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Thomas Maurin,1 Lili Wang,1 Helen Figueroa,1 Mathieu Herman,1 Pavan Krishnamurthy,1 Li Liu,1 Emmanuel Planel,1

Lit-Fui Lau,4 Debomoy K. Lahiri,2 and Karen Duff1,*
1Taub Institute at Columbia University Medical Center, New York, NY 10032, USA
2Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
3Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
4CNS Discovery, Pfizer Global Research and Development, Groton, CT 06340, USA
5These authors contributed equally to this work.
*Correspondence: ked2115@columbia.edu

DOI 10.1016/j.neuron.2008.02.024
SUMMARY

Cyclin-dependent kinase 5 (cdk5) has been impli-
cated in Alzheimer’s disease (AD) pathogenesis.
Here, we demonstrate that overexpression of p25, an
activator of cdk5, led to increased levels of BACE1
mRNA and protein in vitro and in vivo. A p25/cdk5 re-
sponsive region containing multiple sites for signal
transducer and activator of transcription (STAT1/3)
was identified in the BACE1 promoter. STAT3 inter-
acts with the BACE1 promoter, and p25-overex-
pressing mice had elevated levels of pSTAT3 and
BACE1, whereas cdk5-deficient mice had reduced
levels. Furthermore, mice with a targeted mutation
in the STAT3 cdk5 responsive site had lower levels
of BACE1. Increased BACE levels in p25 overex-
pressing mice correlated with enhanced amyloido-
genic processing that could be reversed by a cdk5 in-
hibitor. These data demonstrate a pathway by which
p25/cdk5 increases the amyloidogenic processing of
APP through STAT3-mediated transcriptional control
of BACE1 that could have implications for AD patho-
genesis.

INTRODUCTION

Cdk5 is a proline-directed serine/threonine kinase that is acti-

vated by association with its regulators p35 or p39 or their corre-

sponding cleaved C-terminal fragments p25 or p29, respectively

(Lee et al., 2000; Tsai et al., 1994). Several proteins with diverse

functions have been identified as cdk5 substrates, including tau

(Baumann et al., 1993; Kobayashi et al., 1993), b-catenin (Kesa-

vapany et al., 2001), Nudel (Sasaki et al., 2000), FAK (Xie et al.,

2003), Synapsin 1 (Matsubara et al., 1996), ErbB (Fu et al.,

2001), Retinoblastoma protein (Hamdane et al., 2005), MEF2

(Gong et al., 2003) and STAT3 (Fu et al., 2004). Most of these

substrates are active in the central nervous system (CNS) and

have been implicated in the regulation of physiological activities,

such as microtubule and actin dynamics, transportation, cell

adhesion, axon guidance, secretion and neuronal migration
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(reviewed in Dhavan and Tsai, 2001). Cdk5 activation has also

been demonstrated in nonneuronal tissues with a role in myo-

genesis, hematopoietic cell differentiation, spermatogenesis,

and insulin secretion (Cruz and Tsai, 2004).

AD is the most common form of dementia in the elderly. The

disease is characterized neuropathologically by the accumula-

tion and deposition of amyloid b-peptide (Ab) into neuritic

plaques and by the formation of intracellular neurofibrillary tan-

gles (NFT) containing hyperphosphorylated tau. Kinases such

as cdk5 and glycogen synthase kinase-3 (GSK-3) significantly

enhance tau hyperphosphorylation (Maccioni et al., 2001; Planel

et al., 2002) and amyloid-b precursor protein (APP) processing in

vivo (Phiel et al., 2003; Cruz et al., 2006; Rockenstein et al.,

2007), and they may be important therapeutic targets for AD

treatment or prevention.

Plaque-associated Ab is generated following cleavage of APP

by b site APP cleaving enzyme 1 (BACE1) (Vassar et al., 1999)

and g-secretase (De Strooper et al., 1998; Edbauer et al.,

2003). BACE1 appears to be the only b-secretase responsible

for Ab generation, as BACE1-deficient mice do not generate

Ab (Luo et al., 2001). BACE1 undergoes glycosylation, endoso-

mal targeting, and activation by pro-peptide cleavage as it ma-

tures (Capell et al., 2000; Huse et al., 2000), and several path-

ways impact the level of BACE1 in the brain including

phosphorylation at Ser498 by casein kinase 1 (Walter et al.,

2001), lysosomal targeting (Koh et al., 2005), and ubiquitin-medi-

ated degradation (Qing et al., 2004). BACE1 is responsive to var-

ious physiological and pathological situations including ischemia

(Wen et al., 2004), hypoxia (Sun et al., 2006), cytokines (Hong

et al., 2003), oxidative stress (Tamagno et al., 2005), and choles-

terol content (Ghribi, 2006). The level and activity of BACE1 pro-

tein is increased in AD patient brains (Fukumoto et al., 2002;

Stockley et al., 2006), possibly due to elevation of BACE around

plaques (Zhao et al., 2007).

The promoter of the BACE1 gene has been characterized

(Christensen et al., 2004; Sambamurti et al., 2004), and specific

regulatory domains have been located by deletion analysis (Ge

et al., 2004). The promoter has characteristics common to both

constitutive and inducible expression and contains both nega-

tive and positive domains, separated from the transcription

seat by a long, neutral domain (Ge et al., 2004). In addition,

putative transcription factor sites such as those for SP1
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Figure 1. p25 Overexpression Correlates with Increased APP Processing, BACE1 mRNA, Protein, and Activity, in Human Neuroblastoma

SH-SY5Y Cells

(A) Representative immunoblots from mock and p25 stably transfected SH-SY5Y cells after induction. The panel shows p25, cdk5, pTau(S235) (a cdk5 substrate),

BACE1 (�70 kDa), full-length APP (APP fl �110 kDa), and APP-CTFs including a-CTF (C83), and b-CTF (C99). Brain lysate from a BACE1 knock-out mouse was

run alongside to confirm signal specificity (not shown). Data are shown in triplicate.

(B) FRET assay for BACE1 activity in lysates from mock (MK) and p25 stably transfected (p25) SH-SY5Y cells. Controls for assay validation included a BACE1

transfected HEK293 cell line (B1). All samples were assayed with, or without EMD 565788, a specific BACE1 inhibitor (Inh). The signal from p25 cells was sig-

nificantly higher than similarly treated mock cells at all time points after 60 min (p < 0.01).

(C) ELISA results for Ab40 and 42 from 18 hr conditioned medium from mock-transfected and induced p25 cells.

(D) The level of BACE1 mRNA from mock and p25 SH-SY5Y cells was quantified by qPCR using a 30 probe. Data are shown following normalization to actin mRNA

levels. Similar results were obtained using the 50 probe (data not shown). All results were analyzed with Student’s t test, *p < 0.05, **p < 0.01, ***p < 0.001.
(Christensen et al., 2004) and STAT6 (Sambamurti et al., 2004)

have been identified. An active SP1 site is over 1kb upstream

of the +1 transcription start (TSS), indicating the possibility of

other active, distal sites of gene regulation (Ge et al., 2004). No-

tably, it has been determined that the BACE1 promoter is differ-

entially regulated according to cell type (Lahiri et al., 2006) and

that its regulation differs from other members of the BACE family,

such as BACE2 (Maloney et al., 2006).

In the current study, we investigated the role of p25/cdk5 in the

regulation of BACE1 and the generation of Ab. We demonstrate

that p25 overexpression in mice leads to increased cdk5 activity

that correlates with increased BACE1 and Ab levels. Conversely,

BACE1 and Ab levels were reduced following administration of

a cdk5 inhibitor. The identification of a functional, p25/cdk5 re-

sponsive element in the promoter of the BACE1 gene indicates

that BACE1 can be regulated by cdk5 through transcriptional

control, with STAT3 being a likely mediator. We therefore pro-

pose a signaling pathway by which BACE1 is regulated in re-

sponse to cdk5 activity in vivo. These findings identify one mech-

anism by which aberrant p25/cdk5 activity could enhance Ab

accumulation and suggest that inhibitors of cdk5 are candidates

for therapeutic development.

RESULTS

Elevated p25 Correlates with BACE1 Accumulation
and Enhanced APP Processing In Vitro
To examine the effect of p25 on BACE and APP metabolism, SH-

SY5Y cells stably transfected with a tetracycline-inducible p25

construct (p25), or empty vector (mock) (Hamdane et al., 2003;

Figure 1A), were assessed. Both mock and p25-transfected cells

had high levels of cdk5 but lacked p35 protein. The level of

BACE1 protein was greatly enhanced in induced p25 cells.

BACE1 cleaves APP to generate a secreted APPb fragment

and a membrane bound carboxy-terminal fragment (C99,

b-CTF). b cleavage of APP was significantly enhanced as shown
by accumulation of the b-CTF in the induced p25 cells. Com-

pared with the mock cells, the levels of full-length APP (APP fl)

and a-CTF (C83) were unchanged, although a slight shift in

mobility was seen for both in the p25-induced cells.

To assess whether BACE1 activity was enhanced, a FRET-

based activity assay (Figure 1B) was performed. As a positive

control, BACE1 overexpressing HEK293 cells (B1) were in-

cluded. Each sample was treated with a specific BACE1 inhibitor

(EMD 565788; Stachel et al., 2004). All samples showed similar

residual activity, presumably due to the activity of nonspecific,

contaminating acidic proteases. Our data showed that BACE1

activity was significantly enhanced in both the positive control

and the p25-transfected cells. To assess whether increased

BACE1 activity resulted in increased Ab production, endogenous

Ab40 and 42 levels were measured in conditioned media from

the cultured cells (Figure 1C). The levels of both Ab40 and 42

were significantly increased (p < 0.001) in media from induced

p25 cells. These data demonstrate that endogenous BACE1

in p25 transfected cells was active and had enhanced activity

toward its endogenous physiological substrate, APP.

To examine why BACE1 accumulates in response to elevated

p25/cdk5 activity, we assessed the level of BACE1 mRNA and

protein in p25-transfected cells. Quantitative real-time PCR

(qPCR) showed that the level of BACE1 mRNA from p25-trans-

fected SH-SY5Y cells was �6-fold higher than mock cells after

normalization to actin mRNA (Figure 1D). Different probes recog-

nizing 50 or 30 BACE1 mRNA showed a similar fold of induction

(data not shown).

Identification of cdk5 Responsive Sites
in the BACE1 Promoter
To examine whether the increase in BACE1 mRNA was due to an

effect on BACE1 synthesis through upregulation of its promoter

activity, two sets of promoter constructs were examined. The

first was a stable transfected, rat pheochromocytoma (PC12)

cell line expressing 3.2 kb of the BACE1 promoter regulating
Neuron 57, 680–690, March 13, 2008 ª2008 Elsevier Inc. 681
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Figure 2. p25 Overexpression Enhanced BACE1 Promoter Transcription Activity

(A) Schematic of the 3.2kb BACE1 promoter/luciferase fusion clone, indicating the position of +1 transcription start site. PC12 cells, stably transfected with the

BACE1-pGL4.14 construct, were transiently transfected with a p25-GFP expression construct, a cdk5 expression construct, or mock vector. P25-GFP overex-

pression increased activity of the BACE1 promoter as determined by firefly luciferase activity. All cells were cotransfected with pRL-SV40 renilla luciferase control

vector. Cdk5 overexpression without activator did not significantly affect activity of the BACE1 promoter. Overexpression of p25-GFP and cdk5 did not result in

significant toxicity as determined by LDH assay (data not shown).

(B) Schematic of the BACE1P6 and BACE1P8 CAT fusion clones, indicating the position of +1 transcription start site. Normalized CAT levels in N2a cells tran-

siently transfected with p25/GFP or mock vector and cotransfected with promoter constructs P6/CAT or P8/CAT. Levels of CAT were normalized to cotrans-

fected GFP levels, which were similar among all groups. Data show n = 3 wells per cell group. Transfections and assays were repeated in triplicate with essentially

similar results. **p < 0.01.

(C) An illustration of the BACE1 promoter region and 50UTR from�1056 to +364. Positive and neutral noninduced functional elements are indicated. The positions

of the BACE1P6 and BACE1P8 inserts are indicated, as are the locations of putative STAT1/3/6 and MEF2 transcription factor binding sites. Note the absence of

all putative sites in the BACE1P8 sequence.
the expression of the reporter gene, firefly luciferase (Figure 2A).

Levels of reporter protein were assessed in cells transfected with

p25, cdk5, or empty vector. Renilla luciferase or GFP control

plasmids were cotransfected to normalize for transfection effi-

ciency. As expected, transfection of cdk5 alone without activator

had no significant effect on the regulation of the BACE promoter

activity. Transfection with p25 led to 1.7-fold increase in reporter

gene transcription, compared with vector alone. To identify

which region of the promoter was responding to p25/cdk5, two

deletion constructs, BACE1P6 (�1056/+364, +1 being the tran-

scription start site) and BACE1P8 (�327/+364), containing por-

tions of the BACE1 promoter regulating expression of the

reporter CAT, were transiently cotransfected with p25-GFP or

empty vector into N2a cells (Figure 2B). After normalization, the

level of CAT generated from the BACE1P6 construct was �2-

fold higher in p25-transfected cells than in mock-transfected

cells. Levels of CAT from the BACE1P8 construct were not sig-

nificantly different from mock-transfected cells, and the differ-

ence between these two constructs suggested that regions

present in BACE1P6, but not BACE1P8, were responsive to

p25, leading to increased activity of the BACE1 promoter

(Figure 2B). Mapping of the responsive region on the promoter

revealed numerous potential transcriptional regulation sites for

STAT1/3 and MEF2 (Figure 2C).

Confirmation of the Role of STAT3 in the Regulation
of BACE1 Transcription
Both STAT3 and MEF2 are cdk5 responsive transcription factors

known to regulate transcription of numerous target genes (Gong

et al., 2003; Fu et al., 2004). However, phosphorylation of MEF2

by cdk5 suppresses its transcription activity (Gong et al., 2003),

and we did not examine its role in BACE1 transcription further.

Cytoplasmic STAT3 is phosphorylated at the serine 727 site by

several kinases including cdk5 (Fu et al., 2004). Phosphorylation
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at this site induces dimer formation, leading to phosphorylation

at multiple tyrosine sites, including tyrosine 705. This then leads

to translocation of STAT3 to the nucleus (Brierley and Fish,

2005). As experiments in Figure 3 focused on the nuclear asso-

ciation of STAT3 with the BACE promoter, pSTAT3(Y705) rather

than pSTAT3(S727) was monitored in these experiments. To

confirm that enhanced p25/cdk5 led to increased levels of

pSTAT3(Y705), induced p25 cells were examined. As expected,

p25 cells showed higher levels of BACE1 compared to

mock-transfected cells, and this correlated with increased

pSTAT3(Y705) (Figure 3A). We then examined whether BACE1

was upregulated by interferon-a (INF-a)—a cytokine that upre-

gulates phosphorylation of STAT3 at tyr705 (reviewed in Brierley

and Fish, 2005). SH-SY5Y cells treated with INF-a demonstrated

enhanced levels of BACE1, and this correlated with increased

pSTAT3(Y705) (Figure 3B). To demonstrate that the cytokine

was mediating its effect on BACE1 through pSTAT3, an inhibitor

of STAT3 dimerization (EMD 573095) was added to the culture

medium. The inhibitor reduced levels of pSTAT3(Y705), as well

as BACE1 in both control cells, and cells induced with INF-a (Fig-

ure 3B). Graphical representation of the data is shown in

Figure 3C.

To examine whether STAT3 binds BACE1 promoter DNA,

chromatin immunoprecipitation (ChIP) analysis was performed

(Figure 3D). DNA from SH-SY5Y cells that had been treated

with vehicle or with INF-a was crosslinked and mechanically

sheared. Chromatin was then immunoprecipitated with

a STAT3 antibody that recognizes total STAT3 and was sub-

jected to PCR using primers from two regions of the BACE1 pro-

moter—a region upstream that contains multiple STAT1/3 sites

(BACE1-U primer set) and a region downstream that contains

a single STAT1/3 site (BACE1-D primer set). Different primers

recognizing the promoter of the interleukin-8 gene (IL-8), a known

STAT3 target gene (Gharavi et al., 2007), were used as a positive
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control (data not shown). The negative control was chromatin in-

cubated without STAT3 antibody. Figure 3D shows that a BACE1

PCR product was only generated from DNA incubated with the

STAT3 antibody. Both primer sets amplified a band of the ex-

pected size (188–197 bp) in chromatin incubated with antibody,

and in the total DNA (‘‘input’’) positive control. To further confirm

Figure 3. Altered STAT3 Phosphorylation and BACE1 Expression in

Mice

(A) Representative immunoblots of BACE1, STAT3, pSTAT3(Y705), and tubulin

from mock and p25 stably transfected SH-SY5Ycells.

(B) Immunoblots of mock SH-SY5Y cells following treatment with interferon-

a (IFN-a) and/or a cell permeable STAT3 inhibitor (Inh).

(C) Statistical analyses of the level of BACE1 and pSTAT3(Y705) are repre-

sented as bar graphs which show an increase in relevant protein levels follow-

ing IFN-a treatment and a decrease following exposure to the STAT3 inhibitor.

(D) Images of agarose gels following ChIP using two different sets of primers

(BACE1-U, BACE1-D). PCR was performed following immunoprecipitation

with, or without (No Ab), the STAT3 antibody in the presence or absence of

IFN-a. Total sheared DNA from the same cells (Input) was used as a positive

control.

(E) ChIP samples were also examined by qPCR using the BACE1-U primers,

with the relative expression levels graphically represented following normaliza-

tion. Vehicle treated cells immunoprecipitated with STAT3 antibody expres-

sion was set to 1. **p < 0.01, ***p < 0.001.
and quantify these results, qPCR was performed on the same

samples using the BACE1-U primer set (Figure 3E), BACE1-D

primer set, and the IL-8 primer set (data not shown). Samples

that were incubated without STAT3 antibody failed to generate

amplimers. Vehicle-treated cells showed a lower level of enrich-

ment following IP with the STAT3 antibody compared to �12-

fold increase in cells induced with INF-a. Both primer sets for

BACE1 showed a similar level of amplification when compared

by qPCR (data not shown), indicating that both the cluster and

single STAT1/3 sites are targeted by STAT3. These data support

the deletion analysis, indicating that STAT3 and the BACE1 pro-

moter show a physical interaction under physiological conditions

and that induction of pSTAT3 by INF-a significantly enhanced

the association of STAT3 with BACE1 promoter DNA.

Elevated p25/cdk5 Activity Leads
to Hyperphosphorylation of STAT3
and Enhanced BACE1 In Vivo
To confirm the effect of p25/cdk5 on BACE1 and APP process-

ing in vivo, we examined mice that overexpress human p25

(Ahlijanian et al., 2000). STAT3 phosphorylation was examined

in homozygous p25 mice at 4 days of age, compared with

strain-matched, nontransgenic (Ntg) mice of the same age in

four different sets of mice. This age was chosen because overall

phosphorylation levels are high in neonatal animals (Mawal-

Dewan et al., 1994). P25 mice showed enhanced levels of

pTau(S235), a site used to monitor cdk5 activity, compared to

Ntg mice. We then examined p25 and Ntg mice for pSTAT3.

pSTAT3(S727) was significantly elevated when normalized to

levels of total STAT3 protein in all sets of p25 mice. The level

of BACE1 was significantly elevated in p25 mice compared to

Ntg controls in two sets of mice, and a trend to increase was

seen in the other two sets. A representative set is shown in

Figure 4A, with Ntg and p25 mice (n = 10–11).

Loss of cdk5 Activity Reduces pSTAT3
and BACE1 Levels
We next examined whether loss of cdk5 activity reduced levels

of BACE1 in vivo, through the examination of cdk5-deficient

mice (Ohshima et al., 1996). As cdk5-deficient mice are not via-

ble, embryos were taken at E16.5 for analysis. Brain lysate from

cdk5-deficient embryos showed �30% reduction in BACE1

levels and �70% reduction in pSTAT3(S727) levels (Figure 4B)

compared to wild-type controls.

Targeted Mutation of pSTAT3(S727) Leads
to Reduced BACE1
To further confirm that phosphorylation of STAT3 impacts

BACE1 synthesis, we examined a line of mice in which the serine

site of STAT3 at position Ser727 was substituted for alanine (SA

allele) (Wen and Darnell, 1997; Shen et al., 2004; Figure 4C). Ho-

mozygous SA/SA mice are viable and phenotypically normal.

Brain tissue from mice at 4 days of age was extracted, and the

level of BACE1 was compared with age, bodyweight, and

strain-matched WT controls. The mean level of BACE1 in

STAT3 SA mice (n = 5) was reduced to 71% of WT levels (n = 6;

Figure 4C). To test whether BACE levels were significantly differ-

ent between targeted and WT mice, ANOVA analysis was
Neuron 57, 680–690, March 13, 2008 ª2008 Elsevier Inc. 683



Neuron

Regulation of b-Secretase by p25/cdk5
Figure 4. Enhanced cdk5 Activity Correlates with Increased Ab Levels and APP Processing in Young p25 Overexpressing Mice

(A) Representative immunoblot analysis of pTau(S235), BACE1, STAT3, pSTAT3(S727), and tubulin (loading control) in brain lysate from Ntg and p25 mice (n = 10–

11 for each group, two mice shown). BACE1 and pSTAT3/STAT3 levels were significantly higher in p25 mice compared with Ntg mice, as shown in the scatter-

plots.

(B) Immunoblot analysis of cdk5-deficient mice compared with wild-type mice. Reduced levels of BACE1 and pSTAT3(S727) were observed in cdk5 null mice

(KO), compared with wild-type control mice (WT); tubulin is shown as loading control. Several embryonic (day 16.5) brains were pooled to generate lysate.

(C) Immunoblot analysis of BACE1 levels in mice with targeted ablation of the cdk5 responsive site at STAT3(727) (SA). STAT3 SA mice showed no detectable

pSTAT3(S727). BACE1 was significantly reduced in homozygous SA mice at 4 days of age compared to strain and age matched controls (n = 5 for SA mice, n = 6

for WT, two mice for each shown). *p < 0.05.
performed. The results showed that the level of BACE1 was sig-

nificantly different between WT and targeted mice (p < 0.05; see

Table S1 available online for statistical analysis).

An Inhibitor of cdk5 Reduced Levels of pSTAT(S727)
and BACE1 In Vivo
The brain-permeable cdk5 inhibitor CP-681301 (CP, L.-F.L.,

Pfizer, unpublished data) was administered to Ntg or p25 mice

by subcutaneous injection. Inhibition of cdk5 was monitored

through phosphorylation of tau at S235. CP-681301 treatment

of young Ntg mice (n = 5–6) led to significant reduction of

BACE1 mRNA and protein that correlated with reduced

pSTAT3(S727) (Figure 5A). Young p25 mice administered the in-

hibitor under similar conditions also showed a significant de-

crease in BACE1, as well as Ab40/42 (two sets tested); a repre-

sentative set is shown in Figure 5B (see also Table S2; n = 6–7).

Ab is turned over very rapidly in vivo. To confirm that the reduc-

tion of Ab seen with inhibitor did not reflect overall reduced me-

tabolism due to drug toxicity, we examined the levels of p35,

a protein with a turnover time similar to Ab (less than 1 hr) as

well as tubulin (a long-lived protein). Levels of p35 were not sig-

nificantly different between vehicle and CP treated mice (data

not shown), suggesting that the reduction of Ab was due to ef-

fects on APP processing and not overall toxicity. In most sets

of inhibitor-treated animals, reduced APP levels were observed;

however, the decrease did not reach statistical significance con-

sistently (data not shown).

BACE1 Synthesis and APP Processing Is Also Modulated
by cdk5 in Adult Mice
ELISA analysis showed that the levels of both Ab40 (p < 0.01) and

Ab42 (p < 0.05) were significantly increased in adult p25 mice

compared to littermate Ntg (n = 7–9; Figure 6A; Table S3). Sim-

ilarly, both protein and mRNA levels of BACE1 were significantly

higher than in the Ntg control mice (p < 0.001; Figure 6A). Four

sets of adult Ntg mice (n = 5 per group) were administered the

cdk5 inhibitor CP-681301 for 2 days. In all four sets, CP-

681301 treatment reduced Ab and BACE1 levels significantly

(Figure 6B; see Table S4 for ELISA data).
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As the level of murine b-CTF is very low in Ntg mice, we exam-

ined the effect of enhanced cdk5 activity on human APP in dou-

ble-transgenic mice that express both p25 and mutant human

APP (Figure 7). The level of full-length APP was comparable be-

tween p25/APP and APP littermates, but the level of b-CTF (C99)

was significantly elevated relative to a-CTF (C83) in p25/APP

mice (Figure 7A). Consistent with this being a predominantly

b-secretase effect, the level of sAPPb was significantly elevated

in p25/APP mice. BACE1 was also significantly increased in p25/

APPmice, compared with APP mice. The level of sAPPb was sig-

nificantly increased, but the level of sAPPa was not significantly

changed (Figure 7B). Amyloid load was assessed in the p25/APP

mice and their APP littermates to determine if p25-mediated

elevation of Ab accelerated the formation of amyloid plaques.

Although plaques were detected in all mice, amyloid load was

highly variable and no overt difference was observed (data not

shown). ELISA data revealed a trend to increase in both soluble

and formic acid extracted (total) Ab in the double-transgenic

p25/APP mice (n = 6) relative to APP littermates (n = 6), but the

increase was not statistically significant (see Table S5 for ELISA

values).

DISCUSSION

We have shown that BACE1 is transcriptionally upregulated in

response to enhanced cdk5 activity mediated by p25. The

cdk5 target, STAT3, binds BACE1 promoter DNA, and the level

of pSTAT3 correlates with the level of BACE1 both in vivo and

in vitro, suggesting that STAT signaling is one pathway by which

transcriptional control can be mediated. BACE1 showed in-

creased activity toward its substrate, APP, leading to increased

levels of Ab40 and 42 in p25 mice, similar to that reported by Cruz

et al. (2006) for an inducible p25 mouse line. Pharmacological in-

hibition of cdk5 reduced the level of BACE1, and Ab peptides

making inhibition of cdk5 a valid target for AD therapeutics.

The cdk5-reponsive region of the BACE1 promoter contains

numerous sites, including sites for STAT1/3 and MEF2, that are

both transcriptional factors known to be physiological substrates

of p25/cdk5 in vivo and in cell culture systems (Fu et al., 2004;
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Figure 5. Inhibition of cdk5 Activity Reduces Ab Production and

BACE1 Levels In Vivo

(A) Representative immunoblots of pTau(S235), BACE1, STAT3,

pSTAT3(S727), and tubulin in brain lysate from vehicle (V)- and CP-

681301 (CP)-treated Ntg mice. BACE1 mRNA and protein levels, together

with pSTAT3(S727)/STAT3 and pTauS235 are shown as scatterplots. n = 6

in each group. There was a significant difference (p < 0.05) between vehi-

cle- and CP-681301-treated mice for the proteins of interest.

(B) Three groups of young (5-day-old) mice were analyzed for Ab and

BACE1 levels: Ntg mice treated with vehicle (Veh; n = 7), p25 mice treated

with vehicle (p25/veh; n = 7), and p25 mice treated with CP-681301 (p25/

CP; n = 6). Ab40 and 42 levels were elevated in p25 mice relative to Ntg

mice. Administration of CP-681301 to p25 mice significantly reduced

both peptides (p < 0.01). BACE1 was elevated in p25 mice relative to

Ntg mice but was significantly reduced by CP-681301. The relative activity

of cdk5 was shown by phosphorylation of Tau at the S235 site. Total tau

levels indicated that equivalent levels of protein were loaded. All results

were analyzed with Student’s t test, *p < 0.05, **p < 0.01.
Ge et al., 2004; Gong et al., 2003). In addition to a previously re-

ported STAT6 binding site at �931 (Sambamurti et al., 2004),

STAT1/3 sites were identified at positions �932, �931, �865,

�845, �844, �829, and �439, and a cluster of five sites were

identified between �901 and �897. Furthermore, MEF2 sites

were identified at �901, �899, �898, and �442 (Ge et al.,

2004). These sites are all present in the BACE1P6 promoter re-

gion but absent from BACE1P8, suggesting that cdk5 may be

mediating its effect on BACE1 transcription through one or

both of these factors (Ge et al., 2004). Between the transcription

initiation site and the physiological translation initiation codon of

the human BACE1 gene, there are six upstream ATGs that could

serve as the translation initiation codons for five potential ORFs.

These mORFs have a negative effect on BACE1 protein transla-

tion due to leaky scanning (Lammich et al., 2004; Zhou and

Song, 2006). P25/cdk5 activation may also negatively regulate

transcription through inhibitory factors such as MEF2, and it is

likely that several factors influence the spatial and temporal pat-

tern of target gene transcription during development and in the

diseased brain. STAT1 and 3 sites are also present in many other

gene promoters, including the human and mouse APP promoter

(Song and Lahiri, 1998). Enhanced amyloidogenic processing

could therefore also be the result of APP upregulation. However,

the level of full-length APP was not significantly altered by in-

creased p25, either in vitro or in p25 transgenic mice, suggesting

that in the systems studied, p25/cdk5-mediated effects act pri-

marily on BACE1 rather than APP.

Most reports indicate that BACE1 mRNA does not increase in

the AD brain (Holsinger et al., 2002; Matsui et al., 2007; Preece

et al., 2003; Yasojima et al., 2001) whereas BACE protein/activity

does increase (Fukumoto et al., 2002; Harada et al., 2006; Hol-

singer et al., 2002; Stockley et al., 2006; Tyler et al., 2002;

Yang et al., 2003). Several mechanisms have been suggested

to account for the increase in BACE1 protein levels including

posttranscriptional (Lammich et al., 2004; Zohar et al., 2005),

posttranslational (Walter et al., 2001), or turnover effects (Qing

et al., 2004). BACE1 mRNA levels have, however, been shown

to be altered in regions with high plaque density from human

AD brain with short postmortem interval (PMI) (Li et al., 2004),

but not longer PMI (Matsui et al., 2007) suggesting that in human

brain, postmortem mRNA degradation may confound interpreta-
tion. This does not, however, explain the increase in BACE1 pro-

tein, but not BACE1 mRNA observed in plaque-forming mice

(Zhao et al., 2007), leaving the issue of the mechanism by which

BACE1 increases in the AD brain unresolved.

The impact of p25/cdk5 on the pathogenesis of Alzheimer’s

disease is speculative. Although published data suggests that

cdk5 activity is increased in AD brain (Lee et al., 1999), the in-

volvement of p25 remains controversial (Patrick et al., 1999; Tan-

don et al., 2003; Tseng et al., 2002). Cdk5-mediated transcrip-

tional upregulation of BACE could be envisioned to initiate or

exacerbate AD pathogenesis in certain situations, however. In-

creased production of p25 and enhancement of cdk5 activity

has been shown to occur in rodent models of ischemia (Wang

et al., 2003; Wen et al., 2007), and hypoxia due to hypoperfusion

is a significant risk factor for long-term susceptibility to AD (Ka-

laria, 2000; Kalaria and Hedera, 1995). Ischemia in rodents has

been shown to increase amyloidogenic processing of APP

(Saido et al., 1994; Wen et al., 2004; Yokota et al., 1996), and

AD pathology is increased in patients with coexisting evidence

of cerebral infarcts (Nagy et al., 1997; Snowdon et al., 1997). In-

terestingly, pSTAT3 is one of several transcription factors upre-

gulated by ischemia-induced hypoxia (Justicia et al., 2000),

and hypoxia has been shown to upregulate BACE1 transcription

through hypoxia inducing factor 1-alpha (HIF1-a) (Sun et al.,

2006). It is thus feasible that hypoxia-induced production of

p25 and subsequent enhanced activity of cdk5 leads to local up-

regulation of BACE1 transcription, Ab production, and initiation

or exacerbation of a pathological cascade resulting in AD.

Several substrates in addition to BACE1 are likely to be im-

pacted by enhanced p25/cdk5 activity that could also result in

increased amyloidogenic processing in vivo. Systems involved

in trafficking that are known to be targets of cdk5 such as cyto-

skeleton proteins (tau, amphiphysin I, and dynamin I) or vesicles

regulating endocytosis or exocytosis (Tomizawa et al., 2003; Xin

et al., 2004) may alter trafficking and recycling of BACE1 leading

to accumulation in early endosomes—a compartment favorable

to increased amyloidogenic processing. Phosphorylation of

BACE1 itself also results in its redistribution, as it has been pre-

viously reported that phosphorylation at the S498 site by CK1 al-

ters BACE1 trafficking or sorting (Pastorino et al., 2002; Walter

et al., 2001). Although there are two potential cdk5 consensus
Neuron 57, 680–690, March 13, 2008 ª2008 Elsevier Inc. 685
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Figure 6. Cdk5 Activity Correlates with Increased APP Process-

ing and BACE1 Synthesis in Adult p25 Overexpressing Mice

(A) ELISA analysis of soluble murine Ab40 and Ab42 from Ntg and p25

mice at 18–22 months of age. Levels of both Ab40 (p < 0.01) and Ab42

(p < 0.05) were significantly increased in p25 mice compared to Ntg con-

trols. P25 mice also had significantly elevated BACE1 mRNA and protein

levels compared to Ntg. Representative immunoblots of p35/25, BACE1,

APP-full length, APP a-CTF, and b-actin (loading control) from Ntg and

p25 mice are shown.

(B) Effects of the cdk5 inhibitor CP-681301 on Ab and BACE1 protein

levels in adult Ntg mice. Levels of Ab40 (p < 0.01), Ab42 (p < 0.001), and

BACE1 (p < 0.05) were significantly reduced in CP-681301-treated (CP)

mice, compared to vehicle-treated (V) controls. A representative immuno-

blot of BACE1 and b-actin (loading control) is shown in the right hand

panel. *p < 0.05, **p < 0.01, ***p < 0.001.
sites in BACE1 in the ectodomain, the localization (lumen com-

partment) makes it unlikely that BACE1 is a direct target for

cdk5-mediated posttranslational modification. Another sub-

strate mediating the cdk5 effect on Ab production could be

APP itself as cdk5-directed phosphorylation of APP at the

T668 site has been proposed to alter its accessibility to secre-

tases leading to enhanced Ab production (Lee et al., 2003). How-

ever, recent gene-targeting experiments suggest that the T668

site is not involved in Ab generation in vivo (Sano et al., 2006).

Our data demonstrate that in both young and old mice, ele-

vated p25/cdk5 increases Ab production through an increase

in BACE1, and this effect can be reversed using a pharmacolog-

ical inhibitor. While STAT3 is a potent inducer of BACE1 tran-

scription, the mechanism of induction is probably not limited to

transcriptional regulation via pSTAT3. Overall, given that p25/

cdk5 significantly enhances Ab production in vivo, inhibition of

p25/cdk5 may be an appealing therapeutic approach for the

treatment or prevention of AD.

EXPERIMENTAL PROCEDURES

Animals

P25 mice were the generous gift of Pfizer (Ahlijanian et al., 2000) and are avail-

able as cryopreserved stock from The Jackson Laboratory, Bar Harbor, ME.

The p25 mice used were homozygous, on an FVB background. Ntg mice

were age, strain, and sex matched. Some experiments were repeated using

hemizygous p25 mice and Ntg littermates. All animals were maintained and

killed according to National Institutes of Health and IACUC guidelines. P25

mice were crossed to a mutant APP line (line Tg2576 [Hsiao et al., 1996]).

Hemizygous p25/APP and APP littermates at 10–12 months of age were exam-

ined. Mice lacking the p727 site in STAT3 (SA mice) were homozygous for the

targeted mutation (kind gift of Dr. David Levy, NYU). Controls were age, strain,

and size matched C57Bl/6 mice.

Tissue Culture

P25 transfected SH-SY5Y cells under the control of the tetracycline-regulated

mammalian expression T-Rex system (Invitrogen, Carlsbad, CA) were the kind

gift of Dr. Luc Buée (Hamdane et al., 2005). For induction of p25 expression,

cells were maintained in medium with tetracycline at 1 mg/ml. SH-SY5Y or

N2a cells were grown in DMEM supplemented with 10% fetal calf serum

and appropriate antibiotics (Invitrogen) in a 5% CO2 humidified incubator at

37�C. Medium was replenished every 3 days. Transfections were performed
686 Neuron 57, 680–690, March 13, 2008 ª2008 Elsevier Inc.
with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruc-

tion. Flag-GFP was cotransfected to allow normalization in the promoter-dele-

tion experiments.

SH-SY5Y cells were plated at 80% density, then washed twice with PBS

prior to incubating them in serum-free media overnight. The following day,

cells were washed in PBS, placed in fresh serum-free medium, and treated

with either vehicle (PBS) or 235 mM STAT3 inhibitor/PBS (EMD Biosciences

573096, Gibstown, NJ) for 1 hr (Turkson et al., 2001). After 1 hr of inhibitor or

vehicle pretreatment, 1000 U/ml of IFN-a was added for 30 min. Following

a 3.5 hr washout period, cells were harvested for biochemical analysis.

Immunoblot Analysis

Mice were sacrificed and the brains were immediately removed, dissected,

and kept on dry ice. Hemibrains were weighed and homogenized without

thawing in 53 RIPA buffer (50 mM Tris-HCl [pH 7.4], 1% NP-40, 0.25% Na-de-

oxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM Na3VO4, 1 mM

NaF, 10 ml/ml protease inhibitor mix). Cultured cells were similarly lysed using

RIPA buffer. Samples were centrifuged for 10 min at 20,000 3 g at 4�C. A pro-

tein assay was performed, and the samples were diluted in O+ buffer (62.5 mM

Tris-HCl [pH 6.8], 10% (w/v) glycerol, 5% 2-mercaptoethanol, 2.3% SDS,

1 mM EGTA, 1 mM EDTA, 1 mM PMSF, 1 mM Na3VO4, 1 mM NaF, 10 ml/ml

protease inhibitor mix) and incubated at 85�C for 10 min. Depending on the pri-

mary antibody used, 5–20 mg of protein was analyzed following electoropho-

resis on SDS-PAGE and transferred onto 0.2 mm nitrocellulose membranes

(Whatman, Florham Park, NJ). Immunoblots were blocked, incubated with ap-

propriate primary and secondary antibody dilutions (Jackson Immunore-

search, West Grove, PA), and treated using chemiluminescent fluid (Supersig-

nal WestPico, Pierce, Rockford, IL). The signal was viewed using the Fujifilm

LAS-3000 digital imaging system and Image Gauge software (Fujifilm, Stam-

ford, CT).

Ab ELISA

Soluble murine or human Ab1-40 and 1-42 from a hemibrain region including

cortex and hippocampus was assessed using antibodies Abx-40 (JRF/

cAb40) and Abx-42 (JRF/cAb42/26) for capture; JRF/AbN-25 (human) JRF/

rAb1-15/2 for detection (gifts of Dr. Sonia Jung, Centocor R&D, Radnor, PA),

as described previously (Schmidt et al., 2005a, 2005b). Older p25 or Ntg

mice between 18 and 22 months of age and juvenile mice between 4 and 6

days of age were used. Several sets of mice were assessed for each experi-

ment.

Cdk5 Inhibitor Treatment

CP-681301 (L.-F.L., unpublished data, gift of Dr. Lit-Fui Lau, Pfizer) at a con-

centration of 5.8 mg/ml in 30% hydroxypropyl-beta-cyclodextrin (Sigma, St.

Louis, MO) or vehicle was injected subcutaneously at 100 ml/day once



Neuron

Regulation of b-Secretase by p25/cdk5
(neonates) or twice, 24 hr apart (adult mice). All mice became lethargic imme-

diately after treatment and were sacrificed 4 hr after final administration.

Antibodies

For cdk5, anti-cdk5 (C-8) and anti-p35/25 (C-19) were used (Santa Cruz Bio-

technology, Santa Cruz, CA). Anti-human Ab1-17 for human sAPPa (6E10)

and anti-sAPPb were purchased from Signet Laboratories, Deadham, MA.

Monoclonal anti-BACE1 (3D5) was provided by Dr. Robert Vassar; polyclonal

anti-BACE1 antibodies 7520 and 7523 were provided by Dr. Christian Haass.

Full-length APP/CTFs were detected with antibody C1/6.1 that recognizes a

C-terminal epitope in APP (provided by Dr. Paul Mathews). Anti-STAT3 (which

recognizes all forms of STAT3), pSTAT3(S727), and pSTAT3(Y705) were pur-

chased from Cell Signaling Technology, Danvers, MA. Total tau was detected

with either Tau T57120 (monoclonal, BD Transduction Laboratories, San Jose,

CA), or Tau A0024 (polyclonal, Dako Cytomation, Carpinteria, CA). MC6

(pTauS235) was provided by Dr. Peter Davies (Albert Einstein, NY). b-actin,

a-, or b-tubulin were purchased from Sigma.

BACE1 Enzyme Assay

A FRET-based assay, using the substrate H-RE(EDANS)EVNLDAEFK(DAB-

CYL)R-OH was performed according to the manufacturer’s instruction (EMD

Biosciences). Typically, the fluorescent EDANS molecule in the EDANS-

XXX-DABCYL complex is quenched by the close proximity of the DABCYL

molecule. In the assay, cellular BACE1 specifically cleaves the fluorogenic

substrate, which then emits a measurable fluorescent signal. Briefly, cells

were plated until they were 70% confluent. Cells were then lysed using the

supplied buffer. Cell lysate (10 ml) was combined with the reaction buffer mix

containing 10 mM of the fluorescent substrate and was loaded on an opaque

plate, maintained at 37�C, and monitored every 20 min (Ex = 350 nm, Em =

490 nm; Wallac Victor2 1420, Perkin-Elmer, Shelton, CT). The reaction was

carried out in the presence or absence of a specific BACE1 inhibitor (EMD

565788, 1 mM; Stachel et al., 2004). HEK293 cells transfected with BACE1

were used as a positive control for this study.

Quantitative RT-PCR

Reverse transcription was performed on 1 mg of total RNA using the Super-

Script III, first-strand SuperMix (Invitrogen) for qRT-PCR. Ten nanograms of

Figure 7. Enhanced cdk5 Activity Correlates with Altered APP

Processing in p25/APP

(A) APP processing was examined in double-transgenic p25/APP mice and

single-transgenic APP littermates. Levels of full-length APP (APP fl) were not

altered, but there was an increase in the level of b-CTF (C99) relative to

a-CTF (C83) in the p25/APP mice compared to controls (immunoblot shows

bands recognized by antibody C1/6.1 from an intact membrane).

(B) The level of a-secretase-cleaved sAPPa fragments were unchanged in p25/

APP mice compared to APP controls, but the fragments generated by BACE1

cleavage (sAPPb) were significantly increased in p25/APP mice compared to

controls. BACE1 was also increased in the double-transgenic mice. b-actin

was used as a loading control (n = 7 p25/APP, n = 6 APP, two mice of each

group shown).

(C) Scatterplots of sAPPb and BACE1 levels (values are normalized to APP

group average = 1) were significantly higher (p < 0.05) in the p25/APP mice

than the single transgenic group. *p < 0.05.
cDNA was used in each PCR reaction. Quantitative PCR (qPCR) was per-

formed by monitoring in real time, the increase in fluorescence of the iQ

SYBR Green dye (Bio-Rad) on a Bio-Rad iQ5 detector system (Bio-Rad) ac-

cording to the manufacturer’s instructions. A standard curve was included in

all experiments to monitor PCR efficiency. Each PCR was carried out in tripli-

cate with 25 ml of the iQ SYBR Green Supermix (Bio-Rad). To exclude nonspe-

cific contamination by products such as primer dimers, a melting curve anal-

ysis was applied to all the final PCR products following the cycling protocols.

The level of human BACE1 mRNA was analyzed with two independent sets of

primers, from the 50 end (50-TGA TCA TTG TGC GGG TGG AGA-30/50-TGA

TGC GGA AGG ACT GGT TGG TAA-30) and 30 end (50-ACT CCC TGG AGC

CTT TCT TTG-30/50-ACT TTC TTG GGC AAA CGA AGG TTG GTG-30) of human

BACE1 cDNA. The level of murine BACE1 mRNA level was analyzed with two

independent sets of primers: 50 end (50-GCT TGC ACC TGT AGG ACA

CA-30/50-CTA AAG GAT GCTG GGC AGA G-30) and the coding sequence

from the 30 end (50-TCG CTG TCT CAC AGT CAT CC-30/50-GCA GAG TGG

CAA CAT GAA GA-30). Values for each sample were normalized to amplifica-

tion level of mouse b-actin mRNA (50-GCT CTT TTC CAG CCT TCC TT-30/50-

AGT ACT TGC GCT CAG AGG A-30).

Stable Transfection of PC12 Cells with BACE1 Reporter Constructs

PC12 cells were transfected with a pGL4.14 (Promega) vector containing a fire-

fly luciferase reporter gene under the control of a 3.3 kb fragment of the BACE1

promoter region, spanning from �2975 to +364, and a hygromycin resistance

gene. Three days posttransfection, selection with 200 mg/ml hygromycin be-

gan and continued for approximately one month until colonies developed in

the culture plate. Twenty-four colonies were isolated and grown with contin-

ued hygromycin selection until sufficient cells were available for use. One thou-

sand cells derived from each colony were subjected to a firefly luciferase assay

(Promega), resulting in a range of baseline activities (data not shown). Based

on relative activity, three stable PC12 clones were selected, representing me-

dian, low, and high levels of baseline luciferase activity. These cells were then

transfected with a p25-GFP expression vector, or a cdk5 expression vector to-

gether with a renilla luciferase-containing pRLSV40 plasmid (Promega) as an

internal control. Mock transfections contained the renilla plasmid only. Two

days following transfection with the expression vectors, activities of both the

stably transfected firefly luciferase and the transiently transfected renilla lucif-

erase were measured using a Dual-Glo luciferase detection kit, as per manu-

facturer’s instructions (Promega). The results of p25-GFP and cdk5 overex-

pression in all three stable PC12 lines were found to be very similar, so

these data were combined and analyzed together as a single experiment.

Promoter Analysis

Three-six separate wells of N2a cells transfected with BACE1P6 or BACE1P8,

with or without p25/GFP or vector were analyzed for CAT activity by ELISA as

described previously (Ge et al., 2004). Data were expressed as CAT activity

normalized to cotransfected GFP or renilla luciferase expression levels. To

identify potential binding sites for the cdk5-associated transcription factors

STAT1/3 and MEF2 in the BACE1 50-flanking region, the TESS and Mat Inspec-

tor utilities were used to probe 1 kb of BACE1 promoter sequence.

Chromatin Immunoprecipitation Analysis

ChIP analysis was performed according to manufacturer’s instruction using

the ChIP-IT Express Kit (Active Motif, Carlsbad, CA). Briefly, SH-SY5Y cells

at 80% confluency were treated with vehicle or IFN-a (1000 U/ml for

30 min), washed with PBS, crosslinked with 1% formaldehyde, and sheared

by sonication to less than 500 bp fragments. The sheared chromatin was im-

munoprecipitated with total STAT3 antibody (Cell Signaling Technology). DNA

crosslinking was reversed overnight, and PCR was then performed with primer

pairs recognizing two different regions of the BACE1 promoter. Primer pair

BACE1-U amplified a region containing multiple STAT3 binding sites (�957/

�760) (primer BACE1-U, 50-TTG GTT CAA GGC TTT AAG CTC T-30/50-GCC

TTG AAC CAA AAG CGT TAG AG-30), whereas primer pair BACE1-D amplified

a region with a single STAT3 site (581/�393) (primer BACE1-D, 50-GCC TTG

AAC CAA AAG CGT TAG AG-30/50-TCT GGG AAG ACT CAG TGG GAG AA-

30). A primer pair recognizing a STAT3 target region in the IL-8 promoter was

used as a positive control (50-GGT TTT CAC AGT GCT TTC AC-30/50-TTT
Neuron 57, 680–690, March 13, 2008 ª2008 Elsevier Inc. 687
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CCC TCT TTG AGT CAT GC-30) (Gharavi et al., 2007). PCR products were

visualized following electrophoresis on a 2% agarose gel. The level of am-

plimer generated in each reaction was quantified by real-time PCR using

primer pairs BACE1-U and BACE1-D, according to methods described previ-

ously for quantitative, mRNA analysis.

Statistical Analysis

All statistical analyses were performed with Prism (Graphpad Software, San

Diego, CA), using unpaired Student’s t test between groups. Data show

mean ± SEM. Groups were considered significantly different when p < 0.05

(*p < 0.05, **p < 0.01, and ***p < 0.001). Analysis of the SA STAT3 mice was

performed by ANOVA.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/57/5/680/DC1/.
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