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The dorsal part of the human anterior cingulate cortex (dACC) is
reliably activated in situations requiring cognitive control, especially
during states of conflict. However, little is known about how individual
differences in the neural characteristics of the dACC and major
dimensions of behavior, affect this brain response. We recruited 28
healthy adults and employed a multi-modal neuroimaging approach
combined with a task designed to specifically activate the human
dACC and statistical path analysis to demonstrate clear roles for
intelligence, personality and concentrations of neuronal N-acetylas-
partate in determining dACC activation. These influences were
comparable in magnitude to those associated with the experience of
conflict. Our findings extend current understandings of the neural
substrates of cognitive control by modeling the effect of neuronal
viability, intelligence, and personality, on dACC activation. They also
highlight the importance of considering enduring personal character-
istics when mapping human brain–behavior relationships.
© 2006 Elsevier Inc. All rights reserved.
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Two decades of functional neuroimaging research have
demonstrated that the dorsal anterior cingulate cortex (dACC),
situated on the medial surface of the frontal lobes, is involved in a
broad range of human behavior, including cognitive control,
reward-based learning, pain, emotion, autonomic and motor
function (Bush et al., 2000; Paus, 2001; Picard and Strick, 2001;
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Bush et al., 2002; Critchley et al., 2003; Vogt, 2005). There is now
also extensive evidence linking dACC dysfunction to a number of
psychiatric disorders (Benes et al., 1993; Yücel et al., 2003;
Critchley et al., 2003; Ridderinkhof et al., 2004), as well as normal
and abnormal personality traits (Pujol et al., 2002; Canli et al.,
2004; Kumari et al., 2004; Gray et al., 2005; Whittle et al., 2006),
suggesting it is a vulnerable part of an important and common
pathway involved in the regulation of behavior, cognition and
emotion. Recently, particular interest has been paid to under-
standing dACC activation in response to states of conflict (Kerns et
al., 2004; Matsumoto and Tanaka, 2004; Brown and Braver, 2005).
According to one prominent theory, this neuronal response may
reflect a conflict monitoring role for the dACC (Botvinick et al.,
2001, 2004), whereby this region supports goal-directed behavior
by specifically reacting to, or predicting, the occurrence of
conflicts in performance (e.g. response errors), in turn, signaling
the need for greater cognitive control.

To date, most research examining dACC activation in conflict
paradigms has focused on transient, state-related changes in
activation by manipulating the nature and degree of conflict within
a given task (Botvinick et al., 2001, 2004; Garavan et al., 2003;
Brown and Braver, 2005). However, it is not yet clear just how
influential state-related factors are in determining dACC activation
with respect to other major influences on human behavior and
brain function, such as individual differences in the underlying
neurobiology of the dACC and/or overarching trait characteristics
of the person, such as intelligence and personality (Grachev et al.,
2001; Gray et al., 2003, 2005).

Previous research in healthy populations has demonstrated that
individuals with higher intelligence typically show superior
behavioral performance (e.g. they make fewer errors) on challen-
ging cognitive tasks, including response-conflict paradigms (Jung
et al., 2000; Gray et al., 2003). On the basis of the conflict
monitoring account, one would predict that such individuals with
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higher intelligence should display reduced conflict-related dACC
neural activation. Contrary to this, the largest existing functional
neuroimaging study to date that has directly examined these
relationships reported greater conflict-related dACC activation in
individuals with higher intelligence (Gray et al., 2003). One
possible explanation for these seemingly contradictory findings is
that intelligence operates through both direct and indirect
pathways to influence dACC activation (Fig. 1). That is,
intelligence may have an indirect influence on the dACC activa-
tion to conflict through its associations with behavioral outcomes,
since individuals with higher intelligence will generally perform
better and, therefore, experience less conflict. Additionally, intel-
ligence may have a direct influence by increasing the overall level
of dACC activation perhaps reflecting enhanced conflict monitor-
ing (Ridderinkhof et al., 2004; Brown and Braver, 2005), or
broader aspects of intelligence (Gray et al., 2003).

Like intelligence, recent evidence suggests that individual
differences in personality dimensions also influence performance
on tasks of cognitive control and associated dACC activation. Gray
and colleagues (Gray and Braver, 2002; Gray et al., 2005) have
reported that the general tendency to which an individual is
sensitive to signals of reward in the environment (also referred to
as the behavioral activation system, or BAS) (Torrubia et al., 2001)
is negatively correlated with dACC activation during cognitive
control tasks, even after controlling for differences in intelligence
and behavioral performance.

Finally, magnetic resonance spectroscopy (MRS), a non-
invasive approach to measuring neuronal metabolite concentra-
tions, has been used to demonstrate that individual differences in
measures of intelligence (IQ) and behavioral performance on
cognitive conflict tasks are associated with differences in the
biochemical characteristics of neurons (Jung et al., 1999, 2005;
Grachev et al., 2001). Specifically, higher concentration of the
neuronal metabolite N-acetylaspartate (NAA; a metabolite
produced within neuronal mitochondria that reflects neuronal
density and/or functional viability) (Petroff et al., 2003) was
associated with higher intelligence (Jung et al., 1999, 2005), as
well as better task performance during situations of conflict
Fig. 1. Possible pathways of influence on dACC neural activation.
Illustration of the well-known influence of increased conflict and increased
dACC activation (direct association, solid black arrow). Also illustrated are
the direct (solid arrows) and indirect associations (dashed arrows) between
biochemical influences (green) and trait factors such as general intelligence
(blue) and reward sensitivity (red). The aqua box highlights the relationships
typically explored in functional neuroimaging studies.
(Grachev et al., 2001). However, it is unclear whether NAA (like
intelligence) also exerts a direct influence over dACC activation
or has indirect influences through behavior (e.g. the experience of
conflict) (Fig. 1).

In the current study, we combined multi-modal magnetic
resonance imaging (MRI; including functional MRI, and proton
MRS) with path analysis to explore and characterize the nature of
state, trait and biochemical influences on dACC activation in
response to conflict. On the basis of the existing literature, we
predicted that (1) measures of intelligence (IQ) and personality
characteristics related to reward sensitivity (or BAS), would exert
separable and independent influences on dACC activation in
response to conflict; (2) IQ would have an indirect influence over
dACC activation through behavioral outcomes, as well as a direct
influence; and (3) NAAwould be associated with broad aspects of
cognition such as IQ, rather than specific aspects such as response
conflict monitoring. This latter prediction was based on recent
findings of reduced NAA concentration in many conditions
characterized by a general decline in cognitive function, including
normal aging and Alzheimer’s disease (Valenzuela and Sachdev,
2001; Ross et al., 2005). Finally, we also explored the possibility
that dACC levels of NAA have direct influences on dACC
activation in response to conflict.

Materials and methods

Subjects and task

We recruited 28 healthy right-handed volunteers (15 female;
aged 22–48 years). This sample size has been shown to provide
adequate power for correlational analyses (Cohen, 1988) and
similar size samples have been used in path analysis of brain
imaging data (Bullmore et al., 2000; Seminowicz et al., 2004).
None of the participants that completed this study had a personal or
family history of neurological or psychiatric illness and all
presented with adequate visual function. All participants spoke
English as a first language and subjects had a mean education level
of 15.1 years (range 9–19 years). All subjects gave written,
informed consent to participate in this study, which was approved
by local research and ethics committees. Informed consent was
obtained from all participants in the current study after the nature
and possible consequences of the study were explained.

General IQ and trait motivation were assessed using the
Wechsler Abbreviated Scale of Intelligence (WASI) and Behavioral
Approach System (BAS) component of the Sensitivity to Punish-
ment and Sensitivity to Reward Questionnaire (SPSRQ) (Wechsler,
1999; Torrubia et al., 2001). The WASI was developed to be a
short and reliable measure of intelligence designed for use with
individuals aged 6–89 years. Full-scale intelligence quotient (IQ)
was retained as the measure of general intelligence for further
analysis. The SPSRQ was developed to assess two motivational
systems—the Behavioral Inhibitory System (BIS) and the BAS.
The BIS is thought to control aversive behavior, whereas the BAS
regulates appetitive goal-oriented behavior.

Full details of the Multi-Source Interference Task (MSIT)
appear in Bush et al. (2003). This task has been designed
specifically to probe the dACC in human fMRI experiments and
validated as such. That is, by placing high demands on multiple
dimensions of human cognitive control and utilizing a block-
design to maximize statistical power (by improving signal-to-noise
and summing activity across trials), the MSIT enables one to detect
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reliable single-subject level activations. This is important for the
current study as it facilitates our aim of correlating functional
activation patterns with individual differences in personality,
intelligence and brain metabolites in order to better understand
the nature of the relationships between these measures. In our
version of the MSIT, the numbers 0–3 were presented in strings of
three, with one always being different to the other two (Fig. 2).
Subjects were instructed to indicate the identity (not the position)
of the number that was different from the other two items by
pressing the appropriate button on a response box placed on their
stomach, i.e., . Responses were made with one of three
fingers; the index finger to indicate 1, the middle finger to indicate
2, and the ring finger to indicate 3. During congruent (C) task trials
the number always matched the position on the response box and
was flanked by the number 0. During incongruent (I) task trials
numbers never matched the response position and were flanked by
incongruent numbers. Subjects were informed that scans would
begin and end with fixation (fixation trials=F) for 60 s, between
which they would see eight alternating block pairs of C and I trials
(i.e. 16 blocks), lasting 30 s per block, were presented (i.e.
FCICICICIFCICICICIF). Stimulus and inter-stimulus intervals
were 2000 ms and 500 ms, respectively. For all trials, subjects
were instructed to answer as quickly and accurately as possible.
Prior to scanning, all participants completed a practice run of the
task consisting of one block of 12 C and one block of 12 I trials.

Subjects completed a practice of the task (24 trials, presented as
two blocks of 12 C trials and 12 I trials) pre-scanning. During the
scanning trials, behavioral reaction time (RT) and percentage error

scores were recorded via a notebook computer. Interference effects
(MSIT-rt) were calculated by subtracting the mean RT for the C
trials across all blocks from the mean RT of the I trials across all
blocks. Response errors were calculated by summing all commis-
sion (e.g. responding ‘1’ when the correct answer was ‘2’) and
omission errors (missed responses) across the C and I trials,
although the greatest percentage of errors occurred during the latter
trials. Data were analyzed with a two-way, within-groups repeated
measures analysis of variance (ANOVA) in Statistical Package for
the Social Sciences (SPSS) version 11.0 after checking for data
normality. Path analysis, a multivariate statistical technique that
enables examination of the nature of interactions amongst
measures with shared variance, was performed using AMOS
(Analysis of Moment Structures) (Arbuckle, 1999). All data were
screened for normality prior to entry into a path analysis. The
MSIT-err variable was log-transformed to ensure normality of
Fig. 2. Example of the trials and block
distribution (Tabachnick and Fidell, 2001). A post-hoc comparison
of the paths associated with the trait and state variables was
conducted using the Chi-squared difference procedure detailed in
Kline (2005).

Imaging acquisition and analysis

All individual MRI sequences were acquired in a single scanning
session using a 3T GE Signa Horizon LX human scanner (General
Electric, Milwaukee, WI, USA). Prior to scanning, subjects were
introduced to a ‘mock scanner’ in order to familiarise them with the
MRI environment. Following the mock session, subjects were taken
to the actual scanner and had their head fixed on the table using a
Velcro® strap over the forehead. Scanning sequences consisted of a
scout localiser, fMRI, T1-weighted anatomical sequence and MRS,
in that order. Data were transferred to a Linux 2.4.27 workstation
(Debian Sarge) for image pre-processing and analysis.

Functional MRI (fMRI) data were acquired as a series of single
shot gradient-recalled echo-echo planar imaging (GRE-EPI)
volumes providing T2*-weighted BOLD contrast. The image
acquisition parameters for the functional scans were TR/TE/flip-
angle, 3000 ms/40 ms/60°, FOVof 24 centimetres (cm) producing
a voxel size of 1.875×1.875×4.0 mm and 25 slices for full-brain
coverage. The first four images in each run were automatically
discarded to allow the magnetization to reach a steady-state
equilibrium. Each 30 s block in the experiment had 10 volumes
resulting in 80 volumes in total for the C condition and 80 volumes
in total for the I condition.

Analysis of the fMRI data was carried out using FEAT (fMRI
Expert Analysis Tool) Version 5.4, part of FSL (FMRIB’s Software
Library, www.fmrib.ox.ac.uk/fsl). The following pre-statistics
processing was applied; motion correction using MCFLIRT
(Jenkinson et al., 2002); non-brain removal using BET (Smith,
2002); spatial smoothing using a Gaussian kernel of FWHM 5 mm;
mean-based intensity normalisation of all volumes by the same
factor; high-pass temporal filtering (Gaussian-weighted LSF
straight line fitting, with sigma=30.0 s). Time-series statistical
analysis was carried out using FILM with local autocorrelation
correction (Woolrich et al., 2001). Individual subject Z (Gaussian
transformed) statistical images were thresholded using clusters
determined by Z>2.7 and a whole-brain (corrected) cluster
significance threshold of P=0.05 (Worsley et al., 1992). Twenty-
five of the twenty-eight subjects showed suprathreshold dACC
activity; two additional subjects showed activity at a lowered
design of the MSIT paradigm.

http:www.fmrib.ox.ac.uk/fsl
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Z-score of 2.33 (whole-brain cluster-wise corrected); one subject
showed subthreshold activity. For each individual, we extracted a
converted percentage signal change value (I>C) of the BOLD
response from the dACC cluster maxima using Featquery in FSL.
We used the peak voxel signal for each individual in preference to
summing activity over a larger area in a standard space (e.g. an area
around the peak voxel or the MRS volume of interest) to minimise
averaging over non-significant voxels. In previous work, we have
found this individually tailored voxel is representative of the
overall activated cluster and provides a more reliable association
with the behavioral indices of MSIT performance (unpublished
data). Additional, group-level analysis was carried out using
FLAME (FMRIB’s Local Analysis of Mixed Effects) (Beckmann
et al., 2003; Woolrich et al., 2004). Z (Gaussian transformed)
statistic images were thresholded using clusters determined by
Z>4.0 and a whole-brain (corrected) cluster significance threshold
of P<0.05 (Worsley et al., 1992). Registration to high resolution
and standard space images was carried out using FLIRT (Jenkinson
and Smith, 2001; Jenkinson et al., 2002).

Volume localized proton magnetic resonance spectroscopy
(1H-MRS) was recorded using a short-echo point resolved
spectroscopy sequence (PRESS; TR=3000 ms, TE=30 ms,
NEX=128; with a nominal voxel size ~6.5 cm3) from the
dACC bilaterally. MRS voxels were placed in each hemisphere,
separated by the medial wall boundary of the frontal lobes that
were designed to encompass the dACC. The posterior boundary
of the voxel was ~10 mm posterior of a vertical line from the
anterior commissure (AC) orthogonal to the AC–PC (posterior
commissure) line. The inferior border was ~5 mm superior to the
top edge of the corpus callosum while the medial border was 1–2
slices lateral to the parasagittal slice on the T1 structural image
for each hemisphere. For volume-localized spectra, absolute
levels of N-acetyl compounds (NAA+NAAG), creatine plus
phosphocreatine (Cr) and choline-containing compounds (Cho)
were measured. Metabolite concentrations were determined for
each ROI (corrected for estimated tissue content) with LCModel
software (Provencher, 1993). This software used a library of
reference spectra in a basis set recorded specifically for the
scanner and calibrated using the tissue water signal as an internal
standard. The LCModel fitting algorithm uses the multiple peaks
Fig. 3. Sample MRS spectra from the dACC region highlighting the three main m
(Cr) and choline-containing compounds (Cho).
contributing to an individual metabolite spectrum to estimate the
tissue content of each metabolite (Provencher, 1993). The residual
signal corresponds to, and is fitted by, additional broad peaks
representing unknown metabolites and other factors such as
macromolecular components with short T2 relaxation times. As
the left and right values for each metabolite were highly
correlated (R=0.46–0.88; P<0.01), we collapsed these values.
The chosen MRS parameters provided robust signals with a
FWHM of 0.06 and a signal-to-noise ratio of 15.90. The output
from LCModel also includes the Cramer–Rao lower bounds
(CRLB), which is a measure of reliability. The mean CRLB for
NAA was 5.3. A sample spectra from the dACC region of interest
is shown in Fig. 3.

Results

Performance and functional analyses

As in previous studies, we found that MSIT performance
produced a large and significant response conflict effect as
indexed by significantly longer reaction time (RT) in the
incongruent compared to congruent condition (RT difference
between conditions; MSIT-rt; M=331 ms; F=509.5; P<0.0001).
In addition, the MSIT generated significant error-related response
conflicts, as reflected by significantly greater response errors
(commission and omission) in the incongruent compared to
congruent condition (F=16.13; P<0.0001). The overall percen-
tage of errors committed (MSIT-err) during performance was
2.7%. Importantly, the task produced significant and robust supra-
threshold activation of the dACC in 25 of our 28 individual
subjects (Z>2.70; P<0.05 whole-brain, cluster-wise corrected).
The foci of maximal activation in the group-defined cluster was
very similar to that of previous studies (Bush et al., 2003;
Heckers et al., 2004), supporting the robustness of this task as a
probe of dACC function. For each individual subject, we
extracted a maximum percentage signal change value (dACC
peak activation) from their activated cluster using Featquery in
FSL (http://www.fmrib.ox.ac.uk/fsl/feat5/featquery.html) and this
served as the primary dependent variable (DV) for the path
analysis.
etabolite peaks; N-acetyl compounds (NAA), creatine plus phosphocreatine
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Path analysis

In total, five independent variables (IVs) were included in
subsequent multivariate analyses. The breakdown of these IVs was
classified as (i) trait (IQ, BAS); (ii) biochemical (NAA) and (iii)
behavioral state measures of response conflict (MSIT-rt, MSIT-err).
Indices of intelligence (IQ) and sensitivity to reward (BAS) were
derived using measures similar to those used in previous studies
(Wechsler, 1999; Torrubia et al., 2001). Measures of NAA
concentration within the dACC were obtained using proton MRS
from a predicted MSIT-dACC region of activation (Bush et al.,
2003; Heckers et al., 2004) (Fig. 4). Refer to Table 1a for
descriptive statistics of these variables.

Path analysis was performed using AMOS (Analysis of
Moment Structures) (Arbuckle, 1999). The correlation matrix of
Pearson’s Product Moment Correlation Coefficients was first
examined to determine linearity and the degree of relationship
between the variables of interest. All variables included in the
analyses correlated moderately (R≥0.3; R2≥0.09) (Cohen, 1988)
with at least one other variable of interest (Table 1a), supporting
the inclusion of each variable to the path analysis model. Variables
that showed strong correlations with dACC activation were MSIT-
rt, MSIT-err, and the BAS scores.

The initial over-fitted path model was modified in a stepwise
fashion (i.e. removing and adding variables path-by-path), on the
basis of the aforementioned literature, and the significance of the
Critical Ratio indices for each path as a guide. Model stability
was retested after each path modification. This procedure was
iterated several times before yielding the final and ‘best’ path
model (Fig. 5a). This model explained 67% of the variance in
dACC activation. The test of absolute fit of the final model
indicated that the model was a good fit to the data (χ2=5.03;
P=0.83). Further, support for the fit of the model was derived
from the relative fit indices (Tucker–Lewis Index (TLI)=1.019;
Root Mean Square Error of Approximation (RMSEA)≤0.0001).
Combined, these indices indicate that the model was parsimo-
nious. The Critical Ratio indices for each of the path associations
in the final model can be seen in Table 1b while the nature and
strength of the direct and indirect influences on dACC activation
can be seen in Table 1c.
Fig. 4. Group and single-subject level dACC activation and volume localised pr
activated cluster (group maxima in yellow [Z=7.27, P<3.15*10−35] with x, y, z
canonical structural MR image (MNI, Montreal Neurological Institute, Talairach b
activations of the dACC mapped onto subject's own structural MR image in nati
subject activation peaks (yellow) were closely bound to the area sampled by the MR
on a canonical structural MR image (MNI-Talairach brain) using a representative
The strongest direct influence on dACC activation was MSIT-
err (Table 1b; Fig. 5a). These findings are consistent with a bottom-
up model of conflict monitoring (Botvinick et al., 2001, 2004), and
suggest that state-related task demands are indeed an important
driving influence on dACC activation. However, our results also
illustrate the importance of individual trait characteristics. As
predicted, IQ had both direct and indirect influences on dACC
activation. In the direct path, IQ was positively associated with
dACC activation, while in the indirect path it was negatively
associated with behavioral performance. In contrast, reward
sensitivity (or BAS) only exerted a direct influence on dACC
activation. Consistent with previous research, the effect of reward
sensitivity was independent of IQ and behavioral performance
(Gray and Braver, 2002; Gray et al., 2005). Importantly, there was
no significant difference between the contributions of trait-related
measures (BAS and IQ) and state-related measures (MSIT-err and
MSIT-rt) to dACC activity (χ2=7.16; P>0.05). This indicates that
state and trait characteristics are equally important determinants of
dACC activation. Further, NAA only exerted an indirect effect on
dACC activation through IQ, and was not directly predictive of
conflict-related dACC activation.

Exploratory analyses incorporating the other two main
neurochemical measures derived from the spectroscopy data
(Cho and Cr) revealed that both metabolites were significant
predictors of dACC activation, albeit indirectly, through task
performance measures (particularly through MSIT-err). Further,
age was also a significant but indirect predictor of dACC activity
through Cho and NAA. However, these measures in combination
only explained an additional 5% of variance in dACC activation
when compared to the model with only NAA, IQ, and personality
(72% versus 67%, respectively). As such, these were deemed to
exert relatively minor influences on dACC activation and were not
included in the final model.

Discussion

While the dorsal part of the human anterior cingulate cortex
(dACC) is reliably activated in situations of conflict, very little is
known about how individual differences in the neural character-
istics of the dACC and major dimensions of behavior, affect this
oton MRS voxel given in sagittal orientation. (a) Illustration of the group
coordinates of 0, 18, 44) and the MRS voxel dimensions displayed on a
rain). (b) Representative single-subject data for four subjects showing focal
ve anatomical space. (c) Close-up of representation illustrating that single-
S voxel. These peak activation co-ordinates are mapped in the y and z planes
sagittal (x-plane) slice.



Table 1
Descriptive data and analyses
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brain response. In the current study, we recruited 28 healthy adults
and employed a multi-modal neuroimaging approach combined
with statistical path analysis to demonstrate and quantify the
relative influences of intelligence, personality, concentrations of
neuronal N-acetylaspartate and response conflict in determining
dACC activation.

A conceptual model of the current findings is shown in Fig. 5b
depicting the three primary paths of influence on dACC activation.
Complementing existing evidence, Path a characterizes well-
known behavioral task effects and suggests that response error in
particular was the primary state determinant of dACC activation.
Fig. 5. Pathways of influence on dACC activation. (a) Initial model was derived from
best-fit model. (b) A conceptual model is also presented that highlights the pathwa
indirect effect). The aqua box highlights the relationships typically explored in fu
This association between response errors and dACC activation has
been previously described and is one of the founding principles of
the conflict monitoring theory (Botvinick et al., 2004; Brown and
Braver, 2005). Our findings suggest that the commonly observed
brain–behavior association between RT-conflict and dACC activa-
tion is driven by a common association of both measures with
response errors (i.e. Path a in Fig. 5). This is consistent with the
view that performance errors have a specific phenomenological
relevance to the activation and function of the human dACC
(Brown and Braver, 2005). It may be that dACC activation to
conflict reflects a ‘learned’ role for this brain region that is
evidence in the existing empirical literature and ‘over-fitted’ to generate the
ys of influence of state, trait and biochemical factors (dashed lines represent
nctional neuroimaging studies.
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associated with predicting errors en route (Ridderinkhof et al.,
2004; Brown and Braver, 2005). Investigations of the time-course
of state-related conflict events and dACC activation will be better
suited to confirming such relationships.

In addition to the state influences described in Path a, Path b
suggests that individual differences in enduring trait phenomena
also play an equally important role in determining dACC
activation. Supporting our original assertion, we found that IQ
has a direct modulatory role over dACC activation in response to
conflict, in addition to an indirect effect that was mediated by
response errors. The indirect negative influence of IQ over dACC
activation indicates that, individuals with higher IQ showed better
behavioral performance (as reflected by lower MSIT-err) with a
concomitant decrease in dACC activation. By comparison, the
direct positive influence of IQ over dACC activation may reflect
differences in the neural mechanisms (i.e. differences in neural
efficiency) associated with higher intelligence, of which dACC
activation is a major component (Gray et al., 2003). Alternatively,
increased dACC activation in individuals with higher intelligence
may result from enhanced monitoring of error-likelihood that
enabled subjects to better predict their probability of making errors
and the need to adjust performance through increased cognitive
control (Gray et al., 2003).

Path b is also consistent with the observations of Gray and
colleagues (Gray and Braver, 2002; Gray et al., 2005) who have
reported a unique direct influence of reward sensitivity on dACC
activation during cognitive control paradigms, an effect that was
similarly independent of IQ and task performance. However,
whereas Gray and Braver (2002) and Gray et al. (2005) report
higher reward sensitivity to be predictive of less dACC
activation, we found a significant positive association between
these two variables. One speculative interpretation of our findings
is that individuals who are more sensitive to rewards are more
likely to monitor for the likelihood of performance errors than
those who are not reward sensitive. Alternatively, it is possible
that these reward sensitive individuals were also highly anxious
(high BIS) and held more negative expectations about the
consequences of performance errors. This might also lead to a
greater monitoring for the likelihood of performance errors.
While these discrepancies clearly need further study, both
findings highlight the relevance of this enduring personality trait
to dACC function.

Finally, Path c suggests that NAA concentration, a marker of
dACC neuronal integrity, has an indirect role on conflict-related
activation that is mediated by its association with IQ. This contrasts
with a recent study by Grachev et al. (2001), which reported a
direct correlation between response conflict (i.e. RT-interference)
and NAA concentration in the dACC. In our study, increased NAA
was associated with increased IQ, which was in turn related to
performance errors. This suggests that regional NAA concentration
only has an indirect effect on response conflict and dACC
activation by virtue of its overall relationship with IQ. These
results are consistent with previous work showing that reduced
NAA concentration is associated with a general decline of
cognitive function in both clinical and healthy populations (Jung
et al., 1999, 2005).

While our approach of using path analysis is useful for
exploring the complicated nature of relationship among several
inter-related variables, it also comes with several limitations. For
example, while similar size samples have previously been used in
path analysis of brain imaging data (Bullmore et al., 2000;
Seminowicz et al., 2004), typically this statistical technique
requires larger samples than that of the current study. Further,
while we were guided by the literature, the final model was
derived in an iterative manner. As such, the current findings and
their interpretation are provisional and require replication.
Nonetheless, the approach allowed us to more accurately
characterize the complex relationships (and shared variances)
that exist between several inter-related variables than would
simple pairwise correlations, facilitating interpretation of the brain
imaging data in the context of individual differences in major
dimensions of human behavior. We therefore expect these initial
findings to form the basis of a theoretical model that can be
directly tested in the future.

In conclusion, our findings extend current understandings of
the neural substrates of cognitive control by modeling the effect
of neuronal viability, intelligence, and personality, on dACC
activation. Our findings indicate that these major dimensions of
human individual differences are equally influential in predicting
dACC activation as transient, conflict-related phenomena. As
such, this work highlights the importance of considering these
enduring personal characteristics when mapping human brain–
behavior relationships. The model presented in the current study
provides an initial framework for examining dACC function in
healthy and clinical populations.
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