E(t,a; X) =inf{lla = Bllx,: B € X IBllx, <t}.
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For t € (0, 1], the optimal choice of 8 is (t,t), and for t € [1, a] the optimal choice of 8 is (t, 1), and for t > a the optimal
choice is 8 = «. Consequently

- Va—-t2+@1-162, 0<t<1,
Et,a; X)=1a—t, 1<t<a,
0, t>a.

Now let w: (0,a) — (1, 00) be a non-increasing function and consider the couple of weighted L' spaces P= (Po, P1) on
the measure space (0, a) (equipped with Lebesgue measure) where Py = LlW and Py =L'. Let f = X©,0), and let E(t, f; P) =
inf(|| f — gllp,: & € Po, llgllp, <t}. Since w > 1 and w is non-increasing, the optimal choice for g is X0 min(,a) for all
t € (0, 00). It follows that E(t, f; P)=|f — gllp, = fain(t,a) w(€)dE.

m
If w is continuous, then E(t, f; 13) is differentiable, with derivative equal to —w(t) for all t € (0, a).
The function E(t, «; X) is also differentiable on (0, a) and its derivative for t € (0, a) is given by

d - —2ta1 - pg<t<l,
—E(t,0; X) =1 /@02+1-t)?
dt -1, 1<t<a.
By general properties of the error functional, this derivative must be negative and non-decreasing. Thus the function
d > a1t gt <1,
Wy (t) = ——E(t,a; X) = { v/ {—a)2+(-1)? (4.2)
dt 1, 1<t<a

is continuous and non-increasing and w.(t) > 1 on (0,a). In fact, as can be shown directly, it is strictly decreasing on
(0, 1]. If we now choose w = w, then it is easy to check that E(t, f; P) = E(t,«; X) for all t > 0. This is equivalent, using
well-known connections between error functionals, K-functionals and the Gagliardo diagram, to the condition

K, f;P)=K(t, a;X) forallt> 0. (4.3)

For the rest of this section w will always denote the particular function defined by (4.2), for some choice of the con-
stant a. It is easy to check that, for every choice of a > 1, we have

1<w() < V2, andsoalso v w2(t)—1<1, forallte(0,a). (4.4)

For each fixed a > 1, let 7; be the set of all bounded linear operators T : P — X, which, for f= X0 and a =(a, 1)
and w as above, satisfy Tf = «.
Let T be an arbitrary operator in 7;. Then T has the form

Th=(ro(h), 21(h)) forallh e Po+ Py,
where Ao and A; are both elements of (Pg)* N (P1)* such that
ro(Xoa)=0a and A1(x@q) =1.

The norm of T satisfies ||T|3_, 3y < ¢ for some positive constant c, if and only if

o[> + |11 ()|* < k113, forallh e Po
and
IAillpyyx <c for j=0,1.
We are interested in the quantity
co:=inf{|Tl3_5: T € Ta}. (4.5)
By (4.3) and standard properties of the K-functional we clearly have that
=1 (4.6)

By Lemma 2.5 the infimum in (4.5) is attained for some T € 7.

There is of course a more concrete version of the representation given above for operators T € 7g:

A bounded linear operator T: P — X is determined by two functions gg and g1 in L°°(0, a). We denote this operator by
T =Tg, g, where

a

Th=Tgy.gh= (/h(é)go(é)ds,/h(é‘)& (E)ds) for each h € Po + P1. (4.7)
0

0
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Such an operator Ty, ¢, is in 7, if and only if the functions go and g; also satisfy

f go(6)de —a and / g6y ds = 1. (48)
0 0

For any Tg, ¢, : P — X, the norm estimate [ Tgo.g: l_, % < ¢ is equivalent to the two conditions

a 2 a 2 a 2
( / h@)go(s)ds> + ( / h©)gn (E)d$> < c2< / yh@)yw@)ds) forall h Py (4.9)
0 0 0
and
llgjlize <c forj=0,1. (4.10)
In fact (4.9) is equivalent to
808 +g1(6)* <*w?(§) forae.£ € (0,a). (4.11)

The proof that (4.9) implies (4.11) follows readily from the Lebesgue differentiation theorem. To prove the reverse implica-
tion, we note that the square root of the left side of (4.9) is equal to

sup /h(é)go(é)cose +h(€)g1(8)sin6 d& (4.12)
Ge[O.ZnJO

and, by Schwarz’ inequality, the absolute value of the integrand in (4.12) is dominated by |h(&)|v/go(§)% + g1(€)2.

4.2. A simple estimate from below for y (£2, £5°)

We can now easily show that X = (ZZ,ZSO) is an example, perhaps the simplest known example so far, of a Banach
couple whose K-divisibility constant satisfies

y(X) > 1. (413)
Remark 4.2. This example is of interest for a number of reasons.

o It is apparently the first known example of a couple of rearrangement invariant spaces which is not exactly K-divisible.

e It also shows that there is no “tight” connection between the exact K-divisibility property and the exact Calderén
property, since there are also exactly K-divisible couples which are not exact Calderén couples, or not even Calderén
couples. An example is provided by the couple (L' @ L®,L® @ L").

Using well-known results concerning K-divisibility (Theorem 2.3) it is easy to see that

Y(X) =supcq
a>1
where ¢, is defined by (4.5). We shall show that ¢, > 1 for every a > 1.

Suppose, on the contrary, that c; =1 for some a > 1. (Recall (4.6).) Let T be the operator in 7, whose existence we
established above, which satisfies ||T|3_, 3 =cq = 1. Then there exist functions go and g; in L*°(0, a) satisfying (4.8) and
also satisfying the estimates (4.10) and (4.11) for ¢ = 1. In particular, since foa go(§)dé =a and |go(&)| < 1 for ae. £ €(0,0),
we must have go(&£) =1 a.e. It follows that

a

a 1 1
28 —a—1)2
1=/g1($)dé</\/W2(%‘)—1d<§2/\/W2($)—1d5=/\/(a£§)zi(1_)E)z —1dé. (414)
0 0 0

0

The expression under the square root in the last integral can be rewritten as

@+1-262-@-§*-(1-6?> (@-§+0-§)>—@—§*—(1-§)7?
(@—82+01-¢)7? B (@—82+1-¢)7?
_ 2@-5€)0a-§)
@9+ 0-9%
This equals 1 for all & if a = 1. But, for all a > 1, we have M <1 for all &. This shows that (4.14) cannot hold,

(a—§)2+(1-§)
and so provides the contradiction which proves that ¢, > 1 and also establishes (4.13).

(415)
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Remark 4.3. It is easy to show that ¢, =1 when a = 1. In this case the function w assumes the constant value /2 on
(0,a) =(0,1) and the operator T = Tg, ¢,, which is obtained by simply choosing go and g; to be both identically 1, is in 7,
and satisfies ||T|z_ 5 =1.

4.3. A more elaborate calculation

From here onwards a will always denote a fixed number satisfying a > 1, and go and g; will always denote two particular
functions in L*°(0, a) which satisfy (4.7) and (4.8) for an operator Tg, ¢, € 7, which attains the infimum c, in (4.5). Therefore
go and gi satisfy (4.10) and (4.11) with ¢ = ¢4. Our goal here will be to show that gy and g; necessarily have certain

properties. Our calculations in this subsection will also lead to the estimate y()?) < :ﬁg

By familiar arguments we can and will assume that go and g; are both non-negative.
We will use the following very simple claim several times in subsequent steps of our argument:

Claim 4.4. Suppose that go and g1 are two non-negative functions in L°(0, a) which satisfy

a

/Eo(‘;‘)dé >a and /El(g)dé > 1. (4.16)
0
Then

T8 15 % > Ca-
Proof. Suppose, on the contrary that

IT%.5 15 % < Ca- (4.17)
Then the operator S defined by

(/ To()de /go@) (§)dé, m/gl(s)h(sms)

has norm ||S||3_, 5 strictly smaller than ¢q. But S € 7; and so we have a contradiction, which proves the claim. O

It will be convenient to define the planar set
Ee={(x.y) eR*: 0<x<cq, 0<y <, ¥+ y* <2w?(®))

for each & € (0, a). Then, reformulating our remarks above, for any non-negative measurable functions ug and u; on (0, a),
I Tug,us lp_ % < ¢q if and only if (ug(§),u1(§)) € E¢ for ae. & € (0,a). In particular, the two particular norm minimizing
functions go and g; which we are studying, satisfy this condition.

We note that the boundary of E¢ consists of two horizontal and two vertical line segments and a circular arc of ra-
dius cqw(&) which we will denote by I':. We let V¢ denote the vertical segment of the right side of the boundary of Eg,

ie.
={(ca, y): 0<y <cay/W2(§) -1}

The uppermost point of V¢, which is also the lowest point of %, is

(Car Cay/ W2(§) — 1) = (caW(§) cOs Y (§), caw (§) sin v (§))
1
h = JWiE)—1= . 4.18
where 1/ (§) = arctan/ w4 (&) arccos W@ ( )

Let U, be the family of all couples (ug, u1) of non-negative functions in L°°(0, a) which satisfy

(1) (uo(®),u1(§)) #(0,0) for a.e. £ € (0,a), and
(ii) 1 Tug,u, 35 < caq or, equivalently (uo(§),u1(¢)) € E¢ for ae. £ € (0, a).

We claim that the special functions go and g; satisfy

(80, 81) € Ua. (4.19)
They of course satisfy part (ii) of the definition. To show that they also satisfy part (i), let

={£€(0,0): (g0(8), £1(8)) = (0,0}
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and let §j = gjx©0.a\N + %WXN for j =0, 1. In view of (4.4) it is clear that (8o(&), Z1(§)) € E¢ for ae. & € (0, a), which is

equivalent to (4.17). But, if N has positive measure, then (4.16) also holds, which, by Claim 4.4, is impossible.
It is convenient to represent each (ug, u1) € Uy, in the “polar” form (ug, u1) = (p cosé, p sind) where p:(0,a) — (0, V2)

and 0:(0,a) — [0,Z] are the measurable functions defined by p(§) = ,/u%(éj)—i—u%(&) and 6(&) = arcsin ”pl(f)) for all

& € (0, a). Accordingly, we let P, be the family of all couples (p, 8) of functions p: (0,a) — [0,+/2) and 6:(0,a) — [0, Z]
such that (p cos6, psinf) € Ug.

Claim 4.5.If (0, 6) € P and ¢ : (0, a) — [0, Z] is a measurable function satisfying

e(s><¢(9><% or e(s>>¢(9>>%

forae. & € (0,a), then (p, ¢) € Pq.
This is obvious, in view of the form of the sets Eg.
We have now the following simple “variational principle”:
Lemma 4.6. Suppose that the functions p and 6 satisfy
(p,0)ePy and go=pcosf and g1 = psind. (4.20)

Suppose that A and B are each measurable subsets of (0, a) with positive measure. Suppose that p, q are real constants such that, for
some § > 0 and each constant t € [0, 8], the function ¢: = 6 + tp xa + tq xp satisfies

(0, ¢1) € Pa. (4.21)

Then at least one of the following two inequalities

p [ p(&)sin6(E)ds +q f p(E)sind(E) g >0 (4.22)
A B
and
p/p(é)cow(é)dé +qf,0(§)6059($)d$ <0 (4.23)
A B
must hold.

Proof. Define Go(t) = fg'p(é)cos ¢ (§)dé and G (t) = fg’,o(é)sinqbt(é)ds for all t € R. Standard arguments (e.g. via domi-
nated convergence) show that Gy and G; are differentiable for all t € R and their derivatives are continuous functions of t
given by

G()(t)=—P/,0(§)Sin¢r($)d§ —Q/P(E)Sin@(é)df

A B
and

610 =p [ pE)cosou(@)ds +0 [ ) cosgue) .
A B
Suppose that neither of (4.22) and (4.23) hold. Then G{(0) and G/ (0) are both strictly positive. Thus Go and G; are both
increasing functions in some neighborhood of 0. So, for some &’ € (0, §], we have Go(8") > Go(0) and G1(8") > G1(0), or, in
other words, the functions go := p cos¢s and gq := psings satisfy (4.16). But, in view of (4.21), these same two functions
also satisfy (4.17). By Claim 4.4 this is impossible, so at least one of (4.22) and (4.23) must hold. O
As our first application of Lemma 4.6 we will prove that

go(§) > g1(§) forae.§€(0,0). (4.24)
If the functions p and 6 satisfy (4.20) then (4.24) is equivalent to

(&) < % fora.e. € (0,a). (4.25)

So, if (4.24) is false, then the set {£ € (0,a): go(¢§) < g1(§)} = {€ € (0,a): 0(§) > Z} has positive measure and, fur-
thermore, for some positive number 7o, the set A :={£ € (0,a): 0(§) > no + %} also has positive measure. Since
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foa go(&)dé > f(;’ g1(&)dé the set {£€ € (0,a): go(€) > g1(E)}={£ €(0,a): O(¢) < %} must also have positive measure, and

so, for some positive number 74, the set B={£§ € (0,a): 0(§) < % — 11} also has positive measure. Let p be an arbitrary

negative number and let ¢ = 1. Let us also choose § = min{no/|pl, n1}. Then, using Claim 4.5, we see that all the hypotheses
of Lemma 4.6 hold. Consequently, Lemma 4.6 implies that

p/p(é)sine(sms+/p(s>sine(s)as>o or
A B

p/p<s)cose(s>ds+/p<$)cose(s>ds <o.

A B

But now we shall show that we have a contradiction by finding a negative number p which satisfies

p/p(é)siHH(E)dS+/p(§)sin9(é)d$ <0 and

A B (4.26)
p/p(é)cose(s)ds+/p<s>cose(s>ds - 0.
A B

In view of (4.19), p(§) > 0 for ae. £ and [, p(§)sinf(§)dé > [, p(§)sinZ d& > 0. We also have [, p(§)sinf(£)dg >
Ja p(E)cosb(§)dE > 0. Similarly [, p(£)cos6(§)dE > [ p(§)cos L dé >0 and [, p(§)cosO(£)dé > [, p(§)sinb(§)dg > 0.

If fA,o(:f)cos@(E)dg =0 then every number p < —ﬁﬁiﬁ% satisfies (4.26). Otherwise, if fA p(E)cosO(&)dE #0,
then condition (4.26) is equivalent to
[z p(E)sind (&) dé [z (&) cosO (&) dg
PT re@sino@ds - " PT T @ coso@)de
and so also to
[z p(€)sinb(&)dE [ p(€) cosO(§)dE

- <—-p< .
[4 p(&)sin6(§) dg [4 (&) cos6 (&) dE
So it is clear that we can find p with the required properties, if and only if
[z p(&)sin6 (&) dg - Jap()sin6 (&) dé
Jzp(E)cosO(E)ds [, p(§)cosb(§)dE "

Since sinf(&) < cosH (&) for all & € B, and sinf (&) > cos@ (&) for all & € A, the left term of (4.27) is strictly less than 1
and the right term of (4.27) is strictly greater than 1. This proves (4.27) and so provides the contradiction which estab-
lishes (4.24).

(4.27)

Claim 4.7. For almost every £ € (0, a), if g80(§) = ¢q then g1(§) = cq/ W2(€) — 1 and, consequently, (g0(£), g1(£)) is the upper
endpoint (caw(§) cos Y (§), caw (&) sinyr (§)) of Ve as defined in (4.18).

Proof. This amounts to showing that the set
Vi={£€(0,0): go(€) =ca, g5(&) +27(5) <czw*(©)}
has measure 0. If this is not true, then the function u1 := g1 x(0,1)\v + CaV w2 — 1yy satisfies
a a

/ul(é)dé > /gl(s)ds 1. (4.28)

0 0

Furthermore (in view of (4.4)) it is clear that (go(£), u1(§)) € E¢ for a.e. & € (0,a). Since ¢ > 1 and fé’ 20(&)dé =a the set
Vi={& €(0,a): go(€) < cq} must also have positive measure. Let V, be some subset of V{ which also has positive measure
and define

8= g0X©.\V, T CaXv, and &= U1 X©0,0\V-

Then (8o(&),81(&)) € E¢ for ae. £ € (0,a) and [{ Zo(§)dE > [} go(§)dé = a. If we choose the measure of V, to be suffi-
ciently small then we will also have, using (4.28), that fl g1(€)dE > fla g1(§)dé = 1. Once again we can apply Claim 4.4 to
obtain a contradiction. This proves that the set V has measure 0. O
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Our next step is to show that
theset Q = {£ € (0,a): g1(§) =0, go(§) < ¢q} has measure 0. (4.29)
If this is false, then we consider the functions go = ,/%(g(z) —I—Cg)XQ + goXxo,ano and g = min{,/c2w? —Eg,ca}xQ +

g1X(0,0\0- It is clear that on the set Q we have gg < 8o < ¢q < cgw and consequently also g; > 0 = g1. Consequently
8o and g satisfy (4.16). It is also clear that (80(£),21(§)) € E¢ for a.e. § € (0,a). We can thus use Claim 4.4 to obtain
a contradiction and complete the proof of (4.29).

Claim 4.8. Suppose that, as in Lemma 4.6, the functions p and 0 satisfy (4.20). Then

1
pE)=cq min{m,w@)} forae. & €(0,a). (4.30)
Proof. Let us use the notation p(§) =cq min{coslw, w(€)}. In view of (4.25), it is clear that
(0,6) € Pa (431)

and that, furthermore, p(¢) < p(¢) for a.e. & € (0,a). Suppose, contrarily to what we claim, that the set R = {§ €
(0,a): p(&) < P(£)} has positive measure. Let us write R = Rg U Ry where Rg =R N {& € (0,a): 6(§) =0} and R; = R\Ro.
We observe that R is exactly the set Q of (4.29) which has measure 0. Consequently R has positive measure. This implies
that the functions g = p'cos@ and gy = gy sin6 satisfy [ &;(§)d& > [; g;(€)d& for j=0, 1. In view of (4.31) and Claim 4.4
this is impossible. O

We can now show that the functions p and 6 which satisfy (4.20) also satisfy
1 T
arccos —— < 0(§) < — forae. & €(0,a). (4.32)
w(§) 4
In view of (4.25), we can do this by showing that the set
1
w(§)

has measure 0. Let us first observe that, by Claim 4.7, almost every & € (0,a) satisfying go(&§) = ¢4 also satisfies 6(&) =
Y (&) = arccos ﬁ and so is not in W. On the other hand, every & € W satisfies % < cosB(&). Consequently, by (4.30),
p(&) =cq/cosw(§) or, equivalently, go(§) =c, for a.e. £ € W. So indeed W has measure 0 and we have proved (4.32).

W= {g € (0,a): arccos > 9(5)}

Theorem 4.9. Suppose that p and 6 are the functions which satisfy (4.20). Then 6 (¢) assumes a constant value a.e. on the set

1
w(§)

U= {S € (0,a): arccos < 0(‘;‘)}. (4.33)

Proof. Suppose that the theorem is false. Then there exist two subsets A and B of U, each having positive measure, and
numbers 6y and 6 such that 0 <6y <61 <7 /4 and

0() <6 forallé €A and 6, <6() forall& € B.

We can assume further that each & € B also satisfies arccos ﬁ < 6(&) — ¢ for some positive number 8y, since, if not B can

be replaced by some subset of positive measure which does have this property. Let p =1 and let q be an arbitrary negative
number. Then, if § = min{Z — 6o, %}, all the hypotheses of Lemma 4.6 are satisfied.

To complete the proof we will show that, for some choice of q < 0, both the inequalities

/p(é)sine(é)dé+Q/p($)sin9(é‘)dé‘ <0 (4.34)
A B

and
/p(é)cow(é‘)dé+pr(é‘)6059(€)d$ >0 (4.35)
A B

hold and thus we have a contradiction to the conclusion which would follow from Lemma 4.6.



Y. Ameur, M. Cwikel / J. Math. Anal. Appl. 360 (2009) 130-155 153

We recall (cf. (4.19)) that p(&) > 0 for a.e. £ € (0,a). So

/p(é)sine(@ds>/p<$)sinel dszsine1/p<s>d5>o
B B B
and

T 1

cosO(&)d 2[ cos —d =—/ dé > 0.
/P(E) (§)d¢ p&) 1 & 7 p&)dg
B B B
Since tanfy < tanf; we have

sinfp  cosby

" <

sinf;  cosbq

and consequently the numbers

N IGEIGLS _ [apE)coso(&)dE
4~ — and rq:=
"~ [z p@)sin0(§)dé [p p(&) cosO (&) de

satisfy
C Jap@)sinbods [, p)costods
= Jgp@®)singids " [ p(§)cosbrds

Clearly every number q satisfying ro < —q < rj is negative and also satisfies (4.34) and (4.35). This completes the proof of
the theorem. O

Let 6, be the constant value assumed a.e. by (£) on the set U defined by (4.33). Then, perhaps after altering o and 6 on
sets of measure 0, we obtain that U = {§£ € (0, a): arccos w(g) < 6g}. In view of (4.32), arccos W(E) =6(&) for ae. £ € (0,a)\U.

If 6, =0, then U is empty and so w(&)cos6 (&) =1 for a.e. £ € (0, a). Consequently (cf. (4.30)) p(§) =cq/cosO (&) for a.e.
& €(0,a) and so
a a
/go(s)dé =fp(€)cos(9($)d§ = Cqd.
0 0

But, since ¢, > 1, this contradicts (4.8). We deduce that 6, > 0.
At the other extreme, if 6; > arccos — ( ) then, since w is strictly decreasing on [0, 1], we obtain that U = (0,a) and it
follows from (4.30) that p(&) =co,w(€) for a.e. & € (0,a). We also have

_ o go(&)d& B o p(&) cos b, d&
Jog1®)ds [ p(&)sinb,dg
which implies that sinf, = a/~/a% + 1. Consequently,

a

=tanbg,

0/ g1(6)dé = 0/ p(6)sinly de = ——— 0/ Caw(€) dE. (4.36)
In view of (4.2),

/w(g)dg = —/ %E(S,a; X)de =E(0,0; X) — E(@,a; X) = Va2 + 1.

0 0

Combining this with (4.36) gives that fo g1(&)d&é = acy, which contradicts (4.8) and so establishes that 6; < arccos W(O)
From the past two paragraphs and the fact that w is strlctly decreasing from w(0) to 1 on [0, 1] we deduce that there
exists a unique number &; € (0, 1) such that 6, = arccos — and that U = (&g, a). This in turn implies that

W(f )
=/go<s>ds =/p<s)cos9(s>ds
0 0
& a

Ca
/coso(g) c059(5)d€+/CaW($)cosoad§
0 &a
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= Caba + Ca 086 (E(Ea, a: X) — E(a, o3 X))

=it t iy @&+ (- &)

Ca
= Caba + 72&((0—&)4-(1—5))
L oe2 ., 2 2,4 2
—a_l_l_zga(a%'a‘f‘-’;:a 265 +a° — 20k +&; +1- 26+ &)
_ Ca 2_ _
_a+1_2%_a(a & +1—&).
So we have
2 _
Ca:w' (4.37)

az —ag +1-&
We also have

a a

1=/g1<s>ds =[p(s>sine(s>ds
0 0
&a . a
/ 036G) sinf (&) dé +/ng(§)smea dg
0 &
£

=ca/tan9(§‘)d?§ + ¢q5in b (E(€q, o3 X) — E(@, ; X))

f\/wz(@—ldsm,/ 2(5)\/«1 £02+ (1 — )2,

We have already calculated another expression for w2(£) — 1 in (4.14) and (4.15), so we can substitute it in both terms of
the preceding line to get

&
2@-9H1 -5 1 [ 2@-&)0-&
1=c d + g EPTpm
C !/(a—g)2+(]—§)2 £+c W(%_a)\/(a—fa)z—F(]—Ea)z\/(a £)?% 4 ( £)

&a

/ 20a—-§)(1-8§) d 2(a—&)(1—&)((@— &)+ (1 —&)?)

E+4cq .
(@a—872%+01-¢)> a+1-2&

This latter formula can be rewritten as

&a
=/\/ 2(a—‘s)(1—s))2 dH\/Z(a—sa)(l—sa) £ 4 (1 — )2, (4.38)
0

@-6*+1-¢ a+1-2§

If we now substitute for ¢, in this equation, using (4.37) we will obtain a rather complicated equation for &;, which we
will investigate further in the next subsection.
On a more simple level, we can use (4.37) to obtain estimates for ¢, from above and below

a?+a—2at a® +a—2at
inf —————— << sup 5——F———.
te(Ol)a +1—(a+ 1)t te(0,1) @ +1—(a+ 1)t

. 2 q . . _ . L

The function t +— % like any function of the form AIC’—_E where A, b and c are positive constants, is either an
increasing or decreasing function on any interval which does not contain the pomt where its denominator vanishes. In this
case, its minimum on [0, 1] equals 1 and is attained at t = 1. Its maximum is ;’21‘1 and is attained at t = 0. The maximum

2
a’+a
value of e

to 1.2071.

as a ranges over [1, c0) is attained at a =1+ +/2 and is thus equal to 443v2 \which is approximately equal

4122
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4.4. Some numerical experiments

In this final subsection we present some numerical experiments, which lead us to a guess for the approximate value of
the K-divisibility constant of (¢2, £5°), namely y (€2, £5°) ~ 1.0304. Fix some value of a and try to find the corresponding
value of x = &; by defining

X
F) = / 20— -0 . [2@=00-X(@=0*+1-%?) ¢ —ax+1-x
B (a—t)2+1-17? a+1-—2x a2 +a —2ax
0
and solving Eq. (4.38) which is simply f(x) = 0. We are using “Maple” via its interface with “Scientific Workplace”. We will
fix some values of a and then try to find x € (0, 1) such that f(x) = 0. We are currently ignoring the question of whether

. . . 2 g
such an x is unique. To find the corresponding value of c, we compute g(x) = %
Here is a table which summarizes some of our numerical experiments, and which indicates that maybe the value of y

is approximately 1.0304:

a X Cq
12 94667221295 1.0298
125 94778089315 1.0304
1275 94811047015 1.0304
13 .94840470115 1.0304
15 195139101435 1.0279
16 .95340037845 1.0259
18 95781371025 1.0217
2 196218058915 1.0179
22 96618489325 1.0148
142 96997017725 1.0121
3 977870722252 1.0073
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