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SUMMARY

Nonvisual responses to light, such as photic
entrainment of the circadian clock, involve in-
trinsically light-sensitive melanopsin-express-
ing ganglion cells as well as rod and cone pho-
toreceptors. However, previous studies have
been unable to demonstrate a specific contribu-
tion of cones in the photic control of circadian
responses to light. Using a mouse model that
specifically lacks mid-wavelength (MW) cones
weshowthat thesephotoreceptorsplay asignif-
icant role in light entrainment and in phase shift-
ing of the circadian oscillator. The contribution
of MW cones is mainly observed for light expo-
sures of short duration and toward the longer
wavelength region of the spectrum, consistent
with the known properties of this opsin. Model-
ing the contributions of the various photorecep-
tors stresses the importance of considering
the particular spectral, temporal, and irradiance
response domains of the photopigments when
assessing their role and contribution in circa-
dian responses to light.

INTRODUCTION

Entrainment of the circadian clock and other nonvisual

responses to light involves intrinsically light-sensitive gan-

glion cells (ipRGCs) that express the rhabdomeric photo-

sensory pigment melanopsin (Berson et al., 2002; Arendt

et al., 2004) and that receive modulatory inputs from both

rods and cones (Berson et al., 2002; Belenky et al., 2003).

Although the functional absence of rods, cones, and mel-

anopsin abolishes all nonvisual responses to light (Hattar

et al., 2003), defining the relative roles and contributions

of the different photopigments in nonvisual responses has

proven to be challenging. The main strategies employed

have involved investigation of these nonvisual responses

in mutant/transgenic mice lacking selected photopig-

ments resulting from retinal degeneration of rods and/or

cones (rd, rds, cl, rd/cl, rdta/cl), transgenic knockout mice

with invalidation of rod/cone phototransduction pathways
(gnat1�/�, cnga3�/�), or of the photopigment melanopsin

gene (Opn4
�/�).

Depending on the retinal alteration and light stimulus,

the functional absence of one or more of these photopig-

ments generally leads to anomalies in light-induced phase

shifts, entrainment, pupillary light reflex (PLR), or masking.

For example, melanopsin knockout mice (Opn4
�/�) exhibit

attenuated phase shifts of circadian locomotor activity in

response to a light pulse, coupled with diminished entrain-

ment to low light levels and an attenuated PLR in bright

light (Panda et al., 2002, 2003; Lucas et al., 2003; Hattar

et al., 2003). Some individual Opn4
�/� mice may become

active during the light phase, and masking of activity by

light is also altered (Mrosovsky and Hattar, 2005).

Mice with intact ipRGCs but lacking both rods and

cones (rd/rd cl) show a significant loss in sensitivity in their

PLR (Lucas et al., 2001, 2003) but not in their ability to

phase shift, at least if bright white light pulses are used

(Semo et al., 2003). Rodless-coneless gnat1�/�,cnga3�/�

mice are reported to show the same pupil response as

the rd/rd cl mouse (Hattar et al., 2003). In contrast, mice

that predominantly lack rods are reported to show normal

phase shifts (rd/rd, Foster et al., 1991; rds, Argamaso

et al., 1995), but fail to entrain at low (<1 lux) light levels

(Ebihara and Tsuji, 1980; Mrosovsky, 2003) and have

altered masking responses (Mrosovsky, 2003). In addi-

tion, rd/rd mice show diminished sensitivity for PLR

(Panda et al., 2003; Van Gelder et al., 2003).

Only a single study has examined the phase-shifting re-

sponse in a mouse lacking cones (Freedman et al., 1999).

In the transgenic cl/cl mouse model, almost all mid-wave-

length (MW) cones and the majority of short-wavelength

(SW) cones are eliminated. Despite this deletion, phase

shifts for a range of irradiances using mid-wavelength light

were reported to be essentially similar in the cl/cl and wild-

type mice, suggesting that cones do not play a significant

role in the response.

Interpretation of these findings obviously poses a num-

ber of problems related to the anatomical alteration of the

retina, the response investigated, and the quantitative

and qualitative properties of the light stimulus employed.

First, the nature of the retinal deletion (mutation, trans-

gene, altered transduction pathway) can lead to different

consequences related to retinal plasticity during develop-

ment, including effects of transcriptional regulation on
Neuron 53, 677–687, March 1, 2007 ª2007 Elsevier Inc. 677

mailto:cooper@lyon.inserm.fr


Neuron

Role of Cones in Circadian Responses
conserved photopigments (Sakamoto et al., 2004). Sec-

ond, the relative contribution of rods, cones, and mela-

nopsin ipRGCs differs according to the response assayed

and the associated structures involved. The suprachias-

matic nucleus (SCN) is almost exclusively innervated by

ipRGCs, whereas the olivary pretectal nucleus (involved

in the PLR) receives significant additional input from

non-ipRGCs (Hattar et al., 2006). Masking of activity by

light relies on a more complex and distributed network

of nonvisual and visual structures (Mrosovsky and Hattar,

2005). Finally, with the exception of the PLR (Lucas et al.,

2001; Hattar et al., 2003; Lucas et al., 2003), the majority of

studies in mice with altered retinas have not characterized

circadian responses in relation to irradiance, duration, and

wavelength of the light stimulus. Most reports have used

broadband white light or a single wavelength (480–500

nm), limiting the scope of analysis of the spectral, irradi-

ance, and temporal response domains of the underlying

photopigments. For example, rhodopsin in mice has a

maximum of absorbance at 498 nm and dominates retinal

function in low light (scoptopic) levels, whereas MW and

SW cones respond at higher irradiances but each in

different spectral domains (lmax = 508 nm and 359 nm,

respectively; Jacobs et al., 1991). Melanopsin (lmax =

479–484 nm) also requires high irradiances but differs in

its temporal domain, with more sluggish responses to

changes in light intensity and resistance to bleaching by

light (Berson et al., 2002; Wong et al., 2005).

To dissect out the roles of different photopigments in the

photic regulation of the circadian clock, we used TRb�/�

knockout mice for both isoforms b1 and b2 of the thyroid

hormone receptor (Gauthier et al., 1999), which is essential

for the development of MW cones in vitro and in vivo (Ng

et al., 2001; Forrest et al., 2002). The TRb2 deletion in

mice induces a complete and selective loss of MW-cone

opsin without significant changes in total cone numbers.

All cones instead express SW-opsin (Ng et al., 2001). We

examined entrainment to shifts of the light/dark cycle cou-

pled with a decrease of the light level and phase shifts to

brief pulses of monochromatic light at different irradiances

and duration, specifically designed to preferentially influ-

ence either SW, MW, or melanopsin photopigments based

on their peak spectral sensitivity. Our results show that

MW cones significantly contribute to photic entrainment

of circadian responses in a manner coherent with the irra-

diance, temporal, and spectral response properties of

the MW-opsin photopigment. Furthermore, modeling the

comparative profiles of the responses of the two geno-

types provides insight into the relative contributions of

both melanopsin and MW-cone opsin in the mid-wave-

length region of the spectrum.

RESULTS

MW-Coneless Mice Overexpress SW

Opsin and Melanopsin

The lack of MW cones in the TRb2
�/�mice has previously

been reported (Ng et al., 2001). The double-knockout
678 Neuron 53, 677–687, March 1, 2007 ª2007 Elsevier Inc.
TRb�/�mice used in this study present a similar pattern of

cone differentiation to the TRb2
�/�mice, although the op-

sin content has not previously been characterized (Gauth-

ier et al., 1999). In order to confirm the absence of MW

opsin and to validate this model, we first examined the ex-

pression of MW and SW opsins in wild-type and TRb�/�

mice using immunohistochemistry (Figures 1A and 1B)

and real-time PCR (Figure 1C). Immunohistochemical la-

beling using specific antibodies against SW and MW op-

sins demonstrates the absence of MW-expressing cones

Figure 1. Cone Opsins and Melanopsin Expression in the

Retina of Wild-Type and MW-Coneless Mice

(A) Confocal photomicrographs showing immunohistochemical label-

ing of MW (red fluorescence) and SW (green fluorescence) opsins in

retinal sections. In wild-type mice, both MW and SW opsins are pres-

ent with coexpression of both opsins in the outer segments of some

cones (white arrow, yellow fluorescence). In TRb�/�mice, MW-immu-

noreactive cones are not detected, and all cones express SW opsin.

Scale bar, 10 mm.

(B) Confocal photomicrographs of melanopsin-immunopositive

ganglion cells (red fluorescence) in retinal sections of WT and MW-

coneless mice showing that the relative number and distribution of

melanopsin-containing ganglion cells are similar for both genotypes.

Scale bar, 20 mm. OS, outer segment; ONL, outer nuclear layer; INL,

inner nuclear layer; GCL, ganglion cell layer.

(C) Relative opsins (SW, MW, and rhodopsin) and melanopsin mRNA

levels in the retina of WT (black bars) and MW-coneless (gray bars)

mice using real-time PCR. Results are expressed as mean ± SEM

(n = 4 for each genotype). The TRb�/� knockout mouse is characterized

by a total absence of MW opsin and overexpression of SW opsin. The

relative level of melanopsin is also upregulated, whereas rhodopsin

levels are equivalent in both genotypes. Asterisks indicate a statistically

significant difference (Mann-Whitney U test, *p < 0.05, **p < 0.01).
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Figure 2. Impaired Photic Entrainment

in MW-Coneless Mice

(A) Two representative actograms of locomotor

activity for WT and MW-coneless (TRb�/�)

mice under a 12L/12D cycle, double-plotted

on a 24 hr timescale. The numbered lines repre-

sent successive days, and the bar above the

actograms indicates the original light/dark

cycle. The gray rectangles indicate the dark

phase of each shifted 12L/12D cycles. After 3

weeks of entrainment under a 12L/12D cycle,

mice were exposed to successive 6 hr delayed

light/dark cycle, associated with a decrease of

light intensity (from 100 to 10 lux, and from 10 to

1 lux). In the WT mice, locomotor activity had

a rhythm of 24 hr and was phase locked to

the onset of darkness, showing photic entrain-

ment from 100 to 1 lux. In contrast, MW-cone-

less mice entrained normally at a high light level

(100 lux), entrained with an abnormal phase an-

gle at 10 lux, and at 1 lux did not show stable

entrainment at least after 43 days.

(B) Phase angles of activity onsets showing

the differences in entrainment for all individual

WT and MW-coneless mice (n = 8 for both

genotypes).
in the TRb�/� mice compared to wild-type animals (Fig-

ure 1A). All cones instead express SW-opsin, as has been

described for TRb2
�/� mice (Ng et al., 2001). Figure 1C

shows the relative levels of the different opsins (rhodopsin,

SW, MW opsins, and melanopsin) using real-time PCR.

Transcript of SW-opsin is overexpressed (1.55-fold; p <

0.001) in the TRb�/� mice, whereas MW-opsin mRNA is

completely absent, confirming the immunohistochemical

staining pattern. The rhodopsin mRNA content is equiva-

lent in the wild-type and the knockout mice. Melanopsin

transcripts are slightly overexpressed (1.35-fold; p < 0.05)

in TRb�/� mice compared to normal mice. However,

immunohistochemical labeling and confocal analysis did

not reveal any apparent differences between the geno-

types in the dendritic morphology or distribution of mela-

nopsin-RGCs (Figure 1B).

Deficits of Photic Entrainment

in MW-Coneless Mouse

Daily locomotor activity of MW-coneless (TRb�/�) and

wild-type littermate mice were initially synchronized for 3
weeks to a 12L/12D cycle at a light level of 100 lux. Under

these high light conditions, both wild-type and MW-cone-

less mice entrained with normal phase angles and consol-

idated their locomotor activity to the dark period of the

light/dark cycle (Figures 2A and 2B). We then examined

the ability of mice to entrain to a new light/dark cycle

that was phase delayed by 6 hr and coupled with a 1 log

unit decrease of irradiance to 10 lux. Although both geno-

types adjusted their daily locomotor activity to the new

light cycle, a significant difference was observed in the

rate and phase angle of re-entrainment. In control mice,

stable re-entrainment was achieved after 14.7 ± 2 days,

whereas locomotor activity of MW-coneless required

21.3 ± 1.1 days (p < 0.001, Figures 2B and 3). In addition,

the MW-coneless mice exhibit an abnormal phase angle

of entrainment, with a significantly delayed onset of activ-

ity with respect to light offset (1.91 ± 0.04 hr, p < 0.001).

When the same experiment was repeated again using a

6 hr delay of the light/dark cycle with a further decrease in

light level (1 lux), wild-type animals entrained but required

more time than at 10 lux (23.2 ± 1.1 days, p < 0.05) to
Neuron 53, 677–687, March 1, 2007 ª2007 Elsevier Inc. 679
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adjust the onset of locomotor activity, whereas knockout

mice do not display stable entrainment at least during

the 43 days of exposure (Figures 2B and 3).

The Spectral and Temporal Responses

for Light-Induced Phase Shifts Are Altered

in MW-Coneless Mouse

The magnitude of light-induced phase shifts of circadian

locomotor activity rhythms depends on irradiance and

wavelength of light exposure. To assess these effects,

we examined the amplitude of phase shifts induced by a

15 min pulse of monochromatic light at three different

wavelengths (370, 480, and 530 nm) and four irradiance

levels (Figure 4). For 360 and 480 nm light stimulations,

no significant difference in the magnitude of the phase

shift of locomotor activity is observed between knockout

and wild-type mice at all irradiance levels used (Figure 4B).

For the two wavelengths and in both genotypes, the low-

est irradiance stimulus delivered (2.8 3 1010 photons/

cm2/s) does not induce a phase shift significantly different

compared to dark control animals (0.22 ± 0.03 hr, data not

shown). At higher irradiance levels, the magnitude of the

phase shift increases proportionately with increased pho-

ton flux (from 2.8 3 1011 to 2.8 3 1014 photons/cm2/s).

In contrast, the magnitude of the response at 530 nm is

significantly attenuated in MW-coneless mice compared

to wild-type animals, in particular for the higher irradi-

ances (Figure 4B).

The similarity in responsiveness of the circadian system

for the two genotypes at 480 nm is unexpected consider-

ing the reduction in the response at 530 nm in the MW-

coneless mice. To further understand this discrepancy,

we repeated a series of 480 nm light exposures at a

constant irradiance of 2.8 3 1014 photons/cm2/s but

with shorter durations to assess whether there were

temporal differences in responsiveness. With the shorter

light exposures of 1 and 5 min duration, knockout mice

show significantly attenuated phase delays (p < 0.05)

compared to wild-type mice (Figure 5), whereas the re-

sponse is similar between genotypes after 15 min of light

stimulation.

Modeling the Relative Contributions of MW

Opsin and Melanopsin

Although this latter result reveals a difference between the

two genotypes in their temporal responsiveness to light,

the similarity of the responses for 15 min exposures at

480 nm coupled with a decrease in the response at 530

nm for the MW-coneless mice is enigmatic. To understand

the properties underlying this difference, we modeled the

behavioral response based on the hypothesis that the

response function in the wild-type mouse is derived from

the combined sensitivities of melanopsin and MW opsin,

whereas the responsivity of the MW-coneless mice only

involves melanopsin. The relative response sensitivities

were based on the opsin absorption curves calculated

using the Lamb nomogram (Lamb, 1995). Deriving this

type of response function is similar to classical procedures
680 Neuron 53, 677–687, March 1, 2007 ª2007 Elsevier Inc.
applied, for example, to determine the underlying additive

contributions of MW and long-wavelength (LW) cones

in the human photopic sensitivity function (Kaiser and

Boynton, 1996). The rod response was not taken into con-

sideration since, although rods remain intact in both geno-

types, previous studies on phase shifts in rd mice suggest

little or no contribution of rods at these irradiance levels,

and the irradiances used in our study are above the re-

sponse range of rods (Nathan et al., 2006). Likewise, SW

opsin was not taken into account since the relative sensi-

tivity of this photopigment is reduced by more than 3 log

units in the 480–530 nm region. For the model to be valid,

we consider that this hypothesis should fulfil two condi-

tions. The first condition is that the response function

calculated for the combined melanopsin and MW-opsin

nomograms should correspond to the action spectrum

for phase shifting and the PLR in wild-type mice (Foster

et al., 1991; Lucas et al., 2001). The second condition

requires that the difference between the combined mela-

nopsin and MW-opsin response function (wild-type mice)

and the melanopsin curve alone (MW-coneless mice) cor-

respond to the experimentally observed differences in the

behavioral responses at 480 and at 530 nm for the two

genotypes. If this assumption is correct, then the model

should predict a single combination of underlying relative

sensitivities for each of the opsins. The equations used

and the results are graphically illustrated in Figure 6.

Figure 3. Mean (±SEM) Phase Angles of Activity Onsets

in Wild-Type and MW-Coneless Mice

See Figure 2B for individual data. In both genotypes (n = 8), the number

of days to achieve a stable phase angle of entrainment increases as the

light intensity during the light phase decreases. Wild-type mice achieve

stable re-entrainment (phase angle = 0 hr) after the shift from 100 to

10 lux and from 10 to 1 lux (respectively, 14.7 ± 2 and 23.2 ± 1.1

days). In contrast, MW-coneless (TRb�/�) mice re-entrain with an ab-

normal phase angle (1.91 ± 0.04 hr, ANOVA, p < 0.001) after 21.3 ±

1.1 days for the decrease from 100 to 10 lux (Mann-Whitney U test;

p < 0.05) and when the light level is decreased to 1 lux still do not display

a stable phase angle of entrainment at least after 43 days.
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Figure 4. Attenuated Phase-Shifting

Response to Light in MW-Coneless Mice

(A) Representative actograms of locomotor ac-

tivity of WT and MW-coneless (TRb�/�) mice

exposed to 15 min pulses of monochromatic

light (370, 480, and 530 nm) at four different

irradiances and at CT16 (white circle).

(B) Mean ± SEM (n = 8 for each genotype)

phase shifts for WT and TRb�/� mice at the

three wavelengths tested. A statistically signif-

icant difference was observed between the

genotypes only for monochromatic stimulation

at 530 nm. Control animals handled in the same

way but that did not receive a light pulse show

no significant difference between genotypes.

Asterisks indicates a statistically significant dif-

ference between the two genotypes (ANOVA:

p < 0.05; post hoc Student Newman-Keuls

tests comparing genotypes at each irradiance:

*p < 0.05, **p < 0.01).
The model generates a unique set of coefficients that

resolve these two equations. Figure 6A illustrates the rela-

tive contributions in the wild-type mouse of melanopsin

(a = 1.0, dashed blue line) and of MW opsin (b = 1.12,

dashed green line) and the resulting combined response

function (black line). The response function of the MW-

coneless mouse corresponds to the sensitivity curve for

melanopsin alone (c = 1.82, solid blue line). This implies

that the response in wild-type mice is derived from relative

contributions of 1:1.12 of melanopsin and MW opsin, re-

spectively. In the MW-coneless mice, the relative increase

in responsiveness of 1.82 may be related to the upregula-

tion of melanopsin mRNA (Figure 1B). As illustrated, the

model also predicts (Figure 6B) that in the wild-type

mouse the relative contributions of the MW opsin and

melanopsin systems vary according to wavelength, ex-

Figure 5. Attenuated Phase-Shifting Response to Short-

Duration Light Pulses at 480 nm in MW-Coneless Mice

A significant difference between genotypes is only observed for light

pulses of short duration (means ± SEM; n = 8 for each genotype). As-

terisks indicate a statistically significant difference between the two

genotypes (ANOVA: p < 0.05; post hoc Student Newman-Keuls tests

comparing genotypes at each duration: *p < 0.05, **p < 0.01).
pressed as a progressively increasing relative contribution

of MW opsin for wavelengths greater than 490 nm and

inversely of melanopsin at wavelengths less than 490 nm.

DISCUSSION

Our findings in a mouse model in which a single cone op-

sin is invalidated demonstrate that MW cones play an

essential role in phase-shifting responses and in light en-

trainment. Use of a model based on the underlying photo-

receptor response sensitivities, constrained by the opsin

nomograms and additivity, provides insight into (and al-

lows prediction of) the relative contributions of melanopsin

and MW cone opsin in the mid-wavelength region of the

spectrum. Our results also underline the need to consider

the particular wavelength, irradiance, and temporal re-

sponse domains of the photopigments when assessing

their role in different circadian responses to light.

Deletion of Thyroid Hormone Receptor b Induces

Loss of MW Cone Opsin in the Mouse

Nuclear thyroid hormone receptors are known to play a

specific role in retinal development (Forrest et al., 2002)

by inducing cone differentiation in cultures of mammalian

retinal progenitor cells (Kelley et al., 1995), regulating the

development of UV cones in the trout smolt (Browman

and Hawryshyn, 1992) and of several retinal cell types in

the rat (Sevilla-Romero et al., 2002). In humans, recessive

resistance to thyroid hormone causes alterations in the

photopic electroretinogram to mid-wavelength light, sug-

gesting a related role for TRb2 in human retina (Newell and

Diddie, 1977). Treatment with T3 hormones of rodent

retinal cells in vitro increases the numbers of MW cones

and reduces the number of SW cones (Kelley et al.,

1995). TRb2 is prominently expressed in the outer nuclear

layer of the embryonic retina and is considered to be
Neuron 53, 677–687, March 1, 2007 ª2007 Elsevier Inc. 681
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Figure 6. Model of the Relative Contributions of MW Opsin and Melanopsin Responsiveness Derived from the Phase-Shifting

Response in Wild-Type and MW-Coneless Mice

(A) The difference in the response functions are based on the mean differences in light-induced phase shifts in MW-coneless mice compared to wild-

type for each irradiance at 480 and 530 nm, for values significantly different from the dark controls, respectively, 6% and 48%. The model (A) is based

on additivity of the sensitivities of the two photopigments constrained by the Lamb nomogram and multiplied by the coefficients of sensitivity in the

following equations:

480 nm: aðsMelWT Þ+ bðsMWWT Þ=
cðsMelMW�KOÞ

1� 0:06

530 nm: aðsMelWT Þ+ bðsMWWT Þ=
cðsMelMW�KOÞ

1� 0:48

where a = coefficient for sensitivity of melanopsin in the wild-type mouse, b = coefficient for sensitivity of MW-opsin in the wild-type mouse,

c = coefficient for sensitivity of melanopsin in the knockout mouse, and s corresponds to the relative sensitivity of the photopigment (Lamb, 1995).

The response function in the wild-type mouse (MW + MelWT, solid black line) corresponds to the combined contribution of melanopsin (MelWT, lmax =

480 nm, dashed blue line) and MW-opsin (MWWT, lmax = 508 nm, dashed green line). The response function in the MW-coneless mouse only involves

melanopsin (MelMW-KO, solid blue line). The model predicts that the behavioral responsiveness in the wild-type mouse is derived from relative con-

tributions of 1.0 melanopsin:1.12 of MW opsin, with a predicted maximum of sensitivity at 492 nm, which is close to the spectral sensitivity of the

circadian system previously reported in the wild-type mouse (Foster et al., 1991; Yoshimura and Ebihara, 1996; Lucas et al., 2001). In a post hoc ex-

periment to validate the model, we measured light-induced phase shifts in response to a longer wavelength (560 nm, 15 min, 2.8 3 1014 photons/

cm2/s) in the two genotypes. The amplitudes of the phase shifts were entirely consistent with the predicted values for both the wild-type mouse

(0.92 ± 0.16 hr, black circle) and the MW-coneless mouse (0.21 ± 0.13 hr, blue circle, see text for further details).

(B) Using the lamb nomogram and the derived coefficients for the wild-type mouse, the model allows prediction of the relative contributions of mel-

anopsin and MW opsin across the spectrum. This shows that, in the wild-type mouse, the relative contribution of MW cones is greater for wavelengths

above 490 nm, while, inversely, at wavelengths shorter than 490 nm melanopsin dominantly contributes to the response.
necessary for activation of MW-opsin gene promoter

function (Yanagi et al., 2002; Roberts, 2005). Deletion of

this receptor induces a selective loss of MW-opsin without

significant morphological changes in the outer retinal

layers or in total cone numbers (Ng et al., 2001), in contrast

with rd/rd cl and rdta/cl transgenic mouse models (Freed-

man et al., 1999; Lucas et al., 1999). In the TRb �/�mouse,

all cones express SW-opsin, whereas the coneless cl

mouse displays a nearly complete anatomical lack of

MW cones (<1%) coupled with a substantial reduction of

SW cones (>95% loss; Freedman et al., 1999; Lucas

et al., 1999). Our results also provide evidence that the

selective absence of MW-cones results in a transcriptional

upregulation of melanopsin mRNA. This result differs from

a previous study that suggested a downregulation of mel-

anopsin by rods and cones, obtained, however, in a differ-
682 Neuron 53, 677–687, March 1, 2007 ª2007 Elsevier Inc.
ent model of retinally degenerate RCS rats (Sakamoto

et al., 2004).

MW-Coneless Mice Show Impaired Photic

Entrainment

Photic entrainment is the primary process by which ani-

mals synchronize their circadian rhythms with the environ-

ment. The maintenance of an appropriate phase relation-

ship between internal and environmental time has been

reported to be dependent on the period of the internal

clock as well as the strength of environmental cues (Pit-

tendrigh and Daan, 1976). Our data show that entrainment

to a light/dark cycle with decreased light levels is impaired

in MW-coneless mice, suggesting that in the absence of

this opsin the photic signal relayed to the circadian clock

is altered. At 100 lux, photic entrainment is identical in
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both genotypes, and the daily rhythms of locomotor activ-

ity reflect an appropriate state of entrainment rather than

simply masking by light, since activity onsets in darkness

can be extrapolated back to the time of activity onsets

under the 12L/12D cycle in each individual animal. At a

reduced intensity of 10 lux, the photic stimulus is sufficient

to entrain the rhythm in MW-coneless mice, but insuffi-

cient to maintain a normal phase angle of entrainment.

At the lowest light intensity (1 lux), MW-coneless mice

do not display a stable phase angle of entrainment during

the 43 days in our test conditions, although it cannot

be excluded that after an additional number of days in

these conditions a stable phase angle of entrainment

could be achieved. Furthermore, since the free-running

period of the MW-coneless mice in constant darkness is

slightly less than 24 hr (23.94 ± 0.04 hr), it would be inter-

esting to determine whether similar results would be

observed with an advance, rather than a delay, of the

12L/12D cycle.

In comparison, photoreceptor-deficient mice, (rd/rd,

rds/rds, rdta, rd/rd cl, rdta/cl) were originally reported to

display normal entrainment to a light/dark cycle, prompt-

ing the conclusion that rods and cones do not play a role in

photic entrainment (Foster et al., 1991; Argamaso et al.,

1995; Freedman et al., 1999). However, all these studies

used relatively high irradiance levels, whereas when low

light levels are employed (%1 lux) rd/rd mice fail to entrain

(Ebihara and Tsuji, 1980; Mrosovsky, 2003).

Mrosovsky (2003) has suggested that thresholds for en-

trainment may be a more sensitive assay of the deficit

compared to phase shifts using a single light pulse. How-

ever, we would argue that detection of the photic deficit

also depends on the relative luminous, spectral, and tem-

poral response domains of the photoreceptors. In the

case of rods, for example, a deficit in the response is

more likely to be detected within scotopic levels, whereas

in the case of cones (as in the present study), as is the case

of Opn4�/�mice (Panda et al., 2002; Ruby et al., 2002), the

alteration is more likely to be detected at photopic levels.

Furthermore, the use of saturating light levels may conceal

the detection of possible response deficits, as shown by

the normal entrainment to light/dark cycles of high irradi-

ance in MW-coneless mice (present study), Opn4�/�

mice (Ruby et al., 2002), and other strains (Mrosovsky

and Hattar, 2005).

MW-Coneless Mice Show Attenuated Phase Shifts

Since MW-coneless mice also lack nuclear thyroid hor-

mone receptor expression in the SCN compared to the

wild-type mouse (data not shown), it may be postulated

that the reduced entrainment to a white light LD cycle

may result from an alteration of signal transduction in the

SCN. However, the results obtained for phase-shifting

responses to different monochromatic lights support the

idea that observed alterations in photic sensitivity are

due to a wavelength-specific retinal mechanism rather

than a general downstream effect. The similar response

amplitudes observed at 480 nm in wild-type and MW-
coneless mice are consistent with the values predicted

from the proposed model of circadian photoreceptor con-

tributions since at wavelengths %480 nm the response

functions for melanopsin in the MW-coneless mouse and

the combined curve for MW-opsin and melanopsin in the

wild-type mouse are virtually identical. Thus it would be

expected that at wavelengths in the vicinity of 480 nm,

responses in the two genotypes would also be similar. In

contrast, at wavelengths greater than 480 nm the two

curves increasingly diverge, and as predicted by the

model, the MW-coneless mice thereby show a deficit at

530 nm that is consistent with this difference. Despite the

similar magnitudes of the phase shifts at 480 nm following

a 15 min duration light pulse, shorter exposures result in

significantly attenuated phase shifts in the MW-coneless

mice. This difference in temporal responsiveness is con-

sistent with a shorter latency contribution of the MW-cones

response compared to the melanopsin RGC response

(Berson et al., 2002; Dacey et al., 2005; Tu et al., 2005)

and with the idea that MW-cones provide the initial sensi-

tivity of the light signals for non-image-forming functions,

whereas the intrinsic response of the melanopsin RGCs

provides a sustained signal throughout the light stimulus

and in long temporal integration (Dacey et al., 2005).

Modeling Photoreceptor Contributions

of Nonvisual Responses

Although our findings differ from a previous study that de-

scribed no attenuation of phase shifts in cl coneless mice

(Freedman et al., 1999), their result is not surprising given

the use of a single-wavelength (509 nm) light. Our photo-

pigment additivity model predicts that in this spectral

region the expected difference in responsiveness between

wild-type and MW-conelessmice would be relatively small.

On the other hand, a significant contribution of MW

cones in phase shifting is a predictable feature considering

the known action spectra for phase shifts and for the PLR in

wild-type mice (Takahashi et al., 1984; Foster et al., 1991;

Provencio and Foster, 1995; Yoshimura and Ebihara,

1996; Lucas et al., 2001). In all these studies, the peak

region of spectral sensitivity is located around 500 nm. In

rd/rd and rd/rd cl mice that lack rods or both rods and

cones but conserve melanopsin ipRGCs intact, the peak

sensitivity is shifted to shorter wavelengths around 480 nm

(Yoshimura and Ebihara, 1996; Lucas et al., 2001, 2003) in

agreement with the known spectral properties of ipRGCs

(Berson et al., 2002; Dacey et al., 2005; Tu et al., 2005).

These ipRGCs receive inputs from rods and cones via syn-

aptic contacts with bipolar and amacrine cells (Belenky

et al., 2003), and Berson et al. (2002) have shown that these

inputs provide excitatory modulation of ipRGCs. This sug-

gests that rod and cone opsin response sensitivity com-

bines additively with melanopsin sensitivity as proposed

for the murine circadian photoreception (Bullough et al.,

2005). Accordingly, the shift in the peak of the response

in the wild-type mouse toward 500 nm must necessarily

involve a longer wavelength contribution from rods

(lmax = 498 nm) and/or MW cones (lmax = 508 nm).
Neuron 53, 677–687, March 1, 2007 ª2007 Elsevier Inc. 683
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Conversely, their absence would lead to both a shift in the

spectral peak to shorter wavelengths and a loss in lumi-

nous sensitivity. Indeed, for the PLR, rodless rd/rd mice

show a 1 log unit loss and rodless coneless rd/rd cl mice a

2.5 log unit loss of sensitivity compared to wild-type mice,

suggesting a significant contribution from cones (Lucas

et al., 2001). However, it appears unlikely that rods pro-

vide a dominant component to light-induced phase shifts,

since in addition to the fact that the shift of the peak sensi-

tivity to 500 nm in wild-type mice would require an unpro-

portionately large rod contribution, the functional (scoto-

pic) irradiance domain of rods differs from that of cones.

At photopic levels (roughly >1 lux in the mouse) the rod

contribution is normally limited due to the slow kinetics of

rhodopsin regeneration and the uncoupling of the AII ama-

crine cells that convey rod signals to cone bipolar and gan-

glion cells (Bloomfield and Dacheux, 2001). A recent study

(Nathan et al., 2006) using GNAT1�/� mice that lack the

a subunit of rod transducin and GNAT2�/�mice that carry

a missense mutation of the cone-transducin gene shows

that the operating range for rod sensitivity extends from

1 3 105 to 5 3 109 photons/cm2/s, whereas cones re-

sponses require at least 5 3 108 photons/cm2/s. In our ex-

perimental conditions (as in most phase-shifting studies),

the minimal irradiance values required to elicit a phase shift

exceed the functional range of rod responses. Although an

eventual rod contribution in nonvisual responses in ele-

vated light levels is presently difficult to exclude, in vitro re-

cordings of ipRGCs in photopic conditions by Dacey et al.

(2005) would argue that the neuronal responses are medi-

ated almost exclusively by contributions from cones and

melanopsin.

Cryptochromes, which function as circadian photopig-

ments in Arabidopsis and Drosophila, are also expressed

in the mammalian eye and have been suggested to contrib-

ute to nonvisual responses (Van Gelder et al., 2003). How-

ever, the pupillary reflex and the masking response to light

of double-knockout Cry1�/�, Cry2�/�mice is normal (Mro-

sovsky, 2001). Coupled to the finding that triple-knockout

mice (Opn4
�/�, Gnat1�/�, Cnga3�/�) that express normal

levels of Cry1 and Cry2 completely loose all sensitivity to

light, this argues against a contribution of cryptochromes

at least in phase shifting (Hattar et al., 2003).

In order to validate the predictions of the model, we

conducted two complementary sets of experiments. First

we explored phase-shifting responses of wild-type com-

pared with MW-coneless mice to an additional wave-

length of 560 nm (15 min pulse, 2.8 3 1014 photons/

cm2/s). The model predicts that under these conditions

the response of MW-coneless mice would be indistin-

guishable from that of dark controls and that wild-type

mice would show a phase shift of 0.8 hr. The observed

phase shifts (mean ± SD) are identical to the predicted

values (see Figure 6). The MW-coneless mice show a

phase shift of 0.21 ± 0.13 hr compared to 0.22 ± 0.06 hr

in the dark controls (p = 0.84). The wild-type mice show

a phase shift of 0.92 ± 0.16 hr, which is not significantly

different from the predicted value of 0.8 hr (p = 0.58).
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In a second test, we assayed the amplitude of a phase

shift in the Opn4
�/� mouse (provided by S. Hattar) that

lacks melanopsin but retains functional MW cones with

the combined prediction (1) of a reduction in the phase-

shift amplitude and (2) that this reduction should be com-

plementary to that observed in the MW-coneless mouse

compared to the wild-type mouse. Following a 15 min

pulse at 530 nm (2.8 3 1012 photons/cm2/s), the observed

phase shift in the Opn4
�/� mouse (0.52 ± 0.28 hr) is not

statistically different from the predicted value (0.78 hr,

p = 0.10). In further accordance with the model, addition

of the phase-shift amplitudes for the melanopsin knockout

mouse and for the MW-coneless mouse (respectively,

0.52 ± 0.28 hr and 0.60 ± 0.23 hr) at 530 nm is equivalent

to the phase shift observed in the wild-type mouse

(1.12 ± 0.39 hr) in which both photopigment systems are

functional. This result is consistent with the model’s as-

sumption of additive photopigment contributions.

Additional evidence in favor of the model is provided by

the only other phase-shift study using monochromatic

light in the Opn4
�/� mouse by Panda et al. (2002). Using

a 480 nm stimulation, Panda et al. show a 40%–50% re-

duction in amplitude for light-induced phase shifts in mel-

anopsin knockout mice compared to wild-type that is in

agreement with the 47% decrease predicted by the model

at this wavelength.

In summary, both MW cones and melanopsin contribute

to resetting the circadian clock by light, but in varying

proportions depending on the wavelength, level of irradi-

ance, and duration of exposure. While the role of rods still

remains to be elucidated, knowledge of the specific re-

sponse domains is crucial to understanding the relative

contributions of retinal photopigments in nonvisual re-

sponses. Additional factors that should ultimately be con-

sidered include variations in sensitivity related to the light-

adaptive state of the retina and circadian phase. This is

particularly important in the functional context of dynamic

changes in irradiance and spectral composition of light in

the natural environment for which, depending on lighting

conditions throughout the day, the different photoreceptor

systems may be brought into play.

EXPERIMENTAL PROCEDURES

Animals

In TRb�/� null mice, the gene is inactivated downstream of exon 3 such

that both TRb1 and TRb2 mRNAs are not transcribed, precluding ex-

pression of MW-expressing cones (Gauthier et al., 1999). Using RT-

PCR (primer sequences for TRb are sens, CTCTTCTCACGGTTCTCC

TC, and reverse, AACCAGTGCCAGGAATGT), we find that nuclear thy-

roid hormone receptors are present in the SCN of the wild-type mouse

but absent in the TRb�/� null mouse. Homozygous animals display hy-

perthyroxinemia and hearing defects but are nevertheless fertile and

show no other neurological or behavioral alterations (Forrest et al., 1996;

Gauthier et al., 1999). Heterozygous mice were derived in an inbred

129SV background. Control homozygous animals were from the same

genetic background and were obtained by intercrossing heterozygous

animals. All experiments were done with male mice between 6 and 8

weeks of age at the startof the experiment. Animals were housed in plex-

iglass cages under a 12L/12D cycle, with food and water ad libitum. All
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treatment of animals was in strict accordance with current international

regulations on animal care, housing, breeding, and experimentation.

Real-Time Quantitative PCR

Total RNA was extracted using GenElute Mammalian Total RNA Mini-

prep Kit (Sigma) according to the manufacturer’s instructions and sub-

sequently subjected to DNase digestion. The two retinas from each an-

imal were pooled (n = 4 animals for both wild-type and TRb�/�mouse).

Total RNA was reverse transcribed using random primers and MMLV

Reverse Transcriptase (Invitrogen). Real-time PCR was then per-

formed on a LightCycler system (Roche Diagnostics) using the Light-

Cycler-DNA Master SYBR Green I mix. The efficiency and the specific-

ity of the amplification were controlled by generating standard curves

and carrying out melting curves and agarose gels of the amplicons,

respectively. Relative transcript levels of each gene were calculated

using the second derivative maximum values from the linear regression

of cycle number versus log concentration of the amplified gene. Ampli-

fication of the control gene GAPDH was used for normalization. Primer

sequences were the following: SW opsin sens, CAGCCTTCATGGGAT

TTG, and reverse, GTGCATGCTTGGAGTTGA; MW opsin sens, GCT

GCATCTTCCCACTCAG, and reverse, GACCATCACCACCACCAT;

rhodopsin sens, GCCACCACTCAGAAGGCAG, and reverse, GATGGA

AGAGCTCTTAGCAAAG; melanopsin sens, TGCGAGTTCTATGCCTT

CTG, and reverse, GGCACGTAGGCACTCCAAC; GAPDH sens, GAC

CTCAACTACATGGTCTACA, and reverse, ACTCCACGACATACTCA

GCAC. Each reaction was performed in duplicate.

Immunohistochemistry

Animals (n = 3 for each genotype) were rapidly anesthetized with halo-

thane followed by an intraperitoneal injection of nembutal (100 mg/kg

i.p.) and then perfused intracardially with warm heparinized saline fol-

lowed by Zamboni’s fixative at 4�C. The eyes were removed and post-

fixed overnight in the same fixative at 4�C and subsequently stored in

0.1 M phosphate buffer (PB, pH 7.4) with 0.1% sodium azide. Eyes

were cryoprotected in 30% sucrose in PB for 24 hr, and serial sections

of the retina were made at 15 mm on a freezing microtome. To identify

SW- and MW/LW-cone opsins in mouse retinal sections, we used, re-

spectively, the affinity-purified rabbit antisera JH455 (1/5000) directed

against the human SW-cone opsin (gift of Dr J. Nathans; Wang et al.,

1992) and the mouse monoclonal antibody COS-1 (1/100) generated to

chick opsins (Szel et al., 1986). The secondary antisera were goat anti-

rabbit Alexa 488 IgG (H+L) conjugate (100 mg/ml, Molecular Probes) and

goat anti-mouse Alexa 568 IgG (H+L) conjugate (100 mg/ml, Molecular

Probes) for 2 hr. An antiserum against melanopsin (gift from I. Proven-

cio; 1/1200; Provencio et al., 2002) and a secondary goat anti-rabbit

Alexa 568 IgG (H+L) conjugate (100 mg/ml, Molecular Probes) was

used to identify melanopsin-expressing cells. Micrographs were ob-

tained using confocal microscopy (Leica TCS SP). Laser lines and

emission filters were optimized with the Leica PowerScan software.

Assessment of Behavioral Rhythms

For monitoring locomotor activity, mice were housed individually in

cages equipped with passive infrared motion captors placed over

the cages and a computerized data acquisition system (Circadian Ac-

tivity Monitoring System, INSERM, France). Activity records were ana-

lyzed with the Clocklab software package (Actimetrics, Evanston, IL).

Light-Entrainment Assay

Adult (7-week-old) male mice (n = 8 of each genotype) were initially

maintained for 2 weeks under a 12L/12D cycle with broad-band white

light. Mice subsequently underwent a 6 hr phase delay of the light/dark

cycle, associated with successive decreases of light intensity (from

100 to 10 lux and subsequently from 10 to 1 lux). To analyze entrain-

ment, the phase angle, defined as the time difference between the on-

set of the activity rhythm and lights off of the light/dark cycle to which

the animal was entrained, was determined for each animal.
Phase-Shifting Assay

Singly housed male mice (n = 16 for each genotype) were first en-

trained in a 12L/12D cycle for 20 days. Subsequently, animals were

maintained in constant darkness (DD) to examine the free-running

period calculated by periodogram analysis using ClockLab software

(Actimetrics). The endogenous free-running period in the knockout

mice is slightly shorter than the wild-type animals (23.94 ± 0.04 versus

24.07 ± 0.03 hr; p < 0.05). Phase shifts were studied using a single

15 min monochromatic light pulse using three different wavelengths

(370, 480, and 530 nm, half-bandwidth, 10 nm) at four different irradi-

ance levels (2.8 3 1010 to 2.8 3 1014 photons/cm2/s) applied at CT16

(4 h after activity onset). Temporal responses to 480 nm light expo-

sures were studied using an equivalent irradiance (2.8 3 1014

photons/cm2/s) of different durations (1, 5, and 15 min).

To avoid effects due to the age of the animals, previous light pulses,

and the length of exposure to darkness (Shimomura and Menaker,

1994; Refinetti, 2003), the order of presentation of irradiance, duration,

and wavelength (and dark control) were randomized. Each animal was

exposed to two irradiances of all three wavelengths, and at 480 nm to

at least two durations plus a dark control. The age of the mice was 7

weeks at the beginning of the initial entrainment to the 12L/12D cycle

and 32–38 weeks at completion of the series of light pulses.

The stimulator (light source and chamber) has been described pre-

viously (Dkhissi-Benyahya et al., 2000). After the light pulse, animals

were returned to their home cages, and activity was monitored in DD

for an additional 15–20 days before the next light pulse. The magnitude

of a light-induced phase shift was determined from the difference be-

tween the regression lines of the activity onsets before and after the

light stimulation, extrapolated to the day following the light pulse.

The transient responses on the 3–4 days immediately after the pulse

were discounted (Daan and Pittendrigh, 1976).

Statistical Analyses

The Mann-Whitney U test was used to compare results obtained in the

two genotypes for (1) the relative levels of opsin mRNAs and (2) the

number of days necessary to achieve stable entrainment. Two-way

ANOVA and post hoc Student Newman-Keuls, when necessary,

were used to evaluate the differences in behavioral measures (phase

angles and phase shift). Statistical significance was considered for

p < 0.05. Values are shown as mean ± SEM.
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