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Human and nonhuman primates have a remarkable ability to

recall, maintain and manipulate visual images in the absence of

external sensory stimulation. Evidence from lesion, single-unit

neurophysiological and neuroimaging studies shows that

these visual working memory processes are consistently

associated with sustained activity in object-selective inferior

temporal neurons. Furthermore, results from these studies

suggest that mnemonic activity in the inferior temporal cortex

is, in turn, supported by top-down inputs from multimodal

regions in prefrontal and medial temporal cortex, and under

some circumstances, from the hippocampus.
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Introduction
Working memory (WM) processes enable one to maintain

and manipulate different kinds of information to guide

future behavior. The majority of research on WM has

examined rehearsal of verbal or spatial information across

short delays [1,2]. In these situations, WM maintenance

clearly involves interplays between neural systems for

perception (phonological or spatial) and neural systems

for action (articulatory or oculomotor) [3,4��]. However,

our WM abilities extend beyond these situations to allow

us to maintain and manipulate vivid mental images of

objects that were recently perceived or recalled from

long-term memory (LTM) For example, in a typical

visual WM task, a sample object is briefly shown, and

the sample must be actively maintained across a delay

period in anticipation of a subsequent match–nonmatch

decision. Recent evidence has demonstrated that visual

object WM maintenance is associated with persistent

activation of object-selective neurons in inferior temporal
www.sciencedirect.com
cortex [3,5]. Here, we review this evidence and we high-

light the roles of the prefrontal cortex (PFC), the medial

temporal neocortex, and the hippocampus in activating

inferior temporal memory networks to guide goal-

directed behavior (Figure 1).

Inferior and medial temporal neocortical
contributions to visual WM maintenance
A wealth of neurophysiological, neuropsychological, and

neuroimaging data suggest that the temporal neocortex is

critical for representing long-term memories of visual

objects [6–9]. Additionally, results from several single-

unit recording studies show that temporal lobe neurons

exhibit persistent, stimulus-selective activity in tasks

requiring the maintenance of visual object information

across short delays [10–12]. This type of persistent activ-

ity is thought to represent a neural mechanism for visual

WM maintenance [13–15]. In addition to persistent activ-

ity, temporal neurons exhibit ‘match enhancement’: an

increased response to a test object that matches an

actively maintained visual object representation [16].

Many single-unit studies of temporal neurons include

recordings from inferior temporal visual area TE and

recordings from medial temporal areas (perirhinal areas

35 and 36 and entorhinal area 28; Figure 1a). Some results

suggest that activity related to visual WM maintenance

might be more prevalent and robust in perirhinal and

entorhinal cortices than in area TE. For example, Naka-

mura and Kubota [11] reported that the proportion of

visually responsive neurons that exhibit delay-period

activity is larger in the perirhinal (38%) and entorhinal

(71%) cortices than in area TE (22%). Furthermore, these

areas differ in their ability to maintain visual information

in the face of distraction. For example, one study shows

that sample-selective delay activity in inferior temporal

cortex (collapsed across area TE and perirhinal area 36)

was eliminated following presentation of a distracting

item [12]. By contrast, sample-selective delay-period

activity in entorhinal and perirhinal neurons remains

robust even after presentation of distracting stimuli

[11,17].

Consistent with the results described above, several

[18–21] (but not all [22–24]) human neuroimaging studies

report inferior temporal activation during maintenance of

visual objects. More recent neuroimaging investigations

take into consideration the finding that temporal lobe

neurons exhibit activity during retention delays that

is object-selective [10–12]. Although neuroimaging

methods cannot detect object-selective activity at the
Current Opinion in Neurobiology 2005, 15:175–182
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Figure 1
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Brain regions implicated in visual WM processing. (a) Neural correlates of visual WM maintenance have been observed in inferior (red) and

medial (yellow) temporal cortical areas. In addition, recent results suggest that the hippocampus (blue) contributes to maintenance of novel

visual objects. Within the lateral PFC, evidence suggests a relative distinction between dorsal and/or anterior regions (BA 9, 10, and 46; purple)

and ventral and/or posterior regions (BA 6/8, 44, 45 and 47; green). (b) The neuroanatomical connections between these regions, along with the

results reviewed here, suggest that inferior temporal visual object representations can be reactivated through feedback from the PFC and/or the

medial temporal lobes.
single-neuron level, studies have identified inferior tem-

poral subregions that preferentially respond to categories

of objects, such as the fusiform face area (FFA) for faces

[25,26] and the parahippocampal place area (PPA) for

scenes or buildings [27,28]. Several recent studies exam-

ined WM activity in the FFA and show that this area

exhibits persistent activity when faces are maintained

across memory delays [29��,30�,31,32], that this activity

is robust to distraction [32], and that it increases linearly

with the number of faces that are actively maintained

[30�,33]. In addition to persistent activity, two studies

report match enhancement effects in the fusiform gyrus

during face WM tasks [34,35].

Another approach that has been used in recent studies is

to compare the response properties of different category-

specific inferior temporal subregions during encoding and

maintenance of preferred and nonpreferred stimuli. Such

studies have shown, for example, that independent of

perceptual stimulation, encoding and delay period activ-

ity in the FFA and PPA is enhanced when their preferred

stimuli are task-relevant [31,36�]. Others report activation
Current Opinion in Neurobiology 2005, 15:175–182
of category-specific inferior temporal subregions during

mental imagery of faces and buildings [37–39]. Alto-

gether, these recent neuroimaging findings concur with

the results of monkey physiology studies to suggest that

visual WM operations are supported by activation of

object representations in the temporal cortex.

The hippocampus and the medial temporal
neocortex contribute to active maintenance
of novel objects
It has been suggested that medial temporal cortical areas

(perirhinal, parahippocampal, and entorhinal cortices)

and the hippocampus comprise a ‘medial temporal lobe

memory system’ that is not involved in WM [40,41].

However, studies of monkeys [42–44] and humans

[45–49] with extensive medial temporal lesions suggest

that these regions are necessary for maintaining repre-

sentations of novel, complex objects even across short

delays. It is generally believed that the rate of neuronal

plasticity is faster within the hippocampus and the peri-

rhinal cortex than in posterior neocortical areas such as

TE. Accordingly, it is likely that novel visual objects do
www.sciencedirect.com
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not have a strong pre-existing representation in inferior

temporal cortex, and that active maintenance of novel

objects would therefore depend on the activation of

newly formed memory representations in the hippocam-

pus and perirhinal cortex.

Consistent with this idea, several studies report increased

hippocampal and/or perirhinal activity during WM tasks

with novel visual objects [50,51,52�,53], faces [49,54], or

scenes [55,56�]. Furthermore, hippocampal and medial

temporal cortical activation during WM delays appears to

be specific to novel stimuli, [52�,54,55], and enhanced for

items that are successfully remembered after long delays

[49,52�,56�,57]. More recent results suggest that the hip-

pocampus exhibits enhanced functional connectivity to

the inferior temporal cortex during working memory

delays [58��]. These results are consistent with the view

that the hippocampus and the perirhinal cortex play a role

in new LTM formation, and that sustained activation of

these new LTM traces additionally facilitates active

maintenance during WM tasks [52�].

Prefrontal regions contribute to visual WM
maintenance
Whereas temporal cortical neurons are likely to encode

the object representations that are activated during visual

memory maintenance, PFC neurons appear to play a

significant role in top-down control processes that facil-

itate WM maintenance [1,59]. For example, prefrontal

lesions in humans do not eliminate WM maintenance, but

they do selectively impair executive processes necessary

for maintaining relevant information in the face of dis-

traction [60]. Regarding visual WM, results suggest that

the PFC might facilitate maintenance through top-down

modulation of object representations in temporal cortex.

For example, prefrontal neurons (such as those in entorh-

inal cortex) exhibit object-specific delay-period activity

that is robust to distraction [61]. Furthermore, one study

demonstrates that cooling of the PFC impairs behavioral

performance and attenuates sample-specific delay-period

activity in inferior temporal neurons during a delayed

matching to sample (DMS) task [62]. Similar network

level interactions appear to occur in humans [58��,63��];
for example, Mechelli et al. [63��] find that category-

specific activity in the FFA and PPA during imagery of

faces and houses is mediated by top-down feedback from

the PFC.

Recent evidence suggests that more dorsal and/or anterior

(Brodman’s areas [BA] 9, 10, 46) and more ventral and/or

posterior (BA 6/8, 44, 45, and 47) prefrontal subregions

might make different contributions to WM. Based on

neurophysiological and neuroimaging studies, some sug-

gest that ventral and dorsal PFC might be differentially

specialized for maintaining object and spatial informa-

tion, respectively [64,65]. Others suggest that different

ventral prefrontal regions might be important for main-
www.sciencedirect.com
taining different types of information, but that dorsal

prefrontal regions might be differentially specialized

for monitoring or manipulating this information [66–

68]. Although these hypotheses are typically contrasted

with one another, it is possible that both are partly correct.

Many spatial WM tasks involve processing spatial rela-

tions between items that are active in memory; many WM

tasks that investigate manipulation or monitoring usually

involve processing abstract relations (semantic, temporal,

etc.) between items that are active in memory. Thus, it is

possible that ventral and/or posterior prefrontal regions

are specialized for activating representations of relevant

items (e.g. objects, words, etc.), and that dorsal and/or

anterior prefrontal regions are specialized for activating

spatial and nonspatial relations between items that are

active in memory [69].

Recent results from single-unit recording studies are

remarkably consistent with this hypothesis [70��,71�].
In one study, monkeys were presented a sequence of

three objects, and after a delay were required to touch the

objects in the order that they were shown [70��]. Neurons

in the dorsal PFC responded selectively during the

encoding phase according to each item’s ordinal position

in the sequence, irrespective of its visual features,

whereas ventral prefrontal neurons responded in an

object-selective manner. Another study examined dorsal

prefrontal neurons during the performance of a ‘self-

ordered’ task, in which monkeys made successive sac-

cades to three distinct objects [71�]. Almost half of these

neurons exhibited responses that were modulated accord-

ing to whether the object was the first, second, or third

saccade target. These findings suggest that the dorsal

PFC is particularly important for maintaining relations

amongst objects that are being actively maintained.

Activating visual memories by association:
roles of the inferior and medial temporal
cortices, hippocampus, and PFC
In addition to showing persistent activity during main-

tenance of a preferred object, temporal lobe neurons can

exhibit activity in response to an initially non-preferred

object if that object has been repeatedly associated with a

preferred object [72–75]. For example, Sakai and

Miyashita [76] trained monkeys to learn associations

between pairs of visual objects and recorded from tem-

poral neurons during a delayed paired associate (DPA)

task, in which one object was used to cue recall of its

associate from memory. These investigators identified

‘pair coding’ neurons that selectively responded to both

objects in the pair, and ‘pair recall’ neurons that exhibited

sustained delay-period activity when their preferred

object was recalled in response to its associate.

Recent evidence from lesion, physiological, and neuroi-

maging studies suggest that visual associative memory

retrieval requires top-down modulation of neurons in
Current Opinion in Neurobiology 2005, 15:175–182
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Figure 2
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Human inferior temporal activity during visual WM maintenance and associative memory retrieval. (a) In an event-related fMRI study, subjects

were trained to learn a set of faces, houses, and face–house associations and were scanned while performing two tasks. On DMS trials, subjects

were shown a previously studied face or house and required to maintain it across a delay. On DPA trials, subjects were shown a face or a house that

was previously learned in a face–house pair and asked to recall and maintain its associate across a delay period. In a separate scan, tasks were

performed to identify the locations of the FFA and PPA. Activity in these category specific inferior temporal subregions was then examined

during the DPA and DMS tasks separately, according to whether the cue stimulus was a face or a house. (b) On DPA trials, activity during the

cue phase in the FFA (left) and PPA (right) was enhanced when the preferred stimulus of each region was presented. However, during the delay

period, activity in these regions reflected the type of information that was active in memory, rather than the previously presented cue stimulus: that is,

delay activity in the FFA was greater when a face was recalled in response to a house cue and delay activity in the PPA was greater when a

house was recalled in response to a face cue. (c) On DPA and DMS trials, cue and delay period activity in the FFA and PPA was enhanced when

subjects maintained each region’s preferred stimulus type. Adapted from [29��].

Current Opinion in Neurobiology 2005, 15:175–182 www.sciencedirect.com
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inferior temporal area TE. For example, lesion studies

show that eliminating feedback from prefrontal [77–80],

perirhinal [81–83], or entorhinal [84�] cortices to inferior

temporal area TE impairs visual associative memory.

Neurophysiological studies show some distinctions

between each of these areas. For example, pair coding

neurons are relatively abundant in the perirhinal cortex

[85�], but such cells are rare in area TE [85�] and PFC

[86]. Furthermore, during performance of the DPA task,

delay-period activity in perirhinal neurons reflects both

the cue stimulus and the retrieved associate [87��]. By

contrast, delay-period activity in PFC [86] and area TE

[87��] switches, such that, in the initial part of the delay,

activity in neurons selective for the cue object predomi-

nate, whereas later in the delay, activity in neurons

selective for the associate are more active. Collectively,

these results seem to suggest that top-down influences

from the medial temporal region reflect representations of

the relevant association, whereas top-down influences

from the PFC to area TE reflect the object that is

currently task relevant.

Neuroimaging studies of humans reveal further insights

into the neural mechanisms for visual associative memory

retrieval [29��,88]. In one study [29��], subjects learned a

series of faces, houses, and face–house associations; they

were then scanned while performing DMS and DPA tasks

with these stimuli (Figure 2). Results show that delay-

period activity within category selective inferior temporal

subregions reflects the type of information that is cur-

rently active in memory: the FFA showed enhanced

activity when subjects maintained previously shown faces

on DMS trials and when subjects recalled faces in

response to a house cue on DPA trials; the PPA showed

enhanced activity when subjects maintained previously

shown houses on DMS trials and when they recalled

houses in response to a face cue on DPA trials. Further

analyses differentiated between two types of top-down

influences that facilitate task performance: regions in

posterior, ventral PFC exhibited persistent activity dur-

ing the memory delays of both DPA and DMS trials,

suggesting that these areas provide top-down activation of

task-relevant object representations. By contrast, anterior

PFC (BA 10) and the hippocampus exhibited selective

activity increases during the cue period of DPA trials,

suggesting that these areas are preferentially involved in

retrieving the relation between the cue and its associate.

Conclusions and future directions
Overall, available evidence points strongly to the idea

that visual WM processes are supported by activation of

visual LTM representations in the inferior temporal

cortex. These visual object representations can be acti-

vated by inputs from prefrontal regions [89] and by inputs

from the hippocampus and medial temporal neocortex

[52�,54] (Figure 1b). An important direction for future

work will be to understand how these and other areas
www.sciencedirect.com
functionally interact during different types of visual WM

processes.

Update
Lee et al. [90] report that humans with lesions to the

medial temporal neocortex are impaired at making fine

discriminations among visual objects, scenes and faces

that have a high degree of feature overlap. Additionally,

patients with more selective hippocampal damage are

more specifically impaired at visual scene discrimina-

tion. These data suggest that the medial temporal neo-

cortex is a site for detailed visual object representations

that might contribute to the visual WM processes

reviewed here.
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