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Abstract—Prevention of neuronal apoptosis has been intro-
duced as a new therapeutic strategy for neurodegenerative
disorders. We have previously reported anti-apoptotic effects of
transforming growth factor-�1 (TGF-�1), a multifunctional cyto-
kine, in models of cerebral ischemia and in cultured neurons
and recently focused on the mechanisms underlying the anti-
apoptotic effect of TGF-�1. The anti-apoptotic transcriptional
factor nuclear factor kappa B (NF-�B) shows high impact in the
cell survival function of multiple cytokines and growth factors.
The present study explored whether NF-�� is a target of TGF-�1
and which signaling pathways involved in the activation of
NF-�� are triggered by TGF-�1. We demonstrated that TGF-�1
increased the transcriptional activity of NF-�� in cultured hip-
pocampal neurons in a time- and concentration-dependent
manner. Furthermore, TGF-�1 induced translocation of p65/
NF-�� to the nucleus and enhanced NF-�� transcriptional ac-
tivity in the presence of apoptotic stimuli. TGF-�1-mediated
NF-�� activation was blocked by wortmannin and U0126, indi-
cating the involvement of both phosphatidylinositol-3-OH ki-
nase (PI3k)/Akt and mitogen-activated protein kinase (MAPK)/
extracellular-signal regulated kinase (Erk)1,2 pathways in the
action of TGF-�1. TGF-�1 produced a concomitant increase in
the phosphorylations of I�� kinase (IKK�/�) and I��� with a
subsequent degradation of I���. Interestingly, the increased
phosphorylation of IKK�/� and I��� was abrogated by wort-
mannin, but not by U0126, suggesting that PI3k/Akt and MAPK/
Erk1,2 pathways triggered by TGF-�1 regulated the activation of
NF-�� through different mechanisms. Of note, wortmannin and
U0126, as well as ��-decoy DNA, abolished the anti-apoptotic
effect of TGF-�1, corroborating the notion that both PI3k/Akt
and MAPK/Erk1,2 pathways, and NF-�� activity are necessary
for the anti-apoptotic activity of TGF-�1. © 2004 IBRO. Pub-
lished by Elsevier Ltd. All rights reserved.

Transforming growth factor-�1 (TGF-�1) is a cytokine ca-
pable of modulating multiple cellular processes (Mattson et
al., 1997; Flanders et al., 1998; Krieglstein et al., 2002).
We and others have demonstrated the neuroprotective
activity of TGF-�1 after cerebral injuries (Henrich-Noack et
al., 1996; Pang et al., 2001; Ruocco et al., 1999; Tyor et
al., 2002; Zhu et al., 2002) and in cultured neurons after
various stimuli (Prehn et al., 1996; Ren and Flanders,
1996). The neuroprotective mechanism of this cytokine
has been coupled to the transcriptional induction of plas-
minogen activator inhibitor-1 (Buisson et al., 1998; Do-
cagne et al., 2002), the regulation of the Ca�� homeosta-
sis, the induction of Bcl-2 and Bcl-xl (Prehn et al., 1994),
and the inhibition of Caspase 3 activation (Zhu et al.,
2001). More recently, we have demonstrated that TGF-�1
inactivates the proapoptotic protein Bad via activation of
mitogen-activated protein kinase (MAPK)/extracellular-sig-
nal regulated kinase (Erk)1,2 pathway (Zhu et al., 2002).
Accumulating evidence indicates that TGF-�1 activates
multiple pathways including MAPK and phosphatidylinosi-
tol-3-OH kinase (PI3k)/Akt signaling pathways (Xiao et al.,
2002; Yu et al., 2002) besides the classic receptor-acti-
vated Smad signaling.

The transcription factor nuclear factor-�B (NF-�B) reg-
ulates various genes involved in immunoresponses, cell
proliferation and apoptosis. The activity of NF-�B is tightly
controlled by a family of inhibitory proteins termed inhibitor
of NF-�B (I�Bs) including I�B�, I�B� and I�B� as the most
prominent members (Whiteside and Israel, 1997). The
central paradigm of NF-�B activation has been linked to
the dissociation of I�B from the I�B–NF-�B complex and
the subsequent translocation of liberated NF-�B from the
cytoplasm to the nucleus. This process requires the ad-
vanced phosphorylation and the subsequent degradation
of I�B (Woronicz et al., 1997). The phosphorylation of I�B
is mostly regulated by a protein kinase complex I�B kinase
(IKKs) that consists of two catalytic subunits (IKK� and
IKK�) and the regulatory subunit IKK� (Yamaoka et al.,
1998). IKK� and IKK� target serine residues of I�B�
(Ser32/Ser36) and I�B� (Ser19/Ser23). Recent attempts
to identify the upstream kinase of IKK have revealed an
involvement of MEK kinase 1 (MEKK1) (Nemoto et al.,
1998), PI3k/Akt (Kane et al., 2002) and NF-�B-inducing
kinase (Woronicz et al., 1997).

NF-�B triggers a number of anti-apoptotic genes which
interrupt the apoptotic cascade at multiple levels (Mattson
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et al., 2000; Karin and Lin, 2002; Wu, 2003), and a pivotal
role of NF-�B in the regulation of cell survival and death
has therefore been suggested. Although findings reported
are controversial, strong evidence supports the notion that
NF-�B functions as an anti-apoptotic transcription factor in
various cell populations including neurons (Kaltschmidt et
al., 1999; Glazner et al., 2000; Mattson et al., 2000).

The role of TGF-�1 in activation of NF-�B has been
studied predominantly in non-neuronal populations and
results appear diverse depending on the cell type and the
experimental conditions (Chang, 2000; Arsura et al.,
2003). Little is known about the effect of TGF-�1 on neu-
ronal cells in this regard. In the present study, we at-
tempted to elucidate whether TGF-�1 triggered signaling
pathways leading to activation of NF-�B in cultured hip-
pocampal neurons, and furthermore, whether NF-�B acti-
vation contributes to the anti-apoptotic effect of TGF-�1.

EXPERIMENTAL PROCEDURES

Neonatal rat and embryonic mouse hippocampal
cultures

Animal care followed official governmental guidelines. All experi-
mental procedures involving animals were approved by the gov-
ernment ethics committee, and all efforts were made to minimize
suffering and number of the rats. Hippocampal cultures were
prepared from neonatal Fischer 344 rats (P1–P2; Zhu et al., 2001)
or from �B-luciferase reporter mice on embryonic day 14 (E14;
Culmsee et al., 2002). Briefly, the isolated hippocampi were dis-
sected and incubated at 37 °C for 20 min in Leibovitz’s L15
medium supplemented with 1 mg/ml papain and 0.2 mg/ml bovine
serum albumin (BSA). Thereafter, the cell suspension was layered
onto growth medium containing 1% trypsin inhibitor plus 10% BSA
and then centrifuged at 200�g for 10 min. The pellet was resus-
pended and seeded at a density of 2�104 cells/cm2 into poly-L-
lysine-coated Petri dishes and cultured in a humidified atmo-
sphere (5% CO2 and 95% air at 37 °C) in neurobasal medium
supplemented with 0.5 mM glutamine, B27 supplement as well as
100 U/ml penicillin and 100 �g/ml streptomycin (Invitrogen,
Karlsruhe, Germany). Experiments were performed 7–8 days af-
ter the preparation. At that time there were about 60% neurons
and 40% astrocytes in rat hippocampal cultures, whereas more
than 95% cells were neurons in mouse hippocampal cultures.

Cell treatment

TGF-�1 (R&D Systems, Wiesbaden, Germany) was administered
to the cells on days 7–8 of the culture. To induce apoptosis,
staurosporine (STS) was added to the cells at a final concentration
of 100 nM in the absence of TGF-�1 or 24 h after the onset of
TGF-�1 treatment. To block NF-�B activation, double-strand oli-
gonucleotide with a specific NF-�B-binding consensus sequence
(decoy, 5	-AGTTGAGGGACTTTCCCAGGC-3	; MWG-Biotech
AG, Munich, Germany) was added to the culture medium at the
final concentration of 5 �M 2 h before and remained in the medium
after the onset of TGF-�1 treatment. As a control, the single-base
mutated double-strand oligonucleotide (mismatch, 5	-AGTT-
GAGCGACTTTCCCAGGC-3	) was given to the medium at the
same concentration. To block the activation of Erk1,2 or Akt,
U0126 (Cell Signaling Technology, Frankfurt, Germany) or wort-
mannin (Calbiochem, Bad Soden, Germany) at a final concentra-
tion of 20 �M or 60 nM, respectively, was applied to the cultures
2 h prior to the TGF-�1 treatment. Control cultures received
vehicle only.

Western blotting

Cells were harvested in lysis buffer containing 10% glycerol, 3%
SDS, 0.5 M Tris, 1 mM phenylmethylsulfonyl fluoride, 1 �M cal-
pain inhibitor I and 7 �g/ml trypsin inhibitor. Protein was measured
using a BCA kit (Perbio Science, Bonn, Germany). Samples con-
taining an equal amount of total protein were loaded on 12.5% or
15% SDS-polyacrylamide gels. Following electrophoresis, the
proteins were transferred onto a nitrocellulose membrane. The
protein transfer was controlled by staining the membrane with
ponceau S. Unspecific binding was blocked by a buffer containing
0.1% Tween-20, 2% BSA and 5% non-fat dry milk in Tris-buffered
saline (TBS). The blots were then incubated with primary antibod-
ies diluted in blocking buffer overnight at 4 °C. The following
antibodies were used in the present study: rabbit anti-phospho-
p44/42 MAPK (Thr202/Tyr204, P-Erk1/2; 1:200), rabbit anti-phos-
pho-Akt (Ser473, P-Akt, 1:1000), rabbit anti-phospho-I�B�
(Ser32, P-I�B�; 1:1000) and rabbit anti-phospho-IKK� (Ser181)/
IKK� (Ser180) (P-IKK�/�; 1:1000) were purchased from Cell Sig-
naling Technology. Rabbit anti-I�B� and anti-IKK�/� were ob-
tained from Santa Cruz Biotechnology (Heidelberg, Germany).
�-Tubulin was detected by using a mouse anti-�-tubulin (1:5000;
Sigma, Deisenhofen, Germany) to control the amount of protein
loaded on each lane of the gel. After washing the membranes with
0.1% Tween-20 in TBS, the blots were incubated with horseradish
peroxidase-conjugated anti-mouse or anti-rabbit IgG (1:2500; Am-
ersham Biosciences, Freiburg, Germany) at room temperature for
1 h. Peroxidase activity was detected by the ECL detection system
(Amersham Biosciences, Braunschweig, Germany).

Immunocytochemistry

Cells were fixed with methanol for 20 min at 
20 °C. After washing
with ice-cold phosphate-buffered saline (PBS), cells were incu-
bated with a blocking buffer containing 2% BSA and 10% normal
goat serum for 1 h at 37 °C. Rabbit anti-p65/NF-�B antibody
(1:100; Roche Molecular Biochemicals, Mannheim, Germany)
was applied to cells and incubated at 4 °C overnight. For negative
control, cells were incubated with the blocking buffer omitting the
primary antibody. After washing the cells with PBS, biotin-conju-
gated anti-rabbit IgG was added to the cells followed by incubation
with fluorescein avidin D. The cells were finally mounted with a
mounting medium (Dako, Hamburg, Germany) and analyzed by
confocal laser scanning microscopy (Zeiss, Jena, Germany). The
number of p65-nuclear positive cells was counted in four different
areas with the size 326�326 �m. Five Petri dishes were used in
each group.

Luciferase activity assay

Luciferase activity was measured in protein extracts from cultured
hippocampal neurons prepared from E14 �B-luciferase reporter
mice using a luciferase detection kit according to the manufactur-
er’s protocol (Promega, Mannheim, Germany). Briefly, Cells were
harvested in an ice-cold luciferase reporter lysis buffer. The ho-
mogenates were centrifuged at 15,000�g for 5 min at 4 °C. The
protein content in the supernatants was determined using a BCA
kit. Equal amount of protein from the extracts was mixed with
100 �l of luciferase assay buffer containing the luciferase sub-
strate and ATP. Luminescence in this mixture was immediately
detected over 60 s and expressed as relative luciferase units
(RLU).

Nuclear staining

Cells were fixed with methanol and incubated with Hoechst 33258
(10 �g/ml; Sigma, Deisenhafen, Germany) at 37 °C for 10 min
followed by washing with methanol and PBS. Thereafter, the
nuclear morphology was analyzed under a fluorescence micro-
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scope. Cells showing condensed chromatin or fragmented nuclei
were counted as apoptotic cells.

Statistics

Data were presented as means�S.D. Statistical analysis of apo-
ptotic damage was evaluated by analysis of variance test followed
by Scheffé-test. Student’s t-test was used to analyze the changes
of RLU between each matched control and corresponding TGF-
�1-treated group. P�0.05 was considered significant.

RESULTS

TGF-�1 mediates a time- and concentration-
dependent activation of NF-�B in cultured mouse
hippocampal neurons

To evaluate the effect of TGF-�1 on activation of NF-�B,
the transcriptional activity of NF-�B was evaluated by
luciferase activity assay in cultured hippocampal neu-
rons prepared from E14 �B-luciferase reporter mice.
The time course was established using 10 ng/ml of
TGF-�1 (Fig. 1A), the most neuroprotective concentra-
tion established previously (Zhu et al., 2001). A signifi-
cant increase in the luciferase activity was detected as
early as 3 h after TGF-�1 treatment (P�0.05), which
was similar to that caused by the positive control TNF�
at the same time point (P�0.05). Luciferase activity was
further enhanced 3.5-fold (P�0.01) and 3.8-fold
(P�0.01) at 6 h and 24 h, respectively, after adding
TGF-�1 (Fig. 1A). Western blot analysis of luciferase
protein levels using the same probes confirmed this time
course (Fig. 1B). According to this time course, a con-
centration-dependency study was carried out at 6 h after
the onset of the treatment using the TGF-�1 concentra-
tion at the range 0.1–10 ng/ml. Approximate 2.1-fold
(P�0.05), 3.1-fold (P�0.01) and 3.9-fold (P�0.01) in-
creases in luciferase activity were detected in the ex-
tracts of cultured hippocampal neurons treated with 0.1,
1.0 and 10 ng/ml of TGF-�1, respectively.

Since we have previously shown that TGF-�1 pro-
tected cultured hippocampal neurons from STS-induced
apoptosis, it was of interest whether TGF-�1 could activate
NF-�B in the presence of apoptotic inducer STS. Lucif-
erase activity was thus measured in the extracts of hip-
pocampal neurons treated with STS alone or a combina-
tion of TGF-�1 with STS. We found that luciferase activity
was not influenced at 3 h and 6 h, but moderately de-
creased at 24 h after challenging with STS (P�0.05).
TGF-�1 (10 ng/ml) administered to the cultures 24 h prior
to the STS treatment not only prevented the inhibitory
effect of STS but also further markedly increased the tran-
scriptional activity of NF-�B at all tested time points
(P�0.01; Fig. 2A). In support, immunocytochemistry with
the antibody against the p65 subunit of NF-�B revealed a
significant enhanced nuclear location in TGF-�1-treated
cells as compared with controls or with STS-treated cells
(P�0.05; Fig. 2B–c). As a positive control, TNF� also
significantly increased the nuclear translocation of p65/NF-
�B. These results indicate that TGF-�1 is capable of acti-
vating NF-�B under normal culture conditions as well as in
the presence of STS.

Activation of NF-�B contributes to the anti-apoptotic
effect of TGF-�1

After demonstrating the capacity of TGF-�1 on activation
of NF-�B, we were interested in the role of NF-�B activa-
tion in the neuroprotection by TGF-�1. To address this
issue, the effect of TGF-�1 on neuronal apoptosis induced
by STS was evaluated in both cultured rat (Fig. 3A) and
mouse (Fig. 3B) hippocampal cells in the presence and
absence of �B-decoy DNA which specifically blocks the
activation of NF-�B. As a control, a mismatch DNA was
applied to the cultures at the same concentration. In both
cultures, neither �B-decoy DNA nor mismatch DNA alone
showed any toxicity at the tested concentration (5 �M),

A

C

B 

Luci 

0

100

200

300

400

500

Control 0,1 1 10

R
L
U

 (
%

 o
f c

o
n
tr

o
l)

Control TGF-ß1 (ng/ml)

*

**

**

0

100

200

300

400

500

6h 3h  6h 24h 3h

R
L
U 

(%
 o

f 
c
o

n
tr

o
l)

Control TGF-ß1 (10 ng/ml) TNF-alpha (4 ng/ml)

*

**
**

*

Fig. 1. Time- and concentration-dependent activation of NF-�B by
TGF-�1 in cultured hippocampal neurons. A and B: Time course of
NF-�B activation. TGF-�1 at a final concentration of 10 ng/ml was
added to the media of hippocampal cultures prepared from E14 mouse
�B-luciferase-reporter mice. Control cultures received vehicle only.
The proteins were extracted at the indicated time points for both
luciferase activity assay (A) and Western blotting analysis (B) of lucif-
erase (Luci) protein levels. C: Concentration-dependent activation of
NF-�B by TGF-�1. Cultured mouse hippocampal cells were treated
with different concentrations of TGF-�1 (0.1, 1.0 and 10 ng/ml) or
vehicle, and the cells were harvested 6 h later for luciferase activity
assay. * P�0.05 and ** P�0.01 compared with the control.
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whereas STS (100 nM) caused about 55% of cells under-
going apoptotic death as revealed by Hoechst 33258 nu-
clear staining (P�0.001). TGF-�1 (10 ng/ml) significantly
protected cultured rat and mouse hippocampal neurons
from STS-induced apoptotic damage (P�0.001 and
P�0.05, respectively). Notably, this protective effect was
abolished in both cultures by �B-decoy DNA, but not by the
mismatch DNA, suggesting that activation of NF-�B con-
tributed to the anti-apoptotic effect of TGF-�1. To confirm
that the blockage of the anti-apoptotic effect of TGF-�1 by
�B-decoy DNA was based on the inhibition of NF-�B acti-

vation, luciferase activity was detected in sister cultures
(Fig. 3C). Again, TGF-�1 (10 ng/ml) alone significantly
increased luciferase activity 24 h after the treatment
(P�0.05), and this increase was completely blocked by
�B-decoy DNA, but not by mismatch DNA, given to the
cultures 2 h before the TGF-�1 treatment, indicating that
�B-decoy DNA specifically and sufficiently blocked TGF-
�1-mediated NF-�B activation under those experimental
conditions. These results indicate a crucial role of NF-�B
activation in the neuroprotective mechanism of TGF-�1.

TGF-�1 increases phosphorylation and subsequent
degradation of I�B�

We next attempted to reveal how TGF-�1 mediated the
activation of NF-�B in cultured neurons. Phosphorylation
and the subsequent degradation of I�B are suggested to
be key steps in the process of NF-�B activation. Therefore,
we detected P-I�B� and I�B� by Western blotting in par-
allel in neonatal rat hippocampal cultures at different time
points after the onset of TGF-�1 treatment. As shown in
Fig. 4A, an increase in P-I�B� level was detected as early
as 3 h, and remained at the higher level from 6 h to 24 h
after adding TGF-�1. In contrast, expression of I�B� fell to
levels below the baseline after incubation with TGF-�1
(Fig. 4A). The concentration-dependency study showed
that an increase in P-I�B� and a decrease in I�B� were
already seen with 0.1 as well as with 1.0 and 10 ng/ml of
TGF-�1 (Fig. 4B), which was consistent with the results
showing enhanced NF-�B activity in the luciferase activity
assay (Fig. 1C). The effects of TGF-�1 on phosphorylation
and degradation of I�B� were also studied in the presence
of STS. As a broad spectrum kinase inhibitor, STS clearly
suppressed the phosphorylation of I�B�, whereas I�B�
expression was enhanced by STS in comparison with the
controls, suggesting a reduced degradation of I�B�. Inter-
estingly, the inhibition of I�B� phosphorylation mediated
by STS was prevented by TGF-�1, and as a consequence,
the degradation of I�B� was increased in the presence of
TGF-�1 (Fig. 4C). These data suggest that TGF-�1-medi-
ated activation of NF-�B involves the phosphorylation and
the degradation of I�B�.

TGF-�1-mediated activation of NF-�B is blocked by
Mek1,2/Erk1,2 and PI3k inhibitors

There are multiple signaling pathways leading to the phos-
phorylation of I�B and the activation of NF-�B. In the
present study, we investigated whether MAPK/Erk1,2 and
PI3k/Akt pathways were involved in the activation of NF-�B
by TGF-�1. The transcriptional activity of NF-�B was eval-
uated by luciferase activity assay in cultured mouse hip-
pocampal neurons in the presence or absence of specific
inhibitors of Mek1,2/Erk1,2 and PI3k after the administra-
tion of TGF-�1. As shown in Fig. 5A, an increase in lucif-
erase activity was significantly reproduced at 3 h (P�0.05)
and more pronouncedly seen at 6 h (P�0.001) after add-
ing TGF-�1 (10 ng/ml). Interestingly, both wortmannin and
U0126 reduced not only the basal level of luciferase activ-
ity, but also abrogated the enhancement of luciferase ac-
tivity in response to TGF-�1. It was noted that the inhibitory
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Fig. 2. TGF-�1 preserves NF-�B activity in neurons challenged with
STS. A: TGF-�1-induced transcriptional activity of NF-�B in the pres-
ence of STS. Cultured mouse hippocampal cells received vehicle or
STS (100 nM) alone, or 10 ng/ml TGF-�1 24 h prior to challenging with
STS. The cells were harvested at different time points after adding
STS for luciferase activity assay. * P�0.05 and *** P�0.001 compared
with control. ### P�0.001 compared with the corresponding group
treated with STS alone. RLU: relative luciferase unit. B: Induction of
nuclear translocation of p65/NF-�B by TGF-�1 in cultured rat hip-
pocampal cells. Cells were similarly treated as described above. As a
positive control, TNF-� (final concentration: 4 ng/ml) was added to the
cultures 3 h before the onset of STS treatment. Immunocytochemistry
of p65/NF-�B was carried out 6 h after challenging with STS. In
control, most of cells exhibited location of p65/NF-�B immunoreactivity
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* P�0.05 compared with STS alone.
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effect of wortmannin appeared predominantly stronger
than that caused by U0126 at both tested time points after
adding TGF-�1. In addition, the levels of P-Erk1,2 and
P-Akt were detected in sister cultures exposed to U0126 or
wortmannin in order to clarify whether the TGF-�1-medi-
ated increase in NF-�B transcriptional activity depended
on the activation of MAPK/Erk1,2 or PI3k/Akt signaling
pathways. TGF-�1 (10 ng/ml) increased the levels of P-
Erk1,2 and P-Akt at both 3 h and 6 h after the treatment
without altering the expression of total Erk1,2 or Akt. TGF-

�1-mediated activation of Erk1,2 was completely abol-
ished by U0126 (Fig. 5B). The increased level of P-Akt by
TGF-�1 also clearly declined in the presence of wortman-
nin in comparison with the baseline and the levels detected
after TGF-�1 treatment (Fig. 5C). This evidence supports
the notion that TGF-�1-mediated activation of NF-�B in
cultured hippocampal neurons involves both MAPK/Erk1,2
and PI3k/Akt signaling pathways.

Based on these findings, we next addressed whether
the increased phosphorylation of Erk1,2 and Akt by
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TGF-�1 was associated with the enhanced phosphoryla-
tion of IKK�/� and I�B�. As shown in Fig. 6, TGF-�1
(10 ng/ml) increased the levels of P-Erk1,2 and P-Akt,
which was accompanied by an enhanced expression of
P-IKK� and P-I�B�. P-IKK� was detected at a very low
level in cultured rat hippocampal cells and was slightly
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increased after incubation with TGF-�1. Of note, TGF-�1-
mediated activation of Erk1,2 and Akt was again abolished
by U0126 and wortmannin, respectively. However, the
increased P-IKK� and P-I�B� levels mediated by TGF-�1
were only blocked by wortmannin but not by U0126 (Fig.
6), suggesting that only Akt acted as an upstream kinase
phosphorylating IKK� in our experimental conditions,
whereas the Mek1,2/Erk1,2 signaling pathway participated
in TGF-�1-mediated activation of NF-�B through a distinct
and yet undefined mechanism.

Blockage of Erk1,2 and Akt activation diminishes the
anti-apoptotic effect of TGF-�1

We have demonstrated the involvement of both Mek1,2/
Erk1,2 and PI3k/Akt signaling pathways in the activation
of NF-�B by TGF-�1. These findings raised the question
whether these two signaling pathways are necessary for
the neuroprotective effect of TGF-�1. We evaluated the
anti-apoptotic effect of TGF-�1 in the presence of wort-
mannin or U0126. Wortmannin or U0126 alone at the
final concentration of 60 nM or 20 �M, respectively, did
not show any toxicity. TGF-�1 (10 ng/ml) consistently
protected cultured rat hippocampal cells from STS-in-
duced apoptosis (P�0.01), and this protective effect
was completely blocked by wortmannin and U0126 (Fig.
7).

DISCUSSION

We have previously reported new intracellular signaling
mediating the anti-apoptotic effects of TGF-�1 in neurons
which involved the activation of MAPK/Erk1,2 and subse-
quent inactivation of Bad through enhanced phosphoryla-
tion (Zhu et al., 2002). The present study further elucidates
an additional novel mechanism underlying the neuropro-
tective effect of TGF-�1 against apoptotic insults. We hy-
pothesized that NF-�B is a target of TGF-�1 and mediates
the anti-apoptotic effect of TGF-�1. This proposal is based
on the following facts: (i) the anti-apoptotic function of
NF-�B in neurons has been well documented (Taglialatela
et al., 1997; Glazner et al., 2000; Mattson et al., 2000;
Bhakar et al., 2002), although a janus-faced character of
this transcription factor was reported under certain condi-
tions; and (ii) NF-�B activity is regulated by TGF-�1 in
multiple types of non-neuronal cells (Azuma et al., 1999;
Saile et al., 2001; Arsura et al., 1996, 2003). These studies
indicate a controversial, yet central role of TGF-�1 in the
regulation of NF-�B activation. However, the role of
TGF-�1 in NF-�B activation has not been identified in
neuronal cells. In the present work, we provided evidence
that TGF-�1 increased the transcriptional activity of NF-�B
in a time- and concentration-dependent manner in cultured
mouse hippocampal neurons (Fig. 1). Since more than
95% of cells in this hippocampal culture are neurons, we
suggest that this is a direct action of TGF-�1 on hippocam-
pal neurons. Furthermore, TGF-�1 efficiently prevented
the suppression of the nuclear translocation of p65/NF-�B
by STS and activated NF-�B in the presence of STS (Fig.
2). Importantly, we demonstrated an essential role of
NF-�B activation in the anti-apoptotic effect of TGF-�1.
This is based on the findings: i) the anti-apoptotic activity of
TGF-�1 was blocked by the specific NF-�B activity inhib-
itor �B-decoy DNA (Fig. 3A and 3B), and ii) this abrogation
of the anti-apoptotic activity of TGF-�1 by �B-decoy DNA
was due to the significant suppression of the transcrip-
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tional activity of NF-�B (Fig. 3C). Interestingly, Kaltschmidt
and Kaltschmidt (2001) showed recently that TGF-�2, an-
other member of the TGF-� superfamily, repressed NF-�B
activity in cultured cerebellar granule cells. The different
effects of different TGF-� family members on NF-�B acti-
vation in different populations of neurons are not surpris-
ing, since it has been well established that the function of
TGF-� crucially depends on the cell type, the state of cell
maturation as well as the experimental conditions (Kriegl-
stein et al., 2000, 2002). TGF-�1 functions as a survival
factor in cultured hippocampal neurons (Zhu et al., 2001,
2002), motoneurons and dopaminergic neurons (Kriegl-
stein et al., 1995) as well as sensory neurons (Chalazonitis
et al., 1992). However, TGF-� acted as a promoter of
apoptosis in cerebellar granule cells cultured in the me-
dium with low (5 mM) but not with high K� (20 mM)
concentrations (de Luca et al., 1996), suggesting that the
effect of TGF-� on the cerebellar granule cells depended
on the state of the cell membrane potential. It is yet unclear
whether this pro-apoptotic effect of TGF-� is coupled to the
inhibition of NF-�B activation in cerebellar granule cells.
Our study demonstrated that TGF-�1-mediated NF-�B ac-
tivation plays a pivotal role in promoting survival of cultured
hippocampal neurons challenged with STS, hence pointing
out NF-�B activation as a novel mechanism mediating the
anti-apoptotic effect of TGF-�1.

An I�B-dependent pathway for the activation of NF-�B
has been well characterized in various types of cells in
response to different stimuli (Schmitz et al., 2001; Sun and
Andersson, 2002). In this regard, NF-�B activation can be
principally influenced at multiple levels: I�B phosphoryla-
tion, binding of E3I�B, a specified ubiquitin ligase complex,
to phospho-I�B, the polyubiquitination reaction and protea-
some-mediated degradation of I�B. However, the only reg-
ulated step in this cascade is I�B phosphorylation,
whereas the activity of the enzymes involved in I�B polyu-
biquitination and degradation is constitutive. Here we
showed that TGF-�1-mediated activation of NF-�B in-
volved an increase in the phosphorylation and the degra-
dation of I�B�, a best characterized member of inhibitory
NF-�B family proteins. As shown in Fig. 4A, the phosphor-
ylation of I�B� at Ser32, an essential phosphorylation site
on I�B� for the subsequent degradation, was markedly
enhanced as early as 3 h, and remained at the increased
level up to 24 h after TGF-�1 treatment. The increase in
I�B� phosphorylation was associated with an increased
degradation of I�B�. These findings were consistently pro-
duced in the study as presented in Fig. 4B. Since we
observed preservation of NF-�B activity by TGF-�1 also in
the presence of the apoptotic stimulus, we further mea-
sured TGF-�1-mediated changes in I�B� levels in STS-
treated cells. In agreement with the previous report, STS
suppressed the phosphorylation of I�B� and accordingly
inhibited its degradation. These effects mediated by STS
were completely reversed by TGF-�1 (Fig. 4C). Taken
together, the activation of NF-�B by TGF-�1 in cultured
hippocampal neurons involves the modification of I�B�
phosphorylation and degradation.

Our next focus was placed on upstream kinases and
signaling pathways leading to the phosphorylation of I�B�.
Recent studies revealed a direct association of IKK�/� and
the phosphorylation of I�B. In mammalian cells, activation
of IKKs depends on the phosphorylation of Ser177 and/or
Ser181 in IKK� and Ser176 and/or Ser180 in IKK� (Del-
hase et al., 1999). Once activated, both kinases phosphor-
ylate serine residues of I�B� (Ser32/36) and I�B� (Ser19/
23), thereby inducing ubiquitination and degradation of
I�B�/� and the concomitant activation of NF-�B. However,
it is unclear whether IKKs mediate the increase in I�B�
phosphorylation caused by TGF-�1 in cultured hippocam-
pal neurons. We elucidated the effect of TGF-�1 on the
expression of P-Ser180-IKK�, P-Ser181-IKK� and
P-Ser32-I�B� in parallel. As predicted, TGF-�1 clearly
increased the level of P-Ser181-IKK�, which was accom-
panied by a concomitantly enhanced P-Ser32-I�B� ex-
pression. Interestingly, the level of P-Ser180-IKK� was
almost not detectable in control cultures and only slightly
increased by TGF-�1. The different expression patterns of
P-Ser180-IKK� and P-Ser181-IKK� suggest an essential
role of the latter in the process of NF-�B activation in
hippocampal neurons. Of note, the protein levels of both
IKK� and IKK� were not changed by TGF-�1, indicating
that TGF-�1 modulated IKK� at the posttranscriptional
level, i.e. increased phosphorylation of IKK�.

We demonstrated previously the capacity of TGF-�1 to
activate MAPK/Erk1,2/Rsk1 pathway in cultured hip-
pocampal neurons and in mouse brain tissues (Zhu et al.,
2002). Here, we attempted to test whether TGF-�1-medi-
ated NF-�B activation is associated with its ability to acti-
vate MAPK/Erk1,2 signaling, since there is evidence show-
ing an involvement of MAPK signaling in activation of
NF-�B (Ghoda et al., 1997; Zhao and Lee, 1999; Baumann
et al., 2000). In addition, we extended our attention to the
PI3k/Akt pathway, a major cascade mediating activation of
NF-�B and survival signaling in neurons. Akt-mediated
induction of NF-�B transcriptional activity has been shown
to be necessary and sufficient for the anti-apoptotic effect
of PDGF (Romashkova and Makarov, 1999) and TNF
(Ozes et al., 1999). Furthermore, a direct association
among Akt, IKK� and NF-�B activation has been demon-
strated by Madrid et al. (2000). In this study, we found that
the TGF-�1-mediated increase in transcriptional activity of
NF-�B was completely abolished by wortmannin, whereas
U0126 only partially suppressed the effect of TGF-�1. This
indicates that both PI3k/Akt and MAPK/ERk1,2 pathways
are involved in the underlying mechanism of NF-�B acti-
vation by TGF-�1 with a dominant role for PI3k/Akt. Inter-
estingly, further studies revealed that the increased phos-
phorylation of IKK�/� and I�B� caused by TGF-�1 was
abrogated by wortmannin, but not by U0126. Therefore, it
seems that the cascade of TGF-�1-mediated NF-�B acti-
vation involves phosphorylation of IKKs through the PI3k/
Akt pathway, while the regulation of NF-�B activity by
MAPK/Erk1,2 pathway remains unclear. Different mecha-
nisms have been shown in MAPK-mediated NF-�B activa-
tion (Ghoda et al., 1997; Baumann et al., 2000). A recent
study revealed that activation of mitogen- and stress-acti-
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vated protein kinase-1, a direct downstream kinase of
Erk1,2, led to phosphorylation of Ser276 on p65/NF-�B
and the subsequent transcriptional activation of NF-�B
(Vermeulen et al., 2003). Nevertheless, the molecular de-
tails of how TGF-�1-mediated activation of Erk1,2 and
PI3k/Akt pathways contributes to the activation of NF-�B
remain to be characterized.

Finally, we showed that both PI3k/Akt and MAPK/
Erk1,2 pathways are necessary for the anti-apoptotic
effect of TGF-�1 in cultured hippocampal neurons (Fig.
7). The precise mechanisms for the anti-apoptotic effect
of these two signaling pathways have been extensively
elucidated (Brazil and Hemmings, 2001; Brunet et al.,
2001; Chang et al., 2003). Based on our finding that
TGF-�1-induced activation of NF-�B is associated with
the activation of Akt and Erk1,2, we conclude that NF-�B
is an important target of both PI3k/Akt and MAPK/Erk1,2
signaling pathways which were both triggered by TGF-
�1. Because �B-decoy DNA blocked the anti-apoptotic
activity of TGF-�1, we further propose that NF-�B activ-
ity plays a pivotal role in the anti-apoptotic effect of this
cytokine in neurons (Fig. 8).
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