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1. Introduction

Let us begin by recalling the celebrated Brudnyi–Krugljak K -divisibility theorem (cf. [6], [7, p. 325, Paragraph C and
Theorem 3.2.7]).

Theorem 1.1. Let �A = (A0, A1) be a Banach couple, and let N be either a fixed natural number or ∞. There exists a constant CN ,
depending only on �A and N, which has the following property: Suppose that a is an arbitrary element of A0 + A1 whose Peetre
K -functional satisfies the estimate

K (t,a; �A) �
N∑

n=1

φn(t) for all t > 0, (1.1)

where the functions φn are each positive and concave on (0,∞) and
∑N

n=1 φn(1) < ∞. Then there exists a sequence of elements

an ∈ A0 + A1 such that a = ∑N
n=1 an (where this series converges in A0 + A1 norm) and

K (t,an; �A) � CNφn(t) for all t > 0 and each 1 � n < N + 1. (1.2)

The main interest of Theorem 1.1 resides in the special case when N = ∞, but we will also need to consider other values
of N below. We refer to [7] and also to remarks in the introductions of [9] and [11] for more details about Theorem 1.1 and
its applications. Its original proof appears in [7]. Various alternative proofs using the so-called “strong fundamental lemma”
can be found in [9,4], cf. also [3].

We shall use the notation γN (�A) for the infimum of all numbers CN having the property stated in Theorem 1.1. This
number may be called the N-term K -divisibility constant for �A. When N = ∞, we follow the notation and terminology of
previous papers and simply write γ (�A) instead of γN (�A) and speak of the K -divisibility constant of �A. It is not hard to check
that these constants satisfy

1 � γi(�A) � γ j(�A) � γ (�A), 1 � i � j.

(Strictly speaking, the first inequality is only true if �A is non-zero. “Non-zero” means that we exclude the trivial cases
where A0 = A1 and this space consists solely of the zero element of some Hausdorff topological vector space. In these cases
γ (�A) = 0.)

All Banach spaces in this paper will be assumed to be over the reals, except when it is explicitly stated otherwise. But it
is clear from the statement of Theorem 1.1 that if A0 and A1 happen to be complex Banach spaces, then the value of γ (�A)

will be the same, independently of whether we consider the underlying scalar field to be R or C. For a related comment
see Remark 2.6.

Our main goal in this paper is to calculate the exact value of, and obtain new estimates for γ (�A) for some particular
“natural” choices of the couple �A. Some of the auxiliary results which we obtain en route to this goal may perhaps also be
useful in the future for other purposes, including the determination of γ (�A) for other couples.

Theorem 1.1 is one of the most important and useful results in real interpolation theory, and potentially also has inter-
esting applications beyond that theory, for example in the study of various kinds of moduli of continuity. In its applications
so far, the precise value of γ (�A) does not seem to play a crucial role. However, as has turned out to be the case with other
important theorems in analysis, we believe that searching for optimal constants, and thus optimal proofs, can also enhance
our general understanding of this very significant result.

It is known (cf. [11]) that

1 � γ (�A) � 3 + 2
√

2 ≈ 5.8284 (1.3)

for every non-zero Banach couple �A.
It has been shown [10] that, in the case where �A is a non-zero couple of Banach lattices (or complexified Banach lattices)

of measurable functions on the same underlying measure space, the estimate (1.3) can be sharpened to

1 � γ (�A) � 4.

A number of couples �A are known to be exactly K -divisible, i.e. to have the property that γ (�A) = 1. These include (L1, L∞)

and the “weighted” L p couples (L1
w0

, L1
w1

) and (L∞
w0

, L∞
w1

), for all choices of weight functions w0 and w1. The proof that

γ (�A) = 1 for the first of these couples can be found in [16]. It also follows from an obvious generalization of the proof of
Lemma 5.2 of [15, p. 44]. The proof for the latter two couples is contained in Proposition 3.2.13 of [7, p. 335]. Let us also
mention another collection of trivial examples of exactly K -divisible couples. These are the non-zero couples �A = (A0, A1)

for which A0 = A1 isometrically. (For such a couple, every element a ∈ A0 + A1 satisfies K (t,a; �A) = min{1, t}‖a‖A0 . So, if
a satisfies (1.1) and we choose an = φn(1)∑∞

m=1 φm(1)
a for each n ∈ N, then it is obvious that we obtain (1.2) with C∞ = 1 when

t = 1, and consequently also for all t > 0.)
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On the other hand it is also known that γ (�A) > 1 for certain couples �A. The first example to be given of such a couple
was �A = (C, C1), studied by Krugljak in [18]. Subsequently Podogova [20] showed that this same couple satisfies γ (�A) �
3+2

√
2

1+2
√

2
≈ 1.5224. As announced in [21], Pavel Shvartsman has produced a different and much simpler example of a couple

�S = (S0, S1) whose 2-term K -divisibility constant satisfies γ2(�S) = 3+2
√

2
1+2

√
2

. He takes S0 to be R
2 equipped with the �∞-norm

and S1 to be a one-dimensional subspace of R
2 whose unit ball is a line segment which makes an angle of π

8 with one of

the coordinate axes. Furthermore, Shvartsman shows that this couple is “extremal” among all couples �A = (A0, A1) satisfying

A j ⊂ R
2 for j = 0,1, in the sense that all such couples satisfy γ2(�A) � 3+2

√
2

1+2
√

2
. It will follow from one of our results in this

paper that γ (�S) � 2
√

2/3 ≈ 1.6330, and thus that the exact value of γ (�S) lies somewhere in the interval (1.52,1.64).
Apparently, neither (C, C1) nor Shvartsman’s finite-dimensional couple can be realized as couples of Banach lattices on

a measure space. But it turns out that there also exist couples of lattices whose K -divisibility constant is bigger than 1. The
first examples of such couples were found in [12]. They are somewhat “exotic” couples �A = (A0, A1) where the spaces A0

and A1 are both contained in R
3. They each satisfy γ (�A) > 1 as a consequence of the fact that they do not possess another

property, almost exact monotonicity, which is defined on p. 30 of [12].
In this paper we deal with what could be considered two of the simplest, “nicest” and most “natural” couples among

those which are not already known to be exactly K -divisible, namely a couple �H = (H0, H1) of Hilbert spaces, and the
lattice couple (L2, L∞). In addition to its other good properties, (H0, H1) is known, as shown in [2], to be an exact Calderón
couple. (L2, L∞) is also a Calderón couple [19] and the optimal decomposition for obtaining its K -functional exactly is quite
simple to describe. But it turns out, perhaps rather surprisingly, that neither of these couples are exactly K -divisible in
general, and one can even find two-dimensional versions of each of these couples for which exact K -divisibility does not
hold.

The paper is organized as follows: In Section 2 we recall some definitions and collect some general preliminary results
which will be needed in other sections. In Section 3 we find the exact value of γ (�Y ) where �Y is the simplest non-trivial
version of a couple of Hilbert spaces. Our result is that γ (�Y ) = 2/

√
3. After considering various generalizations of this result,

we consider all other couples of (real) Hilbert spaces which are contained in R
2, and we prove a (rather more crude) upper

estimate for their K -divisibility constants, namely γ (�G) <
√

2.
Finally, in Section 4 we consider the couple (L2, L∞) and, in particular, the case where the underlying measure space

consists of two atoms of equal measure, i.e. the two-dimensional couple �X = (�2
2, �

∞
2 ). It turns out to be quite easy to show

that �X is an exact Calderón couple and that γ ( �X) > 1. But the determination of the exact value of γ ( �X) is a much longer
and as yet unfinished story. We obtain some (rather complicated) equations which in principle could be solved to obtain
the exact value of γ ( �X). Numerical experiments suggest that maybe γ ( �X) is approximately equal to 1.03. The sharpest

estimates which we have are 1 < γ ( �X) < 4+3
√

2
4+2

√
2

≈ 1.2071.

These examples demonstrate that there are in general no tight connections between the properties of being an exactly
K -divisible couple and of being an exact Calderón couple.

For the reader’s convenience, we list and indicate the sizes of some of the numerical constants which appear frequently
in the paper. We have that

γ (�Y ) = 2/
√

3 ≈ 1.1547, γ2(�S) = 3 + 2
√

2

1 + 2
√

2
≈ 1.5224,

γ (�S) � 2
√

2/3 ≈ 1.6330, γ ( �X) <
4 + 3

√
2

4 + 2
√

2
≈ 1.2071.

2. Some definitions and general preliminary results

For the basic notions of the real method of interpolation, we refer, e.g. to [4], [5] or [7]. For any given Banach couple
�A = (A0, A1), we let A∼

j denote the Gagliardo completion of A j , j = 0,1, i.e. the Banach space of elements a of A0 + A1 which

are limits in A0 + A1 norm of bounded sequences in A j or, equivalently, for which the norm ‖a‖A∼
j

= supt>0 K (t,a; �A)/t j

is finite. Obviously A∼
0 + A∼

1 = A0 + A1. We also recall that the couple �A = (A0, A1) and the corresponding couple of its
Gagliardo completions �A∼ = (A∼

0 , A∼
1 ) have identical K -functionals, i.e. K (t,a; �A) = K (t,a; �A∼) for all a ∈ A0 + A1 and all

t > 0. Consequently we also have γ (�A) = γ (�A∼).
There is a close connection between K -divisibility and couples of weighted L1 spaces which we wish to exploit. Our

point of departure is the following lemma.

Lemma 2.1. Let �A = (A0, A1) be an arbitrary Banach couple and let a be an arbitrary element of A0 + A1 . Then there exist a measure
space (Ω, S,μ) and measurable functions w j :Ω → (0,∞] for j = 0,1 and a measurable function fa :Ω → [0,∞) such that

K (t,a; �A) = K (t, fa; �P ) for all t > 0, where �P is the couple of weighted L1 spaces �P = (L1
w (μ), L1

w (μ)).

0 1
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The straightforward proof of this result, which uses [5, Lemma 5.4.3, p. 117], can be found in [9, pp. 46–47]. It should not
be overlooked that the weight functions w0 and w1 in Lemma 2.1 have the slightly exotic property that they are permitted
to assume the value +∞. Since every function in L1

w0
(μ)+ L1

w1
(μ) vanishes a.e. on the set where w0 = w1 = ∞, we always

can and will assume that this set is empty. We also mention that the proof in [9] shows that (Ω, S,μ) and w0 and w1 can
be chosen rather simply and quite explicitly, and we can also, for example, arrange things so that fa is a constant function.

It turns out that for each �A and each a ∈ A0 + A1 and each corresponding �P and fa with the properties just specified,
there exists a bounded linear operator T : �P → �A∼ such that a = T fa . Let Ta denote the set of all such operators T for some
given choice of a and fa . Then it turns out that

γ (�A) = sup
a∈A0+A1

ca where ca = ca(�A) := inf
T ∈Ta

‖T ‖�P→�A∼ . (2.1)

This formula, whose proof will be briefly recalled below, turns out to be particularly suitable for our calculations of
K -divisibility constants in this paper.

It is sometimes convenient to re-express (2.1) slightly differently. For �A, a, �P and fa as above, let Λa be the set of linear
operators T : �P → �A∼ with ‖T ‖�P→�A∼ � 1 such that T fa = λa for some positive number λ = λT . Then obviously (2.1) is the
same as

γ (�A) = sup
a∈A0+A1

(
inf

T ∈Λa

1

λT

)
. (2.2)

Remark 2.2. Clearly Tta = Ta and so cta = ca for all scalars t = 0. Furthermore, if, as is the case for most couples considered
in the paper, A0 and A1 are both Banach lattices of measurable functions on the same underlying measure space, then it is
easy to see that, in the formula (2.1), the supremum can be replaced by the supremum over all non-negative functions a in
A0 + A1.

Indeed, we have for every a ∈ A0 + A1 that ca = c|a| .

At first sight it seems that there could be some ambiguity in (2.1), because the set Ta depends on our par-
ticular choices of the measure space (Ω, S,μ) and the associated functions fa , w0 and w1. The key to showing
that in fact there is no such ambiguity is the theorem of Sedaev–Semenov [23] (see [13] for an alternative proof)
or, more precisely, the generalization of that theorem [9, Theorem 3, pp. 47–49] to the case of weight functions
which are permitted to take the value +∞. It follows immediately from that theorem, that if (Ξ, Y, σ ) is a sec-
ond measure space and v0 and v1 are weight functions and ga is a non-negative measurable function such that
K (t, ga; L1

v0
(σ ), L1

v1
(σ )) = K (t, fa; L1

w0
(μ), L1

w1
(μ)) for all t > 0 then, for each ε > 0, there exist two linear operators

U : (L1
v0

(σ ), L1
v1

(σ )) → (L1
w0

(μ), L1
w1

(μ)) and V : (L1
w0

(μ), L1
w1

(μ)) → (L1
v0

(σ ), L1
v1

(σ )) which satisfy U ga = fa , V fa = ga ,
‖U‖(L1

v0
(σ ),L1

v1
(σ ))→(L1

w0
(μ),L1

w1
(μ)) � 1 + ε and ‖V ‖(L1

w0
(μ),L1

w1
(μ))→(L1

v0
(σ ),L1

v1
(σ )) � 1 + ε .

By composing the operators U and V with other suitable operators, we readily see that the quantity infT ∈Ta‖T ‖�P→�A∼ is
independent of the choices of the measure space, weight functions and the function fa .

For the convenience of the reader who may not be familiar with these details, we mention that the fact that Ta is
non-empty and the formula (2.1) are both obtained by considering the following theorem which, as we shall explain, is
intimately related, in fact equivalent, to Theorem 1.1 (cf. [14, Proposition 1.40]).

Theorem 2.3. Let �A = (A0, A1) be an arbitrary Banach couple. Then there exist constants M1 , M2 and M3 , depending only on �A, with,
respectively, the following properties:

(i) For each a ∈ A0 + A1 , there exists a sequence {aν}ν∈Z of elements in A∼
0 ∪ A∼

1 which satisfies a = ∑
ν∈Z

aν (convergence in
A0 + A1 norm) and also∑

ν∈Z

min
{‖aν‖A∼

0
, t‖aν‖A∼

1

}
� M1 K (t,a; �A) for all t > 0. (2.3)

(ii) Let w0 and w1 be arbitrary weight functions on an arbitrary measure space (Ω, S,μ). Let �P be the couple of weighted L1 spaces
�P = (L1

w0
(μ), L1

w1
(μ)). Suppose that the elements a ∈ A0 + A1 and f ∈ L1

w0
+ L1

w1
satisfy

K (t,a; �A) � K (t, f ; �P ) for all t > 0. (2.4)

Then there exists a bounded linear operator T : �P → �A∼ such that ‖T ‖�P→�A∼ � M2 and T f = a.
(iii) Suppose that (Ω, S,μ), w0 , w1 , f and a are exactly as in part (ii), except that instead of (2.4) they satisfy

K (t,a; �A) = K (t, f ; �P ) for all t > 0.

Then there exists a bounded linear operator T : �P → �A∼ such that ‖T ‖� �∼ � M3 and T f = a.
P→A
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In fact the infima of all constants M1 , M2 and M3 satisfying (i), (ii) and (iii) respectively, coincide, and they all equal γ (�A), the
infimum of the constants C∞ for which Theorem 1.1 holds.

For a proof of part (ii) of this theorem, which uses Theorem 1.1 and gives the value M2 = C∞ +ε for any choice of ε > 0,
see [7, Theorem 4.4.12, pp. 586–588]. We mention in passing that part (ii) has an important and immediate consequence.
It provides a simple description of all relative interpolation spaces for operators mapping from any weighted L1 couple into
any Banach couple �A which satisfies A∼

j = A j for j = 0,1.
Part (i), also known as the “strong fundamental lemma”, is proved in [9, Theorem 4, pp. 54–59] for M1 ≈ 8 and, with

a better constant M1 ≈ 3 + 2
√

2, in [11, pp. 73–77]. Cf. also [10] for more explicit versions of some of the steps of the proof
in [11]. (Note that in (2.3) we adopt the conventions that ‖aν‖A∼

j
= ∞ if a /∈ A∼

j and that min{α,∞} = min{∞,α} = α for
every α ∈ R.)

Part (ii) can be deduced from part (i), and with M2 = M1 +ε for any choice of ε > 0. This can be done, using (an obvious
modification of) an argument which appears in [9, pp. 54–55] cf. also [15, Theorem 4.8, p. 38]. Moreover, this result, and
also part (iii), are also both valid in the case where either or both of the weight functions w0 and w1 are permitted to
take the value +∞ on some subsets of Ω . The proof in [9] makes use of the generalized version [9, Theorem 3, p. 47]
of the Sedaev–Semenov theorem already mentioned above. (The Sedaev–Semenov theorem is also the main, perhaps only,
ingredient of the “obvious modification” mentioned above.)

The connection between parts (ii) and (iii) is a simple matter. Obviously (ii) implies (iii) with M3 = M2. On the other
hand we can also easily obtain that (iii) implies (ii) with M2 = M3 + ε for any choice of ε > 0. This is done by first using
Lemma 2.1 to obtain fa and then using the generalized version of the Sedaev–Semenov theorem to find a linear map U
between appropriate couples of weighted L1 spaces, which satisfies U f = fa and has norm arbitrarily close to 1.

Theorem 1.1, with C∞ = M2 can be deduced from part (ii) of Theorem 2.3, again using arguments from [9, pp. 54–55]
and using the more general version where the weight functions are permitted to take infinite values.

Conversely, as mentioned in [11, p. 71] and shown more explicitly in [14, Proposition 1.40], it is also possible to deduce
part (i) (and consequently also part (ii)) of Theorem 2.3 from Theorem 1.1, with M1 = C∞ + ε for any choice of ε > 0.

It should be noted that part (iii) of the above theorem, together with the connections described above between the
constants M1, M2 and M3 for which parts (i)–(iii) of the theorem hold, give us the formula (2.1).

Remark 2.4. Let a ∈ A0 + A1 be a fixed element. By an adaption of the proof of Theorem 2.3, one can show that the infima
of the constants M1, M2 and M3 fulfilling the conditions (i)–(iii) for this particular choice of a, coincide, and their common
value is ca(�A).

For most couples �A = (A0, A1) which we study in this paper, A0 and A1 are both finite-dimensional. For such couples
it is clear that A∼

j = A j isometrically for j = 0,1. It is also helpful to know, as the following lemma shows, that, for such
couples, the infimum infT ∈Ta ‖T ‖�P→�A appearing in (2.1) is actually attained for each fixed element a. This of course implies
that the infimum infT ∈Λa 1/λT in (2.2) is also attained for each a. We will refer to any operator T for which this latter
infimum is attained as an optimal element of Λa . Obviously such an operator satisfies ‖T ‖�P→�A = 1.

Lemma 2.5. Let �F = (F0, F1) and �A = (A0, A1) be Banach couples and suppose that A0 + A1 is a finite-dimensional space. Let a and f
be arbitrary fixed elements of A0 + A1 and F0 + F1 respectively. Suppose that the class Ta of all bounded linear operators T : �F → �A
which satisfy T f = a is non-empty. Then there exists an operator S ∈ Ta such that ‖S‖�F→�A = infT ∈Ta ‖T ‖�F→�A .

Proof. Let N be the dimension of A0 + A1 and let {ek}N
k=1 be a basis of A0 + A1. Then every bounded operator T : F0 + F1 →

A0 + A1 defines and can be defined by a collection λ1, λ2, . . . , λN of N linear bounded linear functionals on F0 + F1, via
the formula T g = ∑N

k=1 λk(g)ek for each g ∈ F0 + F1. Consider a sequence of elements {Tn}n∈N in Ta such that ‖Tn‖�F→�X �
ca + 1/n, where ca = infT ∈Ta ‖T ‖�F→�A . Let λn,k denote the bounded linear functional on F0 + F1 defined for each n ∈ N and

each k ∈ {1,2, . . . , N}, such that Tn g = ∑N
k=1 λn,k(g)ek for each g ∈ F0 + F1. Now let us define the operator S by

Sg =
N∑

k=1

λ∗,k(g)ek for each g ∈ F0 + F1,

where the N linear functionals λ∗,1, λ∗,2, . . . , λ∗,N are given by

λ∗,k(g) = B
({

λn,k(g)
}

n∈N

)
for each g ∈ F0 + F1, where B ∈ (�∞)∗ is a Banach limit (i.e. an element of (�∞)∗ which satisfies |B({un}n∈N)| �
lim supn→∞|un| for all {un}n∈N ∈ �∞ and also B({un}n∈N) = limn→∞ un for every convergent sequence {un}n∈N). It easy to
see that each sequence {λn,k(g)}n∈N is indeed in �∞ and it is straightforward, if a little tedious, to verify that the operator S
has all the required properties. We leave these matters to the reader. �
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Remark 2.6. For all the couples �A = (A0, A1) considered in this paper, A0 and A1 are both Banach lattices of real valued
measurable functions with the same underlying measure space. As usual, we can define the complexification of such a lat-
tice A j to be the space, which we may denote by AC

j , consisting of all complex valued measurable functions g such that

|g| ∈ A j , with the obvious norm. It is easy to see that the complexified lattice couple �AC = (AC

0 , AC

1 ) satisfies γ (�AC) = γ (�A).
(Use the fact that for any function a ∈ AC

0 + AC

1 we have K (t,a; �AC) = K (t, |a|; �A).)

3. On the K -divisibility constant for Hilbert couples

3.1. The K -divisibility constant for the couple �Y = (Y0, Y1) = (�2
2, �

2
1)

The purpose of this subsection is to prove the following theorem.

Theorem 3.1. Let �Y = (Y0, Y1) be the Banach couple of subspaces of R
2 obtained by taking the unit ball of Y0 to be the disk

{(x, y) ∈ R
2: x2 + y2 � 1} and the unit ball of Y1 to be the line segment {(x,0) ∈ R

2: −1 � x � 1}. Then the K -divisibility con-
stant of the couple �Y is given by

γ (�Y ) = 2√
3
. (3.1)

Proof. Consider the point α = (cos a, sin a) ∈ Y0 + Y1 where a ∈ [0,2π). Let Ea be the set consisting of every number which
is the norm ‖T ‖�P→�Y of some bounded linear operator T from some couple �P of weighted L1 spaces into �Y , which satisfies
T f = α for some element f ∈ P0 + P1 for which

K (t, f ; �P ) = K (t,α; �Y ) for all t > 0. (3.2)

Note that the weight functions w0 and w1 used in the definition of P0 and P1 are permitted to assume the value +∞ on
some sets of positive measure. We shall explicitly need this option here.

Let ca = inf Ea . It follows from Remark 2.2 that γ (�Y ) = supa∈[0,π/2] ca . We claim that in fact

γ (�Y ) = sup
a∈(0,π/2)

ca. (3.3)

To show (3.3) we first observe that, since K (t, T f ; �Y ) � ‖T ‖�P→�Y K (t, f ; �P ) for all t > 0 and for every bounded operator
T : �P → �Y , we must have ca � 1 for every a ∈ [0,π/2]. It turns out to be rather easy to show that ca � 1 in the two special
cases, a = 0 and a = π/2, and this will of course imply (3.3).

In the case where a = 0, i.e., α = (1,0), we use a very simple couple �P where the underlying measure space consists of
a single point b which has measure 1 and ‖h‖P0 = ‖h‖P1 = |h(b)| for every h ∈ P0 + P1. (I.e., w0(b) = w1(b) = 1.) We also
use the “function” f ∈ P0 + P1 defined by f (b) = 1 which clearly satisfies

K (t, f ; �P ) = min{1, t} = K
(
t, (1,0); �Y )

for all t > 0.

Then we use the operator T defined by T (h) = (h(b),0) for all h ∈ P0 + P1 to show that c0 � 1.
In the case where a = π/2, i.e., α = (0,1), it is convenient, once again, to use an underlying measure (Ω,Σ,μ) space

containing (at least) one point b which is an atom of measure 1. But this time the weight functions w0 and w1 for which
P j = L1

w j
(μ) should be chosen to satisfy w0(b) = 1 and w1(b) = +∞. This means that every function h in P1 satisfies

h(b) = 0 and so the linear map T defined by T h = (0,h(b)) maps P1 into Y1 with norm 0 and P0 into Y0 with norm 1.
Furthermore the function f = χ{b} satisfies T f = (0,1) and K (t, f ; �P ) = 1 = K (t, (0,1); �Y ) for all t > 0. This shows that
cπ/2 � 1 and so completes the proof of (3.3).

In the light of the preceding calculations it remains to calculate or estimate ca for values of a ∈ (0,π/2). So let us indeed
fix a ∈ (0,π/2) and set α = (cos a, sin a) = (α1,α2). It is easy to see that the error functional E(t,α; �Y ) = inf{‖α − β‖Y0 :
β ∈ Y1, ‖β‖Y1 � t} is given by the formula

E(t,α; �Y ) =
{√

(t − α1)2 + α2
2, t ∈ [0,α1],

α2, t > α1.

Now we will describe a particular couple of weighted L1 spaces �P = (P0, P1) on the (non-empty) interval [0,α1], for
which the function f = χ[0,α1] satisfies (3.2). Once again we use the fact that (3.2) is equivalent to

E(t, f ; �P ) = E(t,α, �Y ) for all t > 0. (3.4)
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To make (3.4) hold, we choose a measure μ on [0,α1] which coincides with Lebesgue measure on [0,α1) and such that the
singleton set {α1} has measure μ({α1}) = 1. Then we take P j = Lw j ([0,α1],μ) for j = 0,1, where the weight functions w0
and w1 are defined by

w0(t) =
{− d

dt E(t,α; �Y ) = α1−t√
(α1−t)2+α2

2

, t ∈ [0,α1),

α2, t = α1

and

w1(t) =
{

1, t ∈ [0,α1),

+∞, t = α1.

Since w0 is decreasing on [0,α1) it is easy to obtain that

E(t, f , �P ) =
∫

[min(t,α1),α1]
w0 dμ =

∫
[t,∞)∩[0,α1)

w0 dμ + α2

for each t > 0 which immediately also gives us (3.4) and (3.2).
Let us now define E∗

a to be the subset of Ea consisting of the numbers ‖T ‖�P→�Y obtained in the special case where �P is
the particular couple

�P = (
L1

w0

([0,α1],μ
)
, L1

w1

([0,α1],μ
))

which we have just defined, and the function f for which T f = α is given by f = χ[0,α1] . In view of the generalized version
of the Sedaev–Semenov theorem in [9], it is clear that ca is also the infimum of the set E∗

a .
Any bounded linear operator T : �P → �Y for this particular choice of �P must be given by the formula

T h =
( ∫

[0,α1)

g1(ξ)h(ξ)dξ + β1h(α1),

∫
[0,α1)

g2(ξ)h(ξ)dξ + β2h(α1)

)
(3.5)

for all h ∈ P0 + P1. Here g1 and g2 are suitable bounded measurable functions on [0,α1) and β1 and β2 are real numbers.
For all h ∈ P1 we have h(α1) = 0. But all such functions h must also satisfy

∫
[0,α1)

g2(ξ)h(ξ)dξ + β2h(α1) = 0. Consequently
g2 = 0 a.e. on [0,α1). Thus the norm ‖T ‖P1→Y1 equals ‖g1‖L∞[0,α1) . The norm ‖T ‖P0→Y0 is the supremum of

θ1

∫
[0,α1]

(g1χ[0,α1) + β1χ{α1})h dμ + θ2β2h(α1) =
∫

[0,α1]

(
θ1 g1χ[0,α1) + (θ1β1 + θ2β2)χ{α1}

)
h dμ

as h ranges over the unit ball of P0 and (θ1, θ2) ranges over the unit circle. Let us first calculate the supremum, for a fixed
choice of (θ1, θ2), as h ranges over the unit ball of P0. The standard duality between L1 and L∞ gives us that this supremum
equals∥∥∥∥θ1 g1χ[0,α1) + (θ1β1 + θ2β2)χ{α1}

w0

∥∥∥∥
L∞([0,α1],μ)

= max

{
θ1 ess sup

ξ∈[0,α1)

∣∣∣∣ g1(ξ)

w0(ξ)

∣∣∣∣, |θ1β1 + θ2β2|
α2

}
. (3.6)

We now claim that

‖T ‖P0→Y0 = max

{
ess sup
ξ∈[0,α1)

∣∣∣∣ g1(ξ)

w0(ξ)

∣∣∣∣,
√

β2
1 + β2

2

α2

}
. (3.7)

This is because the expression in (3.6) equals the expression on the right side of (3.7) for a suitable choice of (θ1, θ2) on the
unit circle (either (1,0) or (

β1√
β2

1 +β2
2

,
β2√

β2
1 +β2

2

)). Furthermore it is dominated by the expression on the right side of (3.7) for

all other points (θ1, θ2) on the unit circle.
Since w0(ξ) < 1 for all ξ ∈ [0,α1), we have that

‖T ‖P1→Y1 = ‖g1‖L∞[0,α1)

= ess sup
[0,α1)

∣∣g1(ξ)
∣∣ � ess sup

ξ∈[0,α1)

∣∣∣∣ g1(ξ)

w0(ξ)

∣∣∣∣.
This means that the norm ‖T ‖�P→�Y is also given by the expression on the right side of (3.7).

Of course here we are only concerned with those operators T for which Tχ[0,α1] = (α1,α2), i.e.∫
g1(ξ)dξ + β1 = α1 and β2 = α2. (3.8)
[0,α1)
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By Lemma 2.5 there exists such an operator T which satisfies ‖T ‖�P→�Y = ca .
Evidently the functions g1 and numbers β1 and β2 which are used in the formula defining T must satisfy |g1(ξ)| �

ca w0(ξ) for a.e. ξ ∈ [0,α1) and
√

β2
1 + β2

2 � caα2. Consequently, substituting from (3.8), we have

α1 =
∫

[0,α1)

g1(ξ)dξ + β1 �
∫

[0,α1)

ca w0(ξ)dξ +
√

c2
aα

2
2 − β2

2

= ca
(√

α2
1 + α2

2 − α2
) + α2

√
c2

a − 1 = ca(1 − α2) + α2

√
c2

a − 1.

In the special case where a = π/6, i.e. when α1 = √
3/2 and α2 = 1/2, the previous inequalities immediately imply that

√
3 � cπ/6 +

√
c2
π/6 − 1.

This is false if cπ/6 < 2/
√

3. I.e., we have shown that

cπ/6 � 2/
√

3. (3.9)

We shall now prove that ca � 2/
√

3 for all a ∈ (0,π/2). Having chosen such a value of a, we set α1 = cos a and α2 = sin a.
Since

α1 + α2 =
√

α2
1 + 2α1α2 + α2

2 >

√
α2

1 + α2
2 = 1,

we have that α1
1−α2

> 1. It is clear that the function φ(x) := α1−x
1−α2

decreases from α1
1−α2

to 1 on the interval I = [0,α1 +
α2 − 1]. This in turn means that the continuous function ψ(x) := α2

√
φ2(x) − 1 − x is also decreasing on the same interval.

Since ψ(0) > 0 and ψ(α1 +α2 − 1) = 1 −α1 −α2 < 0, there exists a number β1 in the interior of I such that ψ(β1) = 0, i.e.

β1 = α2

√(
α1 − β1

1 − α2

)2

− 1. (3.10)

We shall use this number in the formula (3.5) to define an operator T : �P → �Y where we choose the other numbers and
functions in the formula by setting g2(ξ) = 0 (as we are obliged to do) and also

g1(ξ) = α1 − β1

1 − α2
w0(ξ) for all ξ ∈ [0,α1) and β2 = α2. (3.11)

Observe that, with these definitions,

Tχ[0,α1] =
(

α1 − β1

1 − α2
(1 − α2) + β1,α2

)
= (α1,α2),

i.e. the quantity Ca := ‖T ‖�P→�Y belongs to E∗
a . In particular, ca � Ca . But, in view of (3.7) and (3.10), we have

Ca = α1 − β1

1 − α2
.

This in turn can be substituted in (3.10) to give

β1 = α2

√
C2

a − 1

and so

Ca = α1 − β1

1 − α2
= α1 − α2

√
C2

a − 1

1 − α2
.

We deduce that

Ca + α2

1 − α2

√
C2

a − 1 = α1

1 − α2
. (3.12)

We claim that (3.12) implies that

Ca � 2/
√

3. (3.13)

If this is false, then

α1
>

2√ + α2
√

4 − 1 = 1√
(

2 + α2
)

1 − α2 3 1 − α2 3 3 1 − α2
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and so
√

3α1 > 2(1 − α2) + α2 = 2 − α2. Consequently, 3α2
1 > 4 − 4α2 + α2

2 . Since α2
1 + α2

2 = 1 it follows that 3 − 3α2
2 >

4 − 4α2 +α2
2 , i.e. that 4α2

2 − 4α2 + 1 < 0. But this cannot hold for any real number α2. This contradiction establishes (3.13).
We immediately deduce that ca � 2/

√
3 for all a ∈ (0,π/2). Combining this with (3.9) and (3.3) gives (3.1) and completes

the proof of the theorem. �
3.2. Generalizations and further remarks

We have the following generalization of Theorem 3.1.

Theorem 3.2. Let U and V be non-trivial Hilbert spaces and consider the couple �W = (U ⊕ V , U ). Then γ ( �W ) = 2/
√

3.

The proof is very similar to the case of �Y . We sketch the changes necessary to make the proof work in the general case.
Each norm one element of U ⊕ V can be written in the form α1u + α2 v where u ∈ U and v ∈ V are unit vectors and

the numbers α1 and α2 satisfy α1 � 0, α2 � 0 and α2
1 + α2

2 = 1. It is easy to see that

K (t,α1u + α2 v; �W ) = K (t,α; �Y ) = K (t, f ; �P ), t > 0,

with f = χ[0,α1] and �P = (L1
w0

, L1
w1

) defined as before. For w ∈ W0 + W1 let cw = cw( �W ) be the quantity defined by (2.1).
It follows from Remark 2.2 that

γ ( �W ) = sup{cα1u+α2 v},
the supremum being taken over all points (α1,α2) of the unit circle such that α1,α2 � 0 and all unit vectors u ∈ U , v ∈ V .

For fixed u, v and α = (α1,α2) as above we now choose T : �P → �W as

T h =
( ∫

[0,α1)

g1(ξ)h(ξ)dξ + β1h(α1)

)
u + α2h(α1)v (3.14)

where the functions g1 and the number β1 are defined by (3.10) and (3.11). Clearly, T f = α1u + α2 v . Moreover, as in the
case for �Y , one verifies that this operator T satisfies

‖T ‖�P→ �W = max

{
ess sup
ξ∈[0,α1)

∣∣∣∣ g1(ξ)

w0(ξ)

∣∣∣∣,
√

β2
1 + α2

2

α2

}
.

By the reasoning at the end of the proof of Theorem 3.1, we now obtain that cα1u+α2 v � ‖T ‖�P→ �W � 2/
√

3, proving that
γ ( �W ) � 2/

√
3.

In order to prove the reverse inequality, we observe that an arbitrary operator S : �P → �W such that S f = α1u + α2 v can
be represented in the form

Sh =
( ∫

[0,α1)

G1(ξ)h(ξ)dξ + B1h(α1)

)
⊕ (

α2h(α1)v
)

where h ∈ P0 + P1 and G1 ∈ L∞([0,α1), U ) and B1 ∈ U . Putting g1(ξ) = (G1(ξ), u) and β1 = (B1, u), we obtain a corre-
sponding operator T of the form (3.14) also satisfying T f = α1u +α2 v and such that ‖T ‖�P→ �W � ‖S‖�P→ �W . Now, in the case
when α1 = √

3/2 and α2 = 1/2, the estimate ‖T ‖�P→ �W � 2/
√

3 follows exactly as in the case for �Y .
It seems plausible that couples of the above form are extremal amongst all Hilbert couples in the sense that their

K -divisibility constant is maximal. Thus we have the following open question.

Question 1. Does γ ( �H) � 2/
√

3 hold for every Hilbert couple �H?

For a comment related to this question, see Remark 3.8 below.
We now turn to another consequence of Theorem 3.1. We have the following result:

Theorem 3.3. Let �X = (X0, X1) be a Banach couple such that X0 is two-dimensional and X1 is one-dimensional and X1 ⊂ X0 . Then
γ ( �X) � 2

√
2/3.

Note that Shvartsman’s couple �S [21], where S0 is R
2 equipped with the �∞-norm and S1 the one-dimensional subspace

of R
2 whose unit ball makes an angle of π/8 with the positive x-axis, is of the form occurring in Theorem 3.3 and satisfies

γ (�S) � 3+2
√

2
1+2

√
2

. (At this point it may be helpful to glance back at the table giving the sizes of numerical constants, which

appears at the end of Section 1.)
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We shall see that Theorem 3.3 can be deduced using the relation (2.1), i.e., γ ( �X) = supa∈X0+X1
ca( �X). To this end, we

need a way to keep track of how the numbers ca change under suitable maps. We will first prove that every so-called “rigid
map” leaves ca unchanged.

Definition 3.4. Let �A = (A0, A1) and �B = (B0, B1) be two Banach couples. A linear operator T : A0 + A1 → B0 + B1 which
is one-to-one, and, for j = 0 and j = 1, maps A j onto B j and satisfies ‖T a‖B j = c j‖a‖A j for all a ∈ A j and some positive

constant c j , is called a rigid map of �A onto �B . If such a map exists, then we say that �B is a rigid image of �A. (This is of
course the same as saying that �A is a rigid image of �B .)

A classical and much used example of two couples which are rigid images of each other, goes back to the paper [25] of
Stein and Weiss, where it was pointed out that, in the terminology of Definition 3.4, any couple of weighted L p spaces �B =
(L p0

w0(Ω,Σ,μ), L p1
w1 (Ω,Σ,μ)) on some measure space (Ω,Σ,μ) where 1 � p0 < p1 � ∞, is a rigid image of an unweighted

couple �A = (L p0 (Ω,Σ,ν), L p1 (Ω,Σ,ν)) for some other measure ν on the same measure space.

Fact 3.5. If �B is a rigid image of �A then γ (�B) = γ (�A). Furthermore we have that ca(�A) = cT a(�B) for all a ∈ A0 + A1 , where T is a rigid
map of �A onto �B.

In order to prove Fact 3.5, we first note that standard arguments show immediately that K (t, T a; �B) = c0 K ( c1t
c0

,a; �A) for
all t > 0 and all a ∈ A0 + A1.

Put b = T a and suppose that K (t,b; �B) �
∑∞

n=1 ψn(t) for all t > 0, where the functions ψn : (0,∞) → (0,∞) are all

concave and
∑∞

n=1 ψn(1) < ∞. Then c0 K ( c1t
c0

,a; �A) �
∑∞

n=1 ψn(t). Since φn(t) := c−1
0 ψn(

c0t
c1

) is concave for each n and∑∞
n=1 φn(1) < ∞ it follows from Remark 2.4 that, for each ε > 0, there exists a sequence of elements {an}n∈N in A0 + A1

such that a = ∑∞
n=1 an with convergence in A0 + A1 norm and K (t,an; �A) � (ca(�A) + ε)φn(t) for all t > 0 and all n ∈ N. If

we set bn = T an for each n then it is clear that b = ∑∞
n=1 bn with convergence in B0 + B1 norm and

K (t,bn; �A) = c0 K

(
c1t

c0
,an; �A

)
�

(
ca(�A) + ε

)
c0φn

(
c1t

c0

)
= (

ca(�A) + ε
)
ψn(t)

for all t > 0 and all n ∈ N. This shows that cb(�B) � ca(�A) + ε for each positive ε . It follows that cb(�B) � ca(�A) and of course
an analogous argument using T −1 in place of T shows that ca(�A) � cb(�B). This finishes the proof of Fact 3.5.

To further study the action of linear maps on the quantities ca , it is convenient to introduce the counterpart of the
classical Banach–Mazur distance for Banach couples.

We have the following definition.

Definition 3.6. Let �A = (A0, A1) and �B = (B0, B1) be Banach couples. If A j is isomorphic to B j for j = 0,1, then the
Banach–Mazur distance between �A and �B is defined by

d(�A; �B) = inf
{‖T ‖�A→�B

∥∥T −1
∥∥�B→�A

}
,

the infimum being taken over all linear isomorphisms T : �A → �B . If there is no such isomorphism, we put d(�A; �B) = ∞.
Similarly, we define the distance between two elements a ∈ A0 + A1 and b ∈ B0 + B1 relative to �A and �B by

dist�A,�B(a,b) = inf
T a=b

{‖T ‖�A→�B
∥∥T −1

∥∥�B→�A
}
.

Let us return to Theorem 3.3 and consider a couple �X of the form stated there. We use John’s theorem to choose
a two-dimensional Hilbert space Z0 such that ‖ · ‖Z0 � ‖ · ‖X0 �

√
2‖ · ‖Z0 and let Z1 = X1. The couple �Z is then a Hilbert

couple, necessarily isometric to a rigid image of the couple �Y . Thus we have γ (�Z) = 2/
√

3. The proof of Theorem 3.3 is now
completed by the statement of the following proposition.

Proposition 3.7. Let �A and �B be Gagliardo complete Banach couples. Fix a ∈ A0 + A1 and b ∈ B0 + B1 . Then

ca(�A) � cb(�B)dist�A,�B(a,b). (3.15)

In particular, γ (�A) � γ (�B)d(�A; �B).

Proof. Write ca = ca(�A) and cb = cb(�B). Assume that C = dist�A,�B(a,b) is finite. Take ε > 0 and let T : �A → �B be an isomor-

phism such that T a = b and ‖T ‖‖T −1‖ < C + ε. Let �P and �Q be weighted L1-couples and f ∈ P0 + P1 and f̄ ∈ Q 0 + Q 1

be elements such that K (t, f ; �P ) = K (t,a; �A) and K (t, f̄ ; �Q ) = K (t,b; �B) for all t > 0. Then K (t, f̄ ; �Q ) � ‖T ‖K (t, f ; �P )

for all t > 0 and it follows from the Sedaev–Semenov theorem that there is a map S : �P → �Q such that S f = f̄ and
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‖S‖ < ‖T ‖+ε. Let R : �Q → �B be a map such that R f̄ = b and ‖R‖ < cb +ε. Put U g = T −1 R Sg for g ∈ P0 + P1. Then U f = a
and ca � ‖U‖ � Ccb + O(ε). This proves the estimate (3.15).

The last statement of the proposition follows by considering the suprema over a and b in (3.15). �
Remark 3.8. Let �H be a finite-dimensional Hilbert couple. Then it is easy to see that there exists a finite sequence
λ = (λi)

n
i=1 ⊂ [0,∞] such that �H is isometric to the weighted �2-couple (�2

n, �2
n(λ)). A generalization of this statement to

the case of infinite-dimensional Hilbert couples has been given by Sedaev [22]. By this latter observation, the interpolation
of Hilbert couples becomes essentially the same as that of weighted �2-couples. (Cf. also [17,2,1].)

3.3. Calderón constants for finite-dimensional couples

In this subsection, we prove estimates for the relative Calderón constants for couples of a given finite dimension. The
definition of these constants, which generalizes the notion of the K -divisibility constant, is the following.

Definition 3.9. Let K be either R or C and assume in the following that all Banach spaces are over the field K.
Let C be a non-negative constant. Two couples �A, �B are relative C-monotonic couples if for every ε > 0, all α ∈ A0 + A1

and β ∈ B0 + B1 such that

K (t, β; �B) � K (t,α; �A), t > 0, (3.16)

there exists a K-linear operator T = Tε : �A → �B such that

Tα = β and ‖T ‖�A→�B < C + ε.

The smallest constant C satisfying this implication is called the Calderón constant relative to �A and �B and is denoted by
c(�A; �B). We also put

cn(K) = sup
{

c(�A; �B): dimK(Ai) � n and dimK(Bi) � n, i = 0,1
}
.

Calderón constants for pairs of weighted L p spaces were studied at length in [24].
As for the case of K -divisibility constant, it is advantageous to think of the Calderón constants as functions of Banach

couples under the Banach–Mazur metric. We have the following lemma.

Lemma 3.10. Let �Ai and �Bi be non-zero Banach couples for i = 1,2. Then

c
(�A1; �B1) � d

(�A1; �A2)c
(�A2; �B2)d

(�B1; �B2).
Proof. We may assume that both of the Banach–Mazur distances above are finite, because otherwise the statement is trivial.

Take α ∈ A1
0 + A1

1 and β ∈ B1
0 + B1

1 such that K (t, β; �B1) � K (t,α; �A1) for all t > 0. Let T A : �A1 → �A2 and T B : �B1 → �B2

be isomorphisms such that ‖T A‖‖T −1
A ‖ < d(�A1; �A2) + ε and ‖T B‖‖T −1

B ‖ < d(�B1; �B2) + ε . It follows that

‖T B‖−1 K
(
t, T B(β); �B2) � K

(
t,α; �A1) �

∥∥T −1
A

∥∥K
(
t, T A(α); �A2)

for all t > 0. Take ε > 0. It then follows that there exists an operator T0 : �A2 → �B2 such that T0(T A(α)) = T B(β) of norm
at most (c(�A2; �B2) + ε)‖T B‖‖T −1

A ‖. The operator T : �A1 → �B1 defined by T = T −1
B T0T A then fulfills T (α) = β and ‖T ‖ �

‖T −1
B ‖(c(�A2; �B2) + ε)‖T B‖‖T −1

A ‖‖T A‖ < d(�A1; �A2)c(�A2; �B2)d(�B1; �B2) + O(ε). �
We have the following theorem. The result as well as the method of proof is closely related to that of [8, Section 3].

Theorem 3.11. cn(C) = n and n/
√

2 � cn(R) � n for all n ∈ N.

Remark 3.12. In [8], Brudnyi and Shteinberg introduce the quantity �n defined by

�n = sup
{

c(�A; �A): dim(Ai) � n for i = 0,1
}
,

where the supremum is taken with respect to Banach couples over the reals. In [8, Theorem 3.1], it is shown that n/2
√

2 �
�n � n

√
2. Since of course �n � cn(R), our result provides a somewhat better upper estimate for �n .

Proof of Theorem 3.11. “�”: Let �A and �B be couples such that all the spaces Ai and Bi are of dimension at most n (scalars
can be real or complex). Let α ∈ A0 + A1 and β ∈ B0 + B1 be elements satisfying (3.16). Use John’s theorem to find Hilbert
spaces Hi and Ki such that d(�A; �H) �

√
n and d(�B; �K ) �

√
n. By Lemma 3.10

c(�A; �B) � nc( �H; �K ).

But Hilbert couples are exact relative Calderón couples, i.e., c( �H; �K ) � 1 by Theorem 2.2 of [2]. Thus c(�A; �B) � n.
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“�”: First assume complex scalars and define the space �
p,r
n (q) for suitable fixed values of p, q and r by the norm

‖x‖p
�

p,r
n (q)

=
n∑

k=1

∣∣q−kr xk
∣∣p

, x = (xk)
n
1 ∈ C

n.

For fixed p and q we also define the couple ��p
n (q) = (�

p,0
n (q), �

p,1
n (q)). (The usual conventions apply for the case p = ∞.)

Choose a fixed q > 1 and put h = (
√

q,
√

q2
, . . . ,

√
qn

) ∈ C
n . As is shown in [8], we have

K
(
t,h; ��1

n(q)
) =

n∑
k=1

qk/2 min
{

1,q−kt
}

�
√

q − 1√
q + 1

K
(
t,h; ��∞

n (q)
)
. (3.17)

(It is convenient to first prove the inequality in the cases t = qi , and then use the concavity of the K -functional.)

By (3.17) there exists an operator T : ��∞
n (q) → ��1

n(q) such that T (h) = h and ‖T ‖ �
√

q+1√
q−1 c(��∞

n (q); ��1
n(q)).

Since we are assuming complex scalars, the Riesz–Thorin theorem can be applied. It yields that

‖T ‖
�
∞,1/2
n (q)→�

1,1/2
n (q)

�
√

q + 1√
q − 1

c
(��∞

n (q); ��1
n(q)

)
.

This in turn yields

n = ‖h‖
�

1,1/2
n (q)

�
√

q + 1√
q − 1

c
(��∞

n (q); ��1
n(q)

)‖h‖
�
∞,1/2
n (q)

=
√

q + 1√
q − 1

c
(��∞

n (q); ��1
n(q)

)
.

It follows that cn(C) � c(��∞
n (q); ��1

n(q)) � n
√

q−1√
q+1 . Since q can be chosen arbitrarily large, this gives cn(C) � n. The modifica-

tions necessary to treat the real case are carried out as in [8]. �
We end this subsection with an open question.

Question 2. Is cn(R) = n?

3.4. On the case of a regular two-dimensional Hilbert couple

Let r be a positive number and let �G = (G0, G1) be the couple for which G0 = �2
2 and G1 is the weighted version of �2

2

with norm ‖(x, y)‖G1 = √
x2 + ry2.

In this subsection we will prove a rather simple estimate: γ (�G) <
√

2.
Let us remark first that in the trivial case where r = 1 we obtain γ (�2

2, �
2
2) = 1. In the general case, Proposition 3.7 yields

that γ (�G) is a continuous function of r and γ (�G) � max(
√

r,1/
√

r ). (This is because the Banach–Mazur distance between �G
and (�2

2, �
2
2) is max(

√
r,1/

√
r ).)

Fix a point α = (b, c) = (cos a, sin a) ∈ G0 + G1 where a ∈ [0,2π). In fact, by Remark 2.2, we only need to consider the
case where a ∈ [0,π/2].

We will look for a parametric representation of the curve which is the boundary ∂Γ (α) of the Gagliardo diagram of α.
First let us fix some t > 0 and determine the point z = (x, y) for which the infimum K2(t,α; G0, G1)

2 = infz∈R2‖z‖2
G0

+
t‖α − z‖2

G1
is attained. The point which we are looking for is of course the unique critical point of the function φ(x, y) =

x2 + y2 + t(x − b)2 + tr(y − c)2, i.e. x = tb
1+t and y = trc

1+tr .

It is clear that, for this choice of z, the point (‖z‖2
G0

,‖α − z‖2
G1

) belongs to ∂Γ (α), and that, furthermore, as t ranges

over (0,∞) we obtain all points of ∂Γ (α) ∩ {(x0, x1): x0 > 0, x1 > 0} in this way. We note that b − x = b+tb−tb
1+t = b

1+t and
c − y = c+trc−trc

1+tr = c
1+tr . It follows that

∂Γ (α) ∩ {
(x0, x1): x0 > 0, x1 > 0

} = {(
γ0(t), γ1(t)

)
: 0 < t < ∞}

, (3.18)

where the functions γ0 and γ1 are given by

γ0(t) = t

√
b2

(1 + t)2
+ r2c2

(1 + tr)2
and γ1(t) =

√
b2

(1 + t)2
+ rc2

(1 + tr)2
for all t ∈ (0,∞).

Obviously γ1(t) is a strictly decreasing function of t . Since γ0(1/t)2 = b2

(t+1)2 + r2c2

(t+r)2 it is also clear that γ0(t) is a strictly

increasing function of t .
Considering the limits of γ0 and γ1 as t tends to 0 and to ∞, we deduce that ∂Γ (α) is the union of the curve specified

in (3.18) with the two rays on the coordinate axes{
(0, v):

√
b2 + rc2 � v < ∞}

and
{
(v,0): 1 � v < ∞}

. (3.19)
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Next we define two functions w0 and w1 by w0(t) := γ ′
0(t) and w1(t) := −γ ′

1(t) for all t ∈ (0,∞). These will turn out to be
convenient weight functions to use in a couple of weighted L1 spaces on (0,∞) as an essential step for calculating γ (�G).
We note that (3.19) implies

∞∫
0

w0(t)dt = 1 and

∞∫
0

w1(t)dt =
√

b2 + rc2. (3.20)

We will see that routine calculations show that w0 and w1 are given explicitly by

w j(t) =
b2

(1+t)3 + r2c2

(1+rt)3√
b2

(1+t)2 + r2− j c2

(1+rt)2

for j = 0,1 and t ∈ (0,∞). (3.21)

The proof of this in the case j = 1 is immediate. For the case j = 0 we can first observe that

γ ′
0(1/t) · 1

t2
= − d

dt

(
γ0(1/t)

) =
b2

(1+t)3 + r2c2

(t+r)3√
b2

(1+t)2 + r2c2

(t+r)2

which implies that

w0(1/t) =
t3b2

(1+t)3 + t3r2c2

(t+r)3

t
√

b2

(1+t)2 + r2c2

(t+r)2

=
b2

(1/t+1)3 + r2c2

(1+r/t)3√
b2

(1/t+1)2 + r2c2

(1+r/t)2

which immediately gives (3.21) for j = 0.
Note that w0 and w1 are both strictly positive on (0,∞).
We will use the couple �P = (P0, P1) of weighted L1 spaces on the measure space (0,∞) (equipped with Lebesgue

measure) where P0 = L1
w0

and P1 = L1
w1

. Let f be the function which equals 1 identically on (0,∞). We will show that

K (t, f ; �P ) = K (t,α; �G) for all t > 0. (3.22)

For each t > 0 it is well known and very easy to check that

K (t, f ; �P ) =
∞∫

0

min
{

w0(s), t w1(s)
}

ds (3.23)

and that an optimal decomposition f = f0,t + f1,t , for which the infimum in the calculation of (3.23) is attained, is given
by f0,t = χEt and f1,t = χ(0,∞)\Et , where

Et = {
s > 0: w0(s) < t w1(s)

}
. (3.24)

We need to consider the function

w0(t)2

w1(t)2
=

b2

(1+t)2 + rc2

(1+tr)2

b2

(t+1)2 + r2c2

(1+rt)2

= 1 + (r − r2)c2

b2(r + 1−r
t+1 )2 + r2c2

. (3.25)

In the trivial cases where (b, c) is either (0,1) or (1,0) this is a constant function, and it a simple matter to check that
(3.22) holds. (In the first case the K -functionals on the left and right sides of (3.22) both equal min{1, t} and in the second
case they both equal min{1, t

√
r }.)

In the remaining non-trivial case when b and c are both non-zero it is easy to see from (3.25) that, for any r ∈ (0,∞)

with r = 1,

w0(t)

w1(t)
is a strictly increasing continuous function of t on (0,∞). (3.26)

(The two cases r < 1 and r > 1 have to be considered separately.)
We introduce and calculate two “limiting” values of t by setting

t2
0 := lim

s→0

w0(s)2

w1(s)2
= 1 + (r − r2)c2

b2 + r2c2
= b2 + rc2

b2 + r2c2
(3.27)

and

t2∞ := lim
s→∞

w0(s)2

2
= 1 + (r − r2)c2

2 2 2
= b2 + c2/r. (3.28)
w1(s) r (b + c )
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The property (3.26) implies that the set Et defined in (3.24) is an open interval of the form Et = (0, u(t)), where u is
a non-decreasing function of t . By (3.27) and (3.28) we see that u(t) = 0 for t � t0 and u(t) = ∞ for t � t∞ , and, for each
t ∈ (t0, t∞), u(t) is the unique number in (0,∞) for which w0(u(t))/w1(u(t)) = t .

We can now deduce that, for t ∈ (t0, t∞), ‖ f0,t‖P0 = ∫ u(t)
0 w0(s)ds = ∫ u(t)

0 γ ′
0(s)ds = γ0(u(t)) − γ0(0) = γ0(u(t)) and

‖ f1,t‖P1 = ∫ ∞
u(t) w1(s)ds = − ∫ ∞

u(t) γ
′

1(s)ds = γ1(u(t)) − limr→∞ γ1(r) = γ1(u(t)).
This shows that, as t ranges over the interval (t0, t∞), the point (‖ f0,t‖P0 ,‖ f1,t‖P1 ) ranges over the curve (3.18), i.e.,

Γ ( f ) = Γ (α). By the well-known relation between K -functionals and Gagliardo diagrams (see [5, Section 7.1]), this implies
that (3.22) holds.

It is clear that every bounded operator T : �P → �G uniquely determines and is uniquely determined by a suitable pair of
(equivalence classes of) measurable functions g j : (0,∞) → R for j = 0,1, via the formula

T h =
( ∞∫

0

g0(s)h(s)ds,

∞∫
0

g1(s)h(s)ds

)
for all h ∈ L1

w0
+ L1

w1
. (3.29)

When it is necessary to explicitly indicate the connection between the operator T and the functions g0 and g1 which define
it via (3.29), we will use the notation T g0,g1 in place of T .

Of course we need to be more explicit about the conditions that the functions g0 and g1 must satisfy. Straightforward
arguments (exactly like the proof below of the equivalence of conditions (4.9) and (4.11) using the Lebesgue differentiation
theorem and a suitable form of Minkowski’s or Schwarz’ inequality) show that the norm of T is given by

‖T ‖�P→�G = max
j=0,1

{
ess sup
(0,∞)

√
g2

0 + r j g2
1

w j

}
(3.30)

and so g0 and g1 must be such that this expression in finite.

Remark 3.13. For our purposes, we can without loss of generality assume that r > 1, since for each r < 1, the couple �G
is a rigid image of the corresponding couple where r has been replaced by 1/r. (Use Fact 3.5 and the rigid map (x, y) �→
(y/

√
r, x/

√
r ).)

Now we will consider the class T = Tb,c of all bounded operators T : �P → �G which satisfy T f = α and consider the
quantity ca = ca(�G) = inf{‖T ‖: T ∈ T }. We first make a simple observation:

Proposition 3.14. We have c0 = cπ/2 = 1 and if a ∈ (0,π/2) then ca <
√

1 + b2 . In particular, γ (�G) <
√

2.

Proof. By Remark 3.13 we can and will assume that r > 1.
If a = 0, i.e., if (b, c) = (1,0), then we have that w2

0(t) = w2
1(t) = 1

(1+t)2 and the operator T = T g0,g1 defined by g0(s) =
1

(1+s)2 and g1(s) = 0 satisfies T f = (b, c) and ‖T ‖ = 1. Thus c0 = 1. The proof of the fact that cπ/2 = 1 is equally simple. It

uses the functions g0(s) = 0 and g1(s) = r
(1+rs)2 .

Now let a ∈ (0,π/2). We claim that it suffices to consider the operator T = T g0,g1 given by g0(s) = bw0(s) and g1(s) =
cw1(s)/

√
b2 + rc2. Indeed T f = α by (3.20), and furthermore, by (3.27),

g2
0(s) + g2

1(s)

w2
0(s)

= b2 + c2

b2 + rc2

w1(s)2

w0(s)2
� b2 + c2 b2 + r2c2

(b2 + rc2)2
< b2 + 1.

Similarly, (3.28) yields the estimate

g2
0(s) + rg2

1(s)

w2
1(s)

= b2 w2
0(s)

w2
1(s)

+ rc2

b2 + rc2
� b2(b2 + c2/r

) + rc2

b2 + rc2
< b2 + 1.

We conclude that ca <
√

b2 + 1. It follows that γ (�G) <
√

2 (the function a �→ ca is continuous by Proposition 3.7). �
Remark 3.15. The above proposition combined with a simple application of Proposition 3.7 and John’s theorem, and also
with Theorem 3.3, shows that γ ( �X) < 2 for every two-dimensional (real) Banach couple �X .

3.4.1. Further discussion
From here onwards, in view of Remark 2.2, and since we have seen that c0 = cπ/2 = 1, we need only consider the case

where a ∈ (0,π/2) and so the numbers b and c are strictly positive.
We will also suppose that r > 1 (cf. Remark 3.13).
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Let T = T g0,g1 be a member of Tb,c for which the infimum

ca = inf
T ∈Tb,c

‖T ‖�P→�G (3.31)

is attained. Lemma 2.5 guarantees that such an operator T exists.
The exact value of ca evades us at this point, but we hope that the following remarks will provide a step on the way

towards calculating ca and therefore also γ (�G). We will show below that the functions g0, g1 possess certain properties.
We will also prove the estimate ca < (1 + √

r )/2. This will imply, in view of Proposition 3.14, that

γ (�G) < min

{
1 + √

r

2
,
√

2

}
. (3.32)

Let g̃0 and g̃1 be the functions defined by g̃ j := |∫ ∞
0 g j(s)ds|∫ ∞

0 |g j(s)|ds
|g j| for j = 0,1. It is easy to check that the operator T̃ = T g̃0 ,̃g1

is also in Tb,c and that ‖T g̃0 ,̃g1‖�P→�G � ‖T g0,g1‖�P→�G .
Hence, we can and will assume that g0 and g1 are non-negative a.e. The conditions on T imply that{

g2
0 + g2

1 � c2
a w2

0 and also

g2
0 + rg2

1 � c2
a w2

1 at almost every point of (0,∞).
(3.33)

We introduce two subsets E0, E1 of (0,∞) defined by

Ei = {
s ∈ (0,∞): g0(s)2 + ri g1(s)2 = c2

a wi(s)2}, i = 0,1.

The following simple fact is true.

Fact 3.16. The set E0 ∪ E1 contains almost every point of (0,∞).

Proof. Suppose, on the contrary, that there exists a set E ⊂ (0,∞) of positive measure, such that g2
0 + g2

1 < c2
a w2

0 and also
g2

0 + rg2
1 < c2

a w2
1 at every point of E . Then we can suppose, replacing E if necessary by a smaller subset also having positive

measure, that, for some positive ε ,

g2
0 + g2

1 < (1 − ε)c2
a w2

0 and also g2
0 + rg2

1 < (1 − ε)c2
a w2

1 at all points of E. (3.34)

For j = 0,1 we define the function g̃ j =
√

g2
j + φ where

φ = εc2
aχE min

{
w2

0

2
,

w2
1

1 + r

}
. (3.35)

It follows easily from (3.33)–(3.35) that, for j = 0,1, we have

g̃2
0 + r j g̃2

1 = g2
0 + r j g2

1 + (
1 + r j)φ � c2

a w2
j (3.36)

at every point of E and at almost every point of (0,∞)\E .
Since w0 and w1 are both strictly positive on (0,∞) and E has positive measure, it follows that

b̃ :=
∞∫

0

g̃0(s)ds > b =
∞∫

0

g0(s)ds and c̃ :=
∞∫

0

g̃1(s)ds >

∞∫
0

g1(s)ds = c (3.37)

and so the operator S defined by S = T v0,v1 where v0 = b
b̃

g̃0 and v1 = c
c̃

g̃1 satisfies S f = α. In view of (3.36), (3.37)

and (3.30), its norm satisfies ‖S‖�P→�G � max{ b
b̃
, c

c̃
}ca < ca . This contradicts the minimal property of ca , i.e. (3.31), and so

proves Fact 3.16. �
It is convenient to restate Fact 3.16 slightly differently as:

for a.e. s ∈ (0,∞) the point
(

g0(s), g1(s)
) ∈ ∂ Q s,

where the sets Q s are defined by

Q s := {
(x, y): x � 0, y � 0, x2 + y2 � c2

a w2
0(s), x2 + ry2 � c2

a w2
1(s)

}
.

The boundary of Q s consists of a segment of the x-axis, a segment of the y-axis, and subsets of the quarter circle Cs

of radius ca w0(s) and of the quarter ellipse Γs with semi-axes of lengths ca w1(s) and 1√
r
ca w1(s) in the directions of the

x- and y-axes respectively.
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Since r > 1 we see from (3.25) that

w0(s) < w1(s) (3.38)

and so, on and slightly above the x-axis, the points of Γs lie strictly to the right of Cs . On the other hand, since we shall
show that

w0(s) >
1√

r
w1(s), (3.39)

it will follow that the points of Cs on and near the y-axis lie strictly above Γs . The sets Cs and Γs intersect at a single
point (x(s), y(s)) whose exact coordinates will be calculated in a moment. In view of (3.38) and (3.39) we will be able to
assert that, apart from parts of the x- and y-axes, the boundary of Q s consists of the circular arc C∗

s of radius ca w0(s) from
(ca w0(s),0) to (x(s), y(s)) and the portion Γ ∗

s of the quarter ellipse Γs from (x(s), y(s)) to (0, 1√
r
ca w1(s)).

Let us now prove (3.39). Using (3.26) and (3.27) we see that it suffices to show that b2+rc2

b2+r2c2 > 1
r , which is clear, since

rb2 > b2.
To obtain explicit expressions for x(s) and y(s) we simply solve the two equations

x(s)2 + y(s)2 = c2
a w0(s)2 and x(s)2 + ry(s)2 = c2

a w1(s)2 (3.40)

which gives y(s)2 = c2
a (w1(s)2−w0(s)2)

r−1 and then x(s)2 = c2
a (rw0(s)2−w1(s)2)

r−1 . From this we deduce that

x(s) = ca w j(s)
b(1 + rs)√

b2(1 + rs)2 + r1+ jc2(1 + s)2
, j = 0,1, (3.41)

and

y(s) = ca w j(s)
c
√

r(1 + s)√
b2(1 + s)2 + r1+ jc2(1 + rs)2

, j = 0,1. (3.42)

Remark 3.17. In addition to Fact 3.16 it is now plain that, for the optimal functions g0 and g1 we have

g0(s) � x(s) and g1(s) � y(s) on E0

and likewise

g0(s) � x(s) and g1(s) � y(s) on E1.

At first glance one might suspect that E0 = E1 = (0,∞), i.e., that g0(s) = x(s) and g1(s) = y(s). However, if this were the
case, we would have that

∞∫
0

x(s)

bca
ds � 1

ca
>

1√
2

and

∞∫
0

y(s)

cca
ds � 1

ca
>

1√
2
,

where we have used Proposition 3.14. On the other hand, a numerical calculation making use of the explicit formula (3.41)
with the values r = 1000, b = √

3/2 and c = 1/2 yields
∫ ∞

0 (x(s)/cab)ds ≈ 0.6896 < 1/
√

2. Thus the functions x and y are
not optimal in general.

We shall now use the operators T = Tx/ca,y/ca to obtain some new information about γ (�G). From (3.40) and (3.30) it is
evident that ‖T ‖�P→�G = 1. In order to prove the estimate ca < (1 + √

r )/2 it clearly suffices to prove that (T f )1 > 2b
1+√

r
and

(T f )2 > 2c
1+√

r
, i.e.,

∞∫
0

x(s)

bca
ds >

2

1 + √
r

and

∞∫
0

y(s)

cca
ds >

2

1 + √
r
. (3.43)

In order to prove (3.43), we observe that, for j = 0,1, the functions

u j(s) := 1 + rs√
b2(1 + rs)2 + r1+ jc2(1 + s)2

= 1
/√

b2 + r1+ jc2 (1 + s)2

(1 + rs)2

are increasing on (0,∞) and, likewise, the functions

v j(s) :=
√

r(1 + s)√
2 2 1+ j 2 2
b (1 + s) + r c (1 + rs)
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are decreasing on (0,∞). By (3.41) we obtain

∞∫
0

x(s)

bca
ds =

1/
√

r∫
0

u0(s)dγ0(s) +
∞∫

1/
√

r

u0(s)dγ0(s)

> u0(0)
(
γ0(1/

√
r ) − γ0(0)

) + u0(1/
√

r )
(
1 − γ0(1/

√
r )

)
= 1√

b2 + rc2
·
√

b2 + rc2

1 + √
r

+ 1 ·
(

1 −
√

b2 + rc2

1 + √
r

)
= 1 + 1 − √

b2 + rc2

1 + √
r

� 1 + 1 − √
r

1 + √
r

= 2

1 + √
r
.

Similarly, by using (3.42), we get

∞∫
0

y(s)

cca
ds > v1(1/

√
r )

(
γ1(0) − γ1(1/

√
r )

) + v1(∞)γ1(1/
√

r )

= 1√
b2 + rc2

·
(√

b2 + rc2 −
√

r

1 + √
r

)
+

√
r

1 + √
r

· 1√
r

� 1 +
√

r

1 + √
r

(
1√

r
− 1

)
= 1 + 1 − √

r

1 + √
r

= 2

1 + √
r
.

This establishes (3.43) and so indeed we have ca < (1 + √
r )/2 and can deduce (3.32).

4. The two-dimensional couple �X = (�2
2, �∞

2 )

4.1. Terminology, notation and some preliminaries

In this section we will study the couple (�2
2, �

∞
2 ) which we will always denote by �X or (X0, X1). We have seen that the

couple �Y = (�2
2, �

2
1) is an exact Calderón couple (see [2]) which is not exactly K -divisible, i.e., for which γ (�Y ) > 1. In this

section, we shall see that �X is another example of a couple having both these properties.

Lemma 4.1. �X is an exact Calderón couple.

Proof. Suppose that f = ( f0, f1) and g = (g0, g1) are two points in R
2 which satisfy K (t, g; �X) � K (t, f ; �X) for all t > 0.

We will show that there exists an operator T : �X → �X with norm ‖T ‖�X→�X � 1 such that T f = g . We can of course assume
without loss of generality that f0 � f1 � 0 and g0 � g1 � 0. The K -functional inequality satisfied by f and g is equivalent
to an E-functional inequality which can be written as(

f0 − min(t, f0)
)2 + (

f1 − min(t, f1)
)2 �

(
g0 − min(t, g0)

)2 + (
g1 − min(t, g1)

)2

and which holds for all t > 0.
It is clear that f0 � g0. (Otherwise we get a contradiction by choosing t = ( f0 + g0)/2.) By setting t = 0 we also have

that f 2
0 + f 2

1 � g2
0 + g2

1. This means that the condition

t∫
0

f ∗(s)2 ds �
t∫

0

g∗(s)2 ds (4.1)

holds for t = 0, 1 and for all t � 2. (Here, our spaces �2
2 and �∞

2 coincide with L2 and L∞ on a measure space consisting of
two atoms each of measure 1. So the rearrangements of f and g are f ∗ = f0χ[0,1) + f1χ[1,2) and g∗ = g0χ[0,1) + g1χ[1,2) .)

Since both sides of (4.1) are affine functions on [0,1] and [1,2] it follows that (4.1) holds for all t > 0. Then we can
apply the theorem and proof of Lorentz and Shimogaki [19] to construct the required operator T . �

Consider the point α = (a,1) ∈ X0 + X1 where a > 1. Let E(t,α; �X) be the error functional

E(t,α; �X) = inf
{‖α − β‖X0 : β ∈ X1, ‖β‖X1 � t

}
.
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For t ∈ (0,1], the optimal choice of β is (t, t), and for t ∈ [1,a] the optimal choice of β is (t,1), and for t > a the optimal
choice is β = α. Consequently

E(t,α; �X) =
⎧⎨⎩

√
(a − t)2 + (1 − t)2, 0 � t � 1,

a − t, 1 < t � a,

0, t > a.

Now let w : (0,a) → (1,∞) be a non-increasing function and consider the couple of weighted L1 spaces �P = (P0, P1) on
the measure space (0,a) (equipped with Lebesgue measure) where P0 = L1

w and P1 = L1. Let f = χ(0,a) , and let E(t, f ; �P ) =
inf{‖ f − g‖P0 : g ∈ P0, ‖g‖P1 � t}. Since w � 1 and w is non-increasing, the optimal choice for g is χ[0,min(t,a)] for all
t ∈ (0,∞). It follows that E(t, f ; �P ) = ‖ f − g‖P0 = ∫ a

min(t,a)
w(ξ)dξ .

If w is continuous, then E(t, f ; �P ) is differentiable, with derivative equal to −w(t) for all t ∈ (0,a).
The function E(t,α; �X) is also differentiable on (0,a) and its derivative for t ∈ (0,a) is given by

d

dt
E(t,α; �X) =

{
2t−a−1√

(a−t)2+(1−t)2
, 0 < t < 1,

−1, 1 � t < a.

By general properties of the error functional, this derivative must be negative and non-decreasing. Thus the function

w∗(t) := − d

dt
E(t,α; �X) =

{
a+1−2t√

(t−a)2+(t−1)2
, 0 < t < 1,

1, 1 � t < a
(4.2)

is continuous and non-increasing and w∗(t) � 1 on (0,a). In fact, as can be shown directly, it is strictly decreasing on
(0,1]. If we now choose w = w∗ then it is easy to check that E(t, f ; �P ) = E(t,α; �X) for all t > 0. This is equivalent, using
well-known connections between error functionals, K -functionals and the Gagliardo diagram, to the condition

K (t, f ; �P ) = K (t,α; �X) for all t > 0. (4.3)

For the rest of this section w will always denote the particular function defined by (4.2), for some choice of the con-
stant a. It is easy to check that, for every choice of a > 1, we have

1 � w(t) <
√

2, and so also
√

w2(t) − 1 < 1, for all t ∈ (0,a). (4.4)

For each fixed a � 1, let Ta be the set of all bounded linear operators T : �P → �X , which, for f = χ(0,a) and α = (a,1)

and w as above, satisfy T f = α.
Let T be an arbitrary operator in Ta . Then T has the form

T h = (
λ0(h), λ1(h)

)
for all h ∈ P0 + P1,

where λ0 and λ1 are both elements of (P0)
∗ ∩ (P1)

∗ such that

λ0(χ(0,a)) = a and λ1(χ(0,a)) = 1.

The norm of T satisfies ‖T ‖�P→�X � c for some positive constant c, if and only if∣∣λ0(h)
∣∣2 + ∣∣λ1(h)

∣∣2 � c2‖h‖2
P0

for all h ∈ P0

and

‖λ j‖(P1)∗ � c for j = 0,1.

We are interested in the quantity

ca := inf
{‖T ‖�P→�X : T ∈ Ta

}
. (4.5)

By (4.3) and standard properties of the K -functional we clearly have that

ca � 1. (4.6)

By Lemma 2.5 the infimum in (4.5) is attained for some T ∈ Ta .
There is of course a more concrete version of the representation given above for operators T ∈ Ta:
A bounded linear operator T : �P → �X is determined by two functions g0 and g1 in L∞(0,a). We denote this operator by

T = T g0,g1 , where

T h = T g0,g1 h =
( a∫

h(ξ)g0(ξ)dξ,

a∫
h(ξ)g1(ξ)dξ

)
for each h ∈ P0 + P1. (4.7)
0 0
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Such an operator T g0,g1 is in Ta if and only if the functions g0 and g1 also satisfy

a∫
0

g0(ξ)dξ = a and

a∫
0

g1(ξ)dξ = 1. (4.8)

For any T g0,g1 : �P → �X , the norm estimate ‖T g0,g1‖�P→�X � c is equivalent to the two conditions( a∫
0

h(ξ)g0(ξ)dξ

)2

+
( a∫

0

h(ξ)g1(ξ)dξ

)2

� c2

( a∫
0

∣∣h(ξ)
∣∣w(ξ)dξ

)2

for all h ∈ P0 (4.9)

and

‖g j‖L∞ � c for j = 0,1. (4.10)

In fact (4.9) is equivalent to

g0(ξ)2 + g1(ξ)2 � c2 w2(ξ) for a.e. ξ ∈ (0,a). (4.11)

The proof that (4.9) implies (4.11) follows readily from the Lebesgue differentiation theorem. To prove the reverse implica-
tion, we note that the square root of the left side of (4.9) is equal to

sup
θ∈[0,2π ]

a∫
0

h(ξ)g0(ξ) cos θ + h(ξ)g1(ξ) sin θ dξ (4.12)

and, by Schwarz’ inequality, the absolute value of the integrand in (4.12) is dominated by |h(ξ)|√g0(ξ)2 + g1(ξ)2.

4.2. A simple estimate from below for γ (�2
2, �

∞
2 )

We can now easily show that �X = (�2
2, �

∞
2 ) is an example, perhaps the simplest known example so far, of a Banach

couple whose K -divisibility constant satisfies

γ ( �X) > 1. (4.13)

Remark 4.2. This example is of interest for a number of reasons.

• It is apparently the first known example of a couple of rearrangement invariant spaces which is not exactly K -divisible.
• It also shows that there is no “tight” connection between the exact K -divisibility property and the exact Calderón

property, since there are also exactly K -divisible couples which are not exact Calderón couples, or not even Calderón
couples. An example is provided by the couple (L1 ⊕ L∞, L∞ ⊕ L1).

Using well-known results concerning K -divisibility (Theorem 2.3) it is easy to see that

γ ( �X) = sup
a�1

ca

where ca is defined by (4.5). We shall show that ca > 1 for every a > 1.
Suppose, on the contrary, that ca = 1 for some a > 1. (Recall (4.6).) Let T be the operator in Ta whose existence we

established above, which satisfies ‖T ‖�P→�X = ca = 1. Then there exist functions g0 and g1 in L∞(0,a) satisfying (4.8) and
also satisfying the estimates (4.10) and (4.11) for c = 1. In particular, since

∫ a
0 g0(ξ)dξ = a and |g0(ξ)| � 1 for a.e. ξ ∈ (0,a),

we must have g0(ξ) = 1 a.e. It follows that

1 =
a∫

0

g1(ξ)dξ �
a∫

0

√
w2(ξ) − 1 dξ =

1∫
0

√
w2(ξ) − 1 dξ =

1∫
0

√
(2ξ − a − 1)2

(a − ξ)2 + (1 − ξ)2
− 1 dξ. (4.14)

The expression under the square root in the last integral can be rewritten as

(a + 1 − 2ξ)2 − (a − ξ)2 − (1 − ξ)2

(a − ξ)2 + (1 − ξ)2
= ((a − ξ) + (1 − ξ))2 − (a − ξ)2 − (1 − ξ)2

(a − ξ)2 + (1 − ξ)2

= 2(a − ξ)(1 − ξ)

(a − ξ)2 + (1 − ξ)2
. (4.15)

This equals 1 for all ξ if a = 1. But, for all a > 1, we have 2(a−ξ)(1−ξ)

(a−ξ)2+(1−ξ)2 < 1 for all ξ . This shows that (4.14) cannot hold,

and so provides the contradiction which proves that ca > 1 and also establishes (4.13).
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Remark 4.3. It is easy to show that ca = 1 when a = 1. In this case the function w assumes the constant value
√

2 on
(0,a) = (0,1) and the operator T = T g0,g1 , which is obtained by simply choosing g0 and g1 to be both identically 1, is in Ta
and satisfies ‖T ‖�P→�X = 1.

4.3. A more elaborate calculation

From here onwards a will always denote a fixed number satisfying a > 1, and g0 and g1 will always denote two particular
functions in L∞(0,a) which satisfy (4.7) and (4.8) for an operator T g0,g1 ∈ Ta which attains the infimum ca in (4.5). Therefore
g0 and g1 satisfy (4.10) and (4.11) with c = ca . Our goal here will be to show that g0 and g1 necessarily have certain

properties. Our calculations in this subsection will also lead to the estimate γ ( �X) � 4+3
√

2
4+2

√
2

.

By familiar arguments we can and will assume that g0 and g1 are both non-negative.
We will use the following very simple claim several times in subsequent steps of our argument:

Claim 4.4. Suppose that g̃0 and g̃1 are two non-negative functions in L∞(0,a) which satisfy

a∫
0

g̃0(ξ)dξ > a and

a∫
0

g̃1(ξ)dξ > 1. (4.16)

Then

‖T g̃0 ,̃g1‖�P→�X > ca.

Proof. Suppose, on the contrary that

‖T g̃0 ,̃g1‖�P→�X � ca. (4.17)

Then the operator S defined by

Sh =
(

a∫ a
0 g̃0(ξ)dξ

a∫
0

g̃0(ξ)h(ξ)dξ,
1∫ a

0 g̃1(ξ)dξ

a∫
0

g̃1(ξ)h(ξ)dξ

)

has norm ‖S‖�P→�X strictly smaller than ca . But S ∈ Ta and so we have a contradiction, which proves the claim. �
It will be convenient to define the planar set

Eξ = {
(x, y) ∈ R

2: 0 � x � ca, 0 � y � ca, x2 + y2 � c2
a w2(ξ)

}
for each ξ ∈ (0,a). Then, reformulating our remarks above, for any non-negative measurable functions u0 and u1 on (0,a),
‖Tu0,u1‖�P→�X � ca if and only if (u0(ξ), u1(ξ)) ∈ Eξ for a.e. ξ ∈ (0,a). In particular, the two particular norm minimizing
functions g0 and g1 which we are studying, satisfy this condition.

We note that the boundary of Eξ consists of two horizontal and two vertical line segments and a circular arc of ra-
dius ca w(ξ) which we will denote by Γξ . We let V ξ denote the vertical segment of the right side of the boundary of Eξ,

i.e.

V ξ = {
(ca, y): 0 � y � ca

√
w2(ξ) − 1

}
.

The uppermost point of V ξ , which is also the lowest point of Γξ , is(
ca, ca

√
w2(ξ) − 1

) = (
ca w(ξ) cos ψ(ξ), ca w(ξ) sin ψ(ξ)

)
where ψ(ξ) = arctan

√
w2(ξ) − 1 = arccos

1

w(ξ)
. (4.18)

Let Ua be the family of all couples (u0, u1) of non-negative functions in L∞(0,a) which satisfy

(i) (u0(ξ), u1(ξ)) = (0,0) for a.e. ξ ∈ (0,a), and
(ii) ‖Tu0,u1‖�P→�X � ca or, equivalently (u0(ξ), u1(ξ)) ∈ Eξ for a.e. ξ ∈ (0,a).

We claim that the special functions g0 and g1 satisfy

(g0, g1) ∈ Ua. (4.19)

They of course satisfy part (ii) of the definition. To show that they also satisfy part (i), let

N = {
ξ ∈ (0,a):

(
g0(ξ), g1(ξ)

) = (0,0)
}
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and let g̃ j = g jχ(0,a)\N + ca√
2

wχN for j = 0,1. In view of (4.4) it is clear that (̃g0(ξ), g̃1(ξ)) ∈ Eξ for a.e. ξ ∈ (0,a), which is

equivalent to (4.17). But, if N has positive measure, then (4.16) also holds, which, by Claim 4.4, is impossible.
It is convenient to represent each (u0, u1) ∈ Ua in the “polar” form (u0, u1) = (ρ cos θ,ρ sin θ) where ρ : (0,a) → (0,

√
2 )

and θ : (0,a) → [0, π
2 ] are the measurable functions defined by ρ(ξ) =

√
u2

0(ξ) + u2
1(ξ) and θ(ξ) = arcsin u1(ξ)

ρ(ξ)
for all

ξ ∈ (0,a). Accordingly, we let Pa be the family of all couples (ρ, θ) of functions ρ : (0,a) → [0,
√

2 ) and θ : (0,a) → [0, π
2 ]

such that (ρ cos θ,ρ sin θ) ∈ Ua .

Claim 4.5. If (ρ, θ) ∈ Pa and φ : (0,a) → [0, π
2 ] is a measurable function satisfying

θ(ξ) � φ(θ) � π

4
or θ(ξ) � φ(θ) � π

4
for a.e. ξ ∈ (0,a), then (ρ,φ) ∈ Pa.

This is obvious, in view of the form of the sets Eξ .
We have now the following simple “variational principle”:

Lemma 4.6. Suppose that the functions ρ and θ satisfy

(ρ, θ) ∈ Pa and g0 = ρ cos θ and g1 = ρ sin θ. (4.20)

Suppose that A and B are each measurable subsets of (0,a) with positive measure. Suppose that p, q are real constants such that, for
some δ > 0 and each constant t ∈ [0, δ], the function φt = θ + tpχA + tqχB satisfies

(ρ,φt) ∈ Pa. (4.21)

Then at least one of the following two inequalities

p

∫
A

ρ(ξ) sin θ(ξ)dξ + q

∫
B

ρ(ξ) sin θ(ξ)dξ � 0 (4.22)

and

p

∫
A

ρ(ξ) cos θ(ξ)dξ + q

∫
B

ρ(ξ) cos θ(ξ)dξ � 0 (4.23)

must hold.

Proof. Define G0(t) = ∫ a
0 ρ(ξ) cos φt(ξ)dξ and G1(t) = ∫ a

0 ρ(ξ) sin φt(ξ)dξ for all t ∈ R. Standard arguments (e.g. via domi-
nated convergence) show that G0 and G1 are differentiable for all t ∈ R and their derivatives are continuous functions of t
given by

G ′
0(t) = −p

∫
A

ρ(ξ) sin φt(ξ)dξ − q

∫
B

ρ(ξ) sin φt(ξ)dξ

and

G ′
1(t) = p

∫
A

ρ(ξ) cos φt(ξ)dξ + q

∫
B

ρ(ξ) cos φt(ξ)dξ.

Suppose that neither of (4.22) and (4.23) hold. Then G ′
0(0) and G ′

1(0) are both strictly positive. Thus G0 and G1 are both
increasing functions in some neighborhood of 0. So, for some δ′ ∈ (0, δ], we have G0(δ

′) > G0(0) and G1(δ
′) > G1(0), or, in

other words, the functions g̃0 := ρ cosφδ′ and g̃1 := ρ sin φδ′ satisfy (4.16). But, in view of (4.21), these same two functions
also satisfy (4.17). By Claim 4.4 this is impossible, so at least one of (4.22) and (4.23) must hold. �

As our first application of Lemma 4.6 we will prove that

g0(ξ) � g1(ξ) for a.e. ξ ∈ (0,a). (4.24)

If the functions ρ and θ satisfy (4.20) then (4.24) is equivalent to

θ(ξ) � π

4
for a.e. ∈ (0,a). (4.25)

So, if (4.24) is false, then the set {ξ ∈ (0,a): g0(ξ) < g1(ξ)} = {ξ ∈ (0,a): θ(ξ) > π
4 } has positive measure and, fur-

thermore, for some positive number η0, the set A := {ξ ∈ (0,a): θ(ξ) > η0 + π } also has positive measure. Since
4
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∫ a
0 g0(ξ)dξ >

∫ a
0 g1(ξ)dξ the set {ξ ∈ (0,a): g0(ξ) > g1(ξ)} = {ξ ∈ (0,a): θ(ξ) < π

4 } must also have positive measure, and
so, for some positive number η1, the set B = {ξ ∈ (0,a): θ(ξ) < π

4 − η1} also has positive measure. Let p be an arbitrary
negative number and let q = 1. Let us also choose δ = min{η0/|p|, η1}. Then, using Claim 4.5, we see that all the hypotheses
of Lemma 4.6 hold. Consequently, Lemma 4.6 implies that

p

∫
A

ρ(ξ) sin θ(ξ)dξ +
∫
B

ρ(ξ) sin θ(ξ)dξ � 0 or

p

∫
A

ρ(ξ) cos θ(ξ)dξ +
∫
B

ρ(ξ) cos θ(ξ)dξ � 0.

But now we shall show that we have a contradiction by finding a negative number p which satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p

∫
A

ρ(ξ) sin θ(ξ)dξ +
∫
B

ρ(ξ) sin θ(ξ)dξ < 0 and

p

∫
A

ρ(ξ) cos θ(ξ)dξ +
∫
B

ρ(ξ) cos θ(ξ)dξ > 0.

(4.26)

In view of (4.19), ρ(ξ) > 0 for a.e. ξ and
∫

A ρ(ξ) sin θ(ξ)dξ >
∫

A ρ(ξ) sin π
4 dξ > 0. We also have

∫
A ρ(ξ) sin θ(ξ)dξ >∫

A ρ(ξ) cos θ(ξ)dξ � 0. Similarly
∫

B ρ(ξ) cos θ(ξ)dξ >
∫

B ρ(ξ) cos π
4 dξ > 0 and

∫
B ρ(ξ) cos θ(ξ)dξ >

∫
B ρ(ξ) sin θ(ξ)dξ � 0.

If
∫

A ρ(ξ) cos θ(ξ)dξ = 0 then every number p < −
∫

B ρ(ξ) sin θ(ξ)dξ∫
A ρ(ξ) sin θ(ξ)dξ

satisfies (4.26). Otherwise, if
∫

A ρ(ξ) cos θ(ξ)dξ = 0,

then condition (4.26) is equivalent to

p +
∫

B ρ(ξ) sin θ(ξ)dξ∫
A ρ(ξ) sin θ(ξ)dξ

< 0 and p +
∫

B ρ(ξ) cos θ(ξ)dξ∫
A ρ(ξ) cos θ(ξ)dξ

> 0

and so also to∫
B ρ(ξ) sin θ(ξ)dξ∫
A ρ(ξ) sin θ(ξ)dξ

< −p <

∫
B ρ(ξ) cos θ(ξ)dξ∫
A ρ(ξ) cos θ(ξ)dξ

.

So it is clear that we can find p with the required properties, if and only if∫
B ρ(ξ) sin θ(ξ)dξ∫
B ρ(ξ) cos θ(ξ)dξ

<

∫
A ρ(ξ) sin θ(ξ)dξ∫
A ρ(ξ) cos θ(ξ)dξ

. (4.27)

Since sin θ(ξ) < cos θ(ξ) for all ξ ∈ B , and sin θ(ξ) > cos θ(ξ) for all ξ ∈ A, the left term of (4.27) is strictly less than 1
and the right term of (4.27) is strictly greater than 1. This proves (4.27) and so provides the contradiction which estab-
lishes (4.24).

Claim 4.7. For almost every ξ ∈ (0,a), if g0(ξ) = ca then g1(ξ) = ca

√
w2(ξ) − 1 and, consequently, (g0(ξ), g1(ξ)) is the upper

endpoint (ca w(ξ) cos ψ(ξ), ca w(ξ) sin ψ(ξ)) of V ξ as defined in (4.18).

Proof. This amounts to showing that the set

V := {
ξ ∈ (0,a): g0(ξ) = ca, g2

0(ξ) + g2
1(ξ) < c2

a w2(ξ)
}

has measure 0. If this is not true, then the function u1 := g1χ(0,1)\V + ca
√

w2 − 1χV satisfies

a∫
0

u1(ξ)dξ >

a∫
0

g1(ξ)dξ = 1. (4.28)

Furthermore (in view of (4.4)) it is clear that (g0(ξ), u1(ξ)) ∈ Eξ for a.e. ξ ∈ (0,a). Since ca > 1 and
∫ a

0 g0(ξ)dξ = a the set
V 1 = {ξ ∈ (0,a): g0(ξ) < ca} must also have positive measure. Let V∗ be some subset of V 1 which also has positive measure
and define

g̃0 = g0χ(0,a)\V∗ + caχV∗ and g̃1 = u1χ(0,a)\V∗ .

Then (̃g0(ξ), g̃1(ξ)) ∈ Eξ for a.e. ξ ∈ (0,a) and
∫ a

1 g̃0(ξ)dξ >
∫ a

1 g0(ξ)dξ = a. If we choose the measure of V∗ to be suffi-
ciently small then we will also have, using (4.28), that

∫ a
1 g̃1(ξ)dξ >

∫ a
1 g1(ξ)dξ = 1. Once again we can apply Claim 4.4 to

obtain a contradiction. This proves that the set V has measure 0. �
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Our next step is to show that

the set Q = {
ξ ∈ (0,a): g1(ξ) = 0, g0(ξ) < ca

}
has measure 0. (4.29)

If this is false, then we consider the functions g̃0 =
√

1
2 (g2

0 + c2
a)χQ + g0χ(0,a)\Q and g̃1 = min{

√
c2

a w2 − g̃2
0, ca}χQ +

g1χ(0,a)\Q . It is clear that on the set Q we have g0 < g̃0 < ca � ca w and consequently also g̃1 > 0 = g1. Consequently
g̃0 and g̃1 satisfy (4.16). It is also clear that (̃g0(ξ), g̃1(ξ)) ∈ Eξ for a.e. ξ ∈ (0,a). We can thus use Claim 4.4 to obtain
a contradiction and complete the proof of (4.29).

Claim 4.8. Suppose that, as in Lemma 4.6, the functions ρ and θ satisfy (4.20). Then

ρ(ξ) = ca min

{
1

cos θ(ξ)
, w(ξ)

}
for a.e. ξ ∈ (0,a). (4.30)

Proof. Let us use the notation ρ̃(ξ) = ca min{ 1
cos θ(ξ)

, w(ξ)}. In view of (4.25), it is clear that

(ρ̃, θ) ∈ Pa (4.31)

and that, furthermore, ρ(ξ) � ρ̃(ξ) for a.e. ξ ∈ (0,a). Suppose, contrarily to what we claim, that the set R = {ξ ∈
(0,a): ρ(ξ) < ρ̃(ξ)} has positive measure. Let us write R = R0 ∪ R1 where R0 = R ∩ {ξ ∈ (0,a): θ(ξ) = 0} and R1 = R\R0.
We observe that R0 is exactly the set Q of (4.29) which has measure 0. Consequently R1 has positive measure. This implies
that the functions g̃0 = ρ̃ cos θ and g̃1 = g̃1 sin θ satisfy

∫ a
0 g̃ j(ξ)dξ >

∫ a
0 g j(ξ)dξ for j = 0,1. In view of (4.31) and Claim 4.4

this is impossible. �
We can now show that the functions ρ and θ which satisfy (4.20) also satisfy

arccos
1

w(ξ)
� θ(ξ) � π

4
for a.e. ξ ∈ (0,a). (4.32)

In view of (4.25), we can do this by showing that the set

W =
{
ξ ∈ (0,a): arccos

1

w(ξ)
> θ(ξ)

}
has measure 0. Let us first observe that, by Claim 4.7, almost every ξ ∈ (0,a) satisfying g0(ξ) = ca also satisfies θ(ξ) =
ψ(ξ) = arccos 1

w(ξ)
and so is not in W . On the other hand, every ξ ∈ W satisfies 1

w(ξ)
< cos θ(ξ). Consequently, by (4.30),

ρ(ξ) = ca/ cos w(ξ) or, equivalently, g0(ξ) = ca for a.e. ξ ∈ W . So indeed W has measure 0 and we have proved (4.32).

Theorem 4.9. Suppose that ρ and θ are the functions which satisfy (4.20). Then θ(ξ) assumes a constant value a.e. on the set

U =
{
ξ ∈ (0,a): arccos

1

w(ξ)
< θ(ξ)

}
. (4.33)

Proof. Suppose that the theorem is false. Then there exist two subsets A and B of U , each having positive measure, and
numbers θ0 and θ1 such that 0 � θ0 < θ1 � π/4 and

θ(ξ) � θ0 for all ξ ∈ A and θ1 � θ(ξ) for all ξ ∈ B.

We can assume further that each ξ ∈ B also satisfies arccos 1
w(ξ)

< θ(ξ)− δ0 for some positive number δ0, since, if not B can
be replaced by some subset of positive measure which does have this property. Let p = 1 and let q be an arbitrary negative
number. Then, if δ = min{π

4 − θ0,
δ0|q| }, all the hypotheses of Lemma 4.6 are satisfied.

To complete the proof we will show that, for some choice of q < 0, both the inequalities∫
A

ρ(ξ) sin θ(ξ)dξ + q

∫
B

ρ(ξ) sin θ(ξ)dξ < 0 (4.34)

and ∫
A

ρ(ξ) cos θ(ξ)dξ + q

∫
B

ρ(ξ) cos θ(ξ)dξ > 0 (4.35)

hold and thus we have a contradiction to the conclusion which would follow from Lemma 4.6.
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We recall (cf. (4.19)) that ρ(ξ) > 0 for a.e. ξ ∈ (0,a). So∫
B

ρ(ξ) sin θ(ξ)dξ �
∫
B

ρ(ξ) sin θ1 dξ = sin θ1

∫
B

ρ(ξ)dξ > 0

and ∫
B

ρ(ξ) cos θ(ξ)dξ �
∫
B

ρ(ξ) cos
π

4
dξ = 1√

2

∫
B

ρ(ξ)dξ > 0.

Since tan θ0 < tan θ1 we have

sin θ0

sin θ1
<

cos θ0

cos θ1

and consequently the numbers

r0 :=
∫

A ρ(ξ) sin θ(ξ)dξ∫
B ρ(ξ) sin θ(ξ)dξ

and r1 :=
∫

A ρ(ξ) cos θ(ξ)dξ∫
B ρ(ξ) cos θ(ξ)dξ

satisfy

r0 �
∫

A ρ(ξ) sin θ0 dξ∫
B ρ(ξ) sin θ1 dξ

<

∫
A ρ(ξ) cos θ0 dξ∫
B ρ(ξ) cos θ1 dξ

� r1.

Clearly every number q satisfying r0 < −q < r1 is negative and also satisfies (4.34) and (4.35). This completes the proof of
the theorem. �

Let θa be the constant value assumed a.e. by θ(ξ) on the set U defined by (4.33). Then, perhaps after altering ρ and θ on
sets of measure 0, we obtain that U = {ξ ∈ (0,a): arccos 1

w(ξ)
< θa}. In view of (4.32), arccos 1

w(ξ)
= θ(ξ) for a.e. ξ ∈ (0,a)\U .

If θa = 0, then U is empty and so w(ξ) cos θ(ξ) = 1 for a.e. ξ ∈ (0,a). Consequently (cf. (4.30)) ρ(ξ) = ca/ cos θ(ξ) for a.e.
ξ ∈ (0,a) and so

a∫
0

g0(ξ)dξ =
a∫

0

ρ(ξ) cos θ(ξ)dξ = caa.

But, since ca > 1, this contradicts (4.8). We deduce that θa > 0.
At the other extreme, if θa � arccos 1

w(0)
then, since w is strictly decreasing on [0,1], we obtain that U = (0,a) and it

follows from (4.30) that ρ(ξ) = ca w(ξ) for a.e. ξ ∈ (0,a). We also have

a =
∫ a

0 g0(ξ)dξ∫ a
0 g1(ξ)dξ

=
∫ a

0 ρ(ξ) cos θa dξ∫ a
0 ρ(ξ) sin θa dξ

= tan θa,

which implies that sin θa = a/
√

a2 + 1. Consequently,
a∫

0

g1(ξ)dξ =
a∫

0

ρ(ξ) sin θa dξ = a√
a2 + 1

a∫
0

ca w(ξ)dξ. (4.36)

In view of (4.2),
a∫

0

w(ξ)dξ = −
a∫

0

d

dξ
E(ξ,α; �X)dξ = E(0,α; �X) − E(a,α; �X) =

√
a2 + 1.

Combining this with (4.36) gives that
∫ a

0 g1(ξ)dξ = aca , which contradicts (4.8) and so establishes that θa < arccos 1
w(0)

.
From the past two paragraphs and the fact that w is strictly decreasing from w(0) to 1 on [0,1] we deduce that there

exists a unique number ξa ∈ (0,1) such that θa = arccos 1
w(ξa)

and that U = (ξa,a). This in turn implies that

a =
a∫

0

g0(ξ)dξ =
a∫

0

ρ(ξ) cos θ(ξ)dξ

=
ξa∫

ca

cos θ(ξ)
cos θ(ξ)dξ +

a∫
ca w(ξ) cos θa dξ
0 ξa
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= caξa + ca cos θa
(

E(ξa,α; �X) − E(a,α; �X)
)

= caξa + ca

w(ξa)

√
(a − ξa)2 + (1 − ξa)2

= caξa + ca

a + 1 − 2ξa

(
(a − ξa)

2 + (1 − ξa)
2)

= ca

a + 1 − 2ξa

(
aξa + ξa − 2ξ2

a + a2 − 2aξa + ξ2
a + 1 − 2ξa + ξ2

a

)
= ca

a + 1 − 2ξa

(
a2 − aξa + 1 − ξa

)
.

So we have

ca = a2 + a − 2aξa

a2 − aξa + 1 − ξa
. (4.37)

We also have

1 =
a∫

0

g1(ξ)dξ =
a∫

0

ρ(ξ) sin θ(ξ)dξ

=
ξa∫

0

ca

cos θ(ξ)
sin θ(ξ)dξ +

a∫
ξa

ca w(ξ) sin θa dξ

= ca

ξa∫
0

tan θ(ξ)dξ + ca sin θa
(

E(ξa,α; �X) − E(a,α; �X)
)

= ca

ξa∫
0

√
w2(ξ) − 1 dξ + ca

√
1 − 1

w2(ξa)

√
(a − ξa)2 + (1 − ξa)2.

We have already calculated another expression for w2(ξ) − 1 in (4.14) and (4.15), so we can substitute it in both terms of
the preceding line to get

1 = ca

ξa∫
0

√
2(a − ξ)(1 − ξ)

(a − ξ)2 + (1 − ξ)2
dξ + ca

1

w(ξa)

√
2(a − ξa)(1 − ξa)

(a − ξa)2 + (1 − ξa)2

√
(a − ξa)2 + (1 − ξa)2

= ca

ξa∫
0

√
2(a − ξ)(1 − ξ)

(a − ξ)2 + (1 − ξ)2
dξ + ca

√
2(a − ξa)(1 − ξa)((a − ξa)2 + (1 − ξa)2)

a + 1 − 2ξa
.

This latter formula can be rewritten as

1

ca
=

ξa∫
0

√
2(a − ξ)(1 − ξ)

(a − ξ)2 + (1 − ξ)2
dξ +

√
2(a − ξa)(1 − ξa)

a + 1 − 2ξa
· (a − ξa)2 + (1 − ξa)2. (4.38)

If we now substitute for ca in this equation, using (4.37) we will obtain a rather complicated equation for ξa , which we
will investigate further in the next subsection.

On a more simple level, we can use (4.37) to obtain estimates for ca from above and below

inf
t∈(0,1)

a2 + a − 2at

a2 + 1 − (a + 1)t
� ca � sup

t∈(0,1)

a2 + a − 2at

a2 + 1 − (a + 1)t
.

The function t �→ a2+a−2at
a2+1−(a+1)t

like any function of the form A b−t
c−t where A, b and c are positive constants, is either an

increasing or decreasing function on any interval which does not contain the point where its denominator vanishes. In this
case, its minimum on [0,1] equals 1 and is attained at t = 1. Its maximum is a2+a

a2+1
and is attained at t = 0. The maximum

value of a2+a
a2+1

as a ranges over [1,∞) is attained at a = 1 + √
2 and is thus equal to 4+3

√
2

4+2
√

2
which is approximately equal

to 1.2071.
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4.4. Some numerical experiments

In this final subsection we present some numerical experiments, which lead us to a guess for the approximate value of
the K -divisibility constant of (�2

2, �
∞
2 ), namely γ (�2

2, �
∞
2 ) ≈ 1.0304. Fix some value of a and try to find the corresponding

value of x = ξa by defining

f (x) =
x∫

0

√
2(a − t)(1 − t)

(a − t)2 + (1 − t)2
dt +

√
2(a − x)(1 − x)((a − x)2 + (1 − x)2)

a + 1 − 2x
− a2 − ax + 1 − x

a2 + a − 2ax

and solving Eq. (4.38) which is simply f (x) = 0. We are using “Maple” via its interface with “Scientific Workplace”. We will
fix some values of a and then try to find x ∈ (0,1) such that f (x) = 0. We are currently ignoring the question of whether
such an x is unique. To find the corresponding value of ca we compute g(x) = a2+a−2ax

a2−ax+1−x
.

Here is a table which summarizes some of our numerical experiments, and which indicates that maybe the value of γ
is approximately 1.0304:

a x ca

1.2 .94667221295 1.0298
1.25 .94778089315 1.0304
1.275 .94811047015 1.0304
1.3 .94840470115 1.0304
1.5 .95139101435 1.0279
1.6 .95340037845 1.0259
1.8 .95781371025 1.0217
2 .96218058915 1.0179
2.2 .96618489325 1.0148
1 + √

2 .96997017725 1.0121
3 .977870722252 1.0073
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