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Abstract

Increased expression of N-Myc and expression of the high mobility group protein Ala (HMGAZ1a) were observed in the nuclei of SK-N-SH
cells following exposure to hypoxia. These observations were accompanied by the appearance of additional high molecular weight bands,
which were eliminated by pretreatment with alkaline phosphatase. Immunoprecipitation showed phosphorylation of serine, threonine and
tyrosine residues of N-Myc in the nucleus. These results suggest that hypoxia-induced signals in SK-N-SH cells lead to persistent expression
of HMGAL1la, which may induce expression of the transcription factor N-Myc, and that phosphorylation at serine, threonine and tyrosine
residues of N-Myc occurs at an early stage after stimulation. Such signal consolidation processes could play a role in neuronal survival after
hypoxia in neurons.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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Alzheimer's disease (AD) is a neurodegenerative disorder present in pyramidal cells of the cerebral cortex and the hip-
that has several pathological characteristics: severe neurorpocampus in 100% of sporadic AD braii3§]. Furthermore,
loss, glial proliferation, extracellular deposition of senile cell lines that express PS2V become fragile in response to
plagues composed of beta-amyloid, and deposition of intra- various endoplasmic reticulum (ER) stres§@s,36], lead-
cellular neurofibrillary tangleg39]. Recently, we discovered  ing to changes in the conformation of tau protd2s].
that an alternative splice variant of tipeesenilin2 (PS2) The expression of PS2V observed in sporadic AD is mim-
gene that lacks exon 5 (PS2V) is significantly expressed inicked in hypoxia-exposed human neuroblastoma SK-N-SH
the brains of sporadic AD patients, compared with those of cells[35,36] PS2V is induced by the action of the high mo-
controls[35]. PS2V encodes aberrant proteins that form in- bility group protein Ala (HMGAla), which directly binds
tracellular inclusion bodies (PS2V bodi¢2)], and these are  to specific sequences on PS2 pre-mRNA in SK-N-SH cells
following hypoxic stimulation19]. Furthermore, increased
Abbreviations:HMGAL1a, high molecular group protein Ala; PS, phos- expression of the HMGAla protein has been observed in
phoserine; PT, phosphothreonine; PY, phosphotyrosine the hippocampus of sporadic AD brains and nuclear extracts
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Members of the HMGA protein family participate in many
cellular processes, including regulation of inducible gene
transcription, integration of retroviruses into chromosomes,
and metastatic progression of cancer ¢a@ly. HMGA pro-
teins contain three copies of a conserved DNA-binding pep-
tide motif called the ‘AT-hook’, which preferentially binds to
the AT-rich DNA minor groove and interacts in vivo with a
large number of other proteins, many of which are transcrip-
tion factors.

A previous study has shown that HMGA1la is a direct
c-Myc-targeted gene involved in neoplastic transformation
in Burkitt’'s lymphoma[43]. The Myc family proteins, N-
Myc and c-Myc, are implicated in the regulation of cell
proliferation, differentiation and apopto$&13,28,29] It is
likely that c-Myc expression is differentially activated in var-
ious paradigms of neuronal cell death in vivo and in vitro
[1,23,24] and it has been suggested that N-Myc function de-
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Fig. 1. Effects of hypoxia stimulation on expression of Myc family pro-
teins in human neuroblastoma SK-N-SH cells. Nuclear fractions from SK-
N-SH cells were prepared after 0-21 h hypoxia stimulation, followed by im-
munoblotting assay using anti-c-Myc (top), anti-N-Myc (middle) and anti-
HMGA1a (bottom) antibodies.

pends on cell type and developmental stage, as well as onEGTA, 5mM dithiothreitol, 10mM NaF, 10 mM sodium

the external environmef,37,41] On the other hand, previ-

ous reports have demonstrated that N-Myc, c-Myc and phos-

phorylated c-Myc are present in the AD brain and in brains
affected by other neurodegenerative disedg&s. Further-
more, more potent expression of c-Myc protein anchye:
mMRNA have been observed inischemic rodent brigi@4],

and previous reports have demonstrated that hypoxia pro-

B-glycerophosphate (NaGP), 10 mM sodium pyrophosphate
1 mM sodium orthovanadate (OV), angh@j/ml of PMSF at
2°C. Following the addition of 10% Nonidet P-40 to make a
final concentration of 0.6%, homogenates were centrifuged
at 15,000x g for 5min to obtain nuclear fractions. Pellets
thus obtained were suspended in 5-10 volumes of 20 mM
Tris—HCI buffer (pH 7.5) containing 1 mM EDTA, 1mM

motes apoptosis of human neuroblastoma cell lines throughEGTA, 10 mM NaF, 10 mM NaGP, 10 mM sodium pyrophos-

enhanced N-Myc expressi¢d2].

It is known that the functions and DNA-binding ac-
tivities of Myc family proteins are regulated by phos-
phorylation [9-12,14-17,26,27,33,34,40,4furthermore,
Myc function requires heterodimerization of the Myc and
Max basic/helix-loop—helix/leucine zipper (bHLHZ) do-
mains prior to sequence-specific DNA binding. Myc—Max
heterodimers recognize a core hexanucleotide elemént (5
CACGTG-3), termed the Enhancer box or E bj@x30], and

phate 1 mM OV and jg/ml of PMSF. Immunoblotting was
performed as previously describg,22]

Nuclear fractions from SK-N-SH cells were obtained af-
ter hypoxic stimulation for 0—-21 h. These fractions were then
subjected to SDS—PAGE and immunoblotting analysis. No
significant increase in immunoreactivity was found using
an antibody against c-Myc protein (see the corresponding
molecular weight position indicated by the black arrow in
Fig. 3a and the upper panel &fig. 1), but PS2V was in-

activate transcription at promoters containing such E boxesduced under hypoxic conditionBi@. 3b) [19,35,36] On the

[2,6].
The role of Myc family proteins in neurodegenerative dis-

other hand, exposure to hypoxia for 6 h significantly potenti-
ated N-Myc expression in SK-N-SH cells, with about a 1.5-

orders is poorly understood. In this manuscript, we propose fold potentiation 8—-16 h after exposure to hypoxiag( 3a

a hypothesis involving a novel neurotoxic pathway that in-
cludes expression and phosphorylation of N-Myc by hypoxic
induction of HMGA1a, leading to neuronal cell death via in-
duction of PS2V expression.

In brief, human neuroblastoma SK-N-SH and human
HEK293T cells were cultured i-minimal essential and
Dulbecco’s modified Eagle’s medium supplemented with fe-

and the middle panel dfig. 1b). This potentiation persisted
for at least 21 h, after which no further measurements were
made Fig. 3a and the middle panel ¢fig. 1b). In contrast,
hypoxia did not significantly potentiate HMGAla expression
in SK-N-SH cells following 8 h or less of hypoxic stimulation
(Fig. 3a and the middle panel &ig. 1c). However, increased
hypoxic exposure for 8-21 h did lead to stimulation-time de-

tal calf serum, respectively. When cells achieved confluence pendent expression of HMGA1a in the nuclei of SK-N-SH

in 175cn? culture plate, the medium was exchanged with

serum-free medium. After 4 h, cultures were exposed to hy-
poxia for 0—21 h using an incubator equipped with low oxy-

gen tension (8 Torr within 3-5h after cultures were trans-
ferred to the hypoxia chamber).

cells, as observed for N-Myc inductioRif. 3a and the mid-
dle panel ofFig. 1c).

Exposure to hypoxia for 0.5-21 h, under which conditions
PS2V expression was not induced, did not significantly alter
N-Myc expression in HEK-293T cell§{g. 3a and the middle

The nuclear fraction was prepared as previously describedpanel ofFig. 2). In contrast, hypoxia significantly potentiated

[38] with minor modificationd18,44,45] In brief, samples
were homogenized in 50 volumes of 10 mM HEPES-NaOH
buffer (pH 7.9) containing 10 mM KCI, 1 mM EDTA, 1 mM

c-Myc expression in HEK-293T cells following 1-12 h of
hypoxic stimulation, with a decline to control levels thereafter
(Fig. 3a and the upper panel &ig. 2). On the other hand,



T. Yanagita et al. / Neuroscience Letters 374 (2005) 47-52

HEK-293T
Nuclear fractions
Hypoxia (hr)
00512468 121621

<+ HMGA1a

Fig. 2. Effects of hypoxia stimulation on expression of Myc family proteins
in HEK-293T cells. Nuclear fractions from HEK-293T cells were prepared
after 0-21 h hypoxia stimulation, followed by immunoblotting assay using
anti-c-Myc (top), anti-N-Myc (middle) or anti-HMGA1a (bottom) antibod-
ies.

no significant hypoxia-induced expression of HMGAla was
seen in the nuclear fraction from HEK-293T cellid. 3a
and the lower panel dfig. 2). Hence, the hypoxia-induced

expression patterns of these proteins differed between SK-N-

SH cells and HEK-293T celld~{g. 3a).
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As shown inFig. 1, hypoxia in SK-N-SH cells potenti-
ated not only N-Myc expression but also additional bands
of a higher molecular weight than normal N-Myeig. 4a).
Therefore, we investigated whether the high mobility bands
produced by hypoxia were due to phosphorylation of the N-
Myc protein. Pretreatment with alkaline phosphatase (AP)
eliminated the high mobility bands in the nuclear fraction
from hypoxia-exposed SK-N-SH cell&if. 4b, highest ar-
row), presumably due to dephosphorylation, and resulted in
alarge increase in the immunoreactivity of the lowest molec-
ular weight bandKig. 4b, lowest arrow). Then, the binding
activity of N-Myc to its target region in HMGAla promoter
was analyzed by gel retardation shift asaay using the nu-
clear extracts from normoxia (lane 1), hypoxia (8 h, lane 2)
and hypoxia (8 h) + pretreatment with AP (lane B)d. 4c).

The increased binding activity by hypoxia (lane 2) was dis-
appeared in the AP-pretreated nucrear extrdgts éc, lane

3). Therefore, these results suggest that the reinforced N-Myc
expression and phosphorylation by hypoxia lead to activation
of HMGA1a transcription. Given these results, nuclear frac-
tions were prepared from SK-N-SH cells after 8 h of hypoxic
stimulation, followed by immunoprecipitation with the anti-
N-Myc antibody, SDS—PAGE and immunoblotting using an-
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Fig. 3. (a) Quantitative data of Figs. 1 and 2. Data are me&rE. fi=3). c-Myc,

N-Myc, HMGAla and all-merged data of Fig. 1 (upper) and Fig. 2 (lower)

were shown. (b) Effects of hypoxia stimulation on expression of PS2V mRNA in SK-N-SH cells. Total RNA from SK-N-SH cells were prepared after 0-21 h
hypoxia stimulation, followed by RT-PCR assay as described previ¢i8|g6]. Quantitative data was shown. Data are me&hE. f=3).
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Fig. 4. Effects of alkaline phosphatase on appearance of immunoreactive N-Myc proteins by hypoxia in nuclear fractions from SK-N-SH cellsiu@) Indiv
guantitative data of three different bands in N-Myc were shown. Data are sn8adh. fi=3). (b) SK-N-SH cells were stimulated for 8 h under hypoxia,
followed by preparation of nuclear fractions. Samples were treated with or without alkaline phosphatase and a subsequent immunoblotting assay usin
anti-N-Myc antibody. (c) Effects of alkaline phosphatase (AP) treatment on N-Myc binding with the E-box of HMGAla promoter in each nucleareigract. C
were incubated under the normoxic or hypoxic condition for 8 h, followed by collection and preparation of nucrear extracts. AP-treated or antpesed s
were subjected to gel retardation electrophoresis and subsequently autoradiography.

tibodies against phosphotyrosine (Y. 5a), phosphothre-
onine (PTFig. 9b) and phosphoserine (PHg. &) to detect
possible phosphorylation of N-Myc. Three immunoreactive

bands against anti-PS antibody were detected in immuno-

precipitates that co-precipitated with anti-N-Myc antibody
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Fig. 5. Effects of hypoxia on phosphorylation of immunoreactive N-Myc
protein in nuclear fractions of SK-N-SH cells. Samples were immunopre-
cipitated with an anti-N-Myc antibody following an immunoblotting assay
using anti-phosphotyrosine (a; PY), anti-phosphothreonine (b; PT) or anti-
phosphoserine (c; PS) antibodies.

(Fig. 5c, left panel) after hypoxic stimulation for 8 Rif. 5c).
Strong immunoreactivity to antibodies against FFg( 5a)
and PT Fig. Bb) was also observed in immunoprecipitates
obtained after hypoxic stimulation for 8 h.

The primary importance of the present findings is that hy-
poxic stimulation led to differential expression of particular
Myc family proteins in nuclear fractions of cell lines, and
that this expression occurred in a manner dependent on the
hypoxia exposure time. Our previous data showed that expo-
sure to hypoxia for 10-18 h does not induce any significant
changes in the expression of HMGAla protein, HMGAla
mMRNA, and PS2V mRNA in non-neuronal cell lines, includ-
ing HEK293T and HeLa cells, compared with normadii€].

The findings in the present study clearly demonstrate that ex-
posure to 0.5-21 h of hypoxia does not induce N-Myc and
HMGAla expression in nuclear fractions from 293T cells
(Fig. 2, lower and middle panels). However, transient induc-
tion of c-Myc was observed in nuclear fractions from 293T
cells Fig. 2 upper panel). These data suggest that HMGAla
induction by hypoxia does not depend on c-Myc expression,
although it has been shown that the HMGAla gene is directly
targeted by c-Myc under other conditiofs3].
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