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Retroviral lineage studies have been widely used over the past decade to study retinal
development in vivo and in explant culture [Donovan S.L., Dyer, M.A., 2006. Preparation and
Square Wave Electroporation of Retinal Explant Cultures, Nature Protocols 1, 2710–2718;
Donovan, S.L., Schweers, B., Martins, R., Johnson D., Dyer, M.A., 2001. Compensation by
tumor suppressor genes during retinal development in mice and humans, BMC Biol 4 , 14;
Dyer M.A., Cepko, C.L., 2001. p27Kip1 and p57Kip2 regulate proliferation in distinct retinal
progenitor cell populations, J. of Neurosci 21, 4259–4271; Dyer M.A., Cepko, C.L., 2000. p57
(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the
mouse retina, Development 127, 3593–3605; Dyer, M.A., Livesey, F.J., Cepko C.L., Oliver, G.,
2003. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the
mammalian retina, Nat Genet 34, 53–58]. These approaches can provide important data on
the proliferation, cell fate specification, differentiation and survival of individual neurons
and glia derived from single infected retinal progenitor cells. In some experiments, these
parameters are compared in retinae from animals with different targeted deletions or
transgenes. Alternatively, the effect of ectopic expression of virally encoded transgenesmay
be studied at the level of individual retinal progenitor cells in vivo and in explant culture. One
of the challenges with interpreting retroviral lineage studies is determining the statistical
significance of differences in the proliferation, cell fate specification, differentiation of
survival of retinal progenitor cells between experimental and control samples. In this study,
we provide a clear step-by-step guide to the application of statistical methods to retroviral
lineage analyses actual data sets. We anticipate that this will serve as a guide for future
statistical analyses of retroviral lineage studies and will help to provide a uniform standard
in the field.
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1. Introduction

In vivo retroviral lineage studies in the developing retina were
first described by Turner and Cepko (1987). They developed a
replication-incompetent retroviral shuttle vector that could be
.org (S. Pounds), Micheal.
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used to produce retroviral stocks of sufficient titer for in vivo
retinal infection using newborn rat pups (Turner and Cepko,
1987). In the initial study, a β-galactosidase reporter gene was
used and subsequent versions of these viral vectors incor-
porated human placental alkaline phosphatase and nuclear
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β-galactosidase reporter genes (Dyer and Cepko, 2000; Dyer and
Cepko, 2001b; Fields-Berry et al., 1992) (Figs. 1A, B). Alkaline
phosphatase is ideally suited for visualizing the morphology of
infected retinal neurons and glia because it labels their
membrane (Figs. 1C, D) and nuclear β-galactosidase is ideally
suited for studies focused on retinal progenitor cell prolifera-
tion because the number of nuclei in clones of cells derived
from infected retinal progenitor cells can be readily identified
(Figs. 1E, F). These and similar techniques have been used over
the past decade to study retinal development in vivo and in
explant culture (Donovan and Dyer, 2006; Donovan et al., 2006).

The advantage of performing lineage studies in the
developing retina is that the daughter cells from individual
infected retinal progenitor cells do not migrate laterally so
clonal boundaries can be unambiguously identified (Fields-
Berry et al., 1992). More recent versions of these replication-
incompetent retroviral vectors have incorporated an IRES-
reporter gene configuration which allows investigators to
ectopically express different genes along with the reporter
gene (Fig. 1C) (Cepko et al., 1998; Furukawa et al., 1997). In this
Fig. 1 – Retroviral lineage analysis in vivo and in explant culture
vectors were developed that are suited for expressing a reporter g
along with a cDNA of interest. These vectors also encode a FLAG e
retroviral infection of the developing retina, P0 mouse pups rece
approximately 0.5–1.0×107 infectious particles per ml. 3 weeks l
isolated and stained for alkaline phosphatase expression as who
reveals the neuronal morphology of individually infected retinal
cells. (D) A rod photoreceptor labeled with alkaline phosphatase
proliferation in retinal explant cultures, we prefer the NIN-E retro
can be readily scored for the size of the clones. (F) An example is s
premature cell cycle exit and as a result smaller clones. Abbrevia
panel C and 10 μm in panel F.
way, researchers can study the effect of ectopic gene expres-
sion on retinal progenitor cell proliferation, cell fate specifi-
cation, differentiation or survival in vivo using clonal analysis.
Versions of these viral vectors that express Cre recombinase
have also been used to conditionally inactivate floxed genes in
single infected retinal progenitor cells and similarly analyze
the effects on proliferation and development of the daughter
cells (Zhang et al., 2004). Some investigators have used retro-
viruses to study the development of the retina in mice car-
rying targeted deletions of different genes (Dyer and Cepko,
2001a; Dyer et al., 2003). By combining retroviral-mediated
ectopic expression with mouse strains carrying floxed or
knockout alleles of genes believed to be important for retinal
development, this system provides a great deal of flexibility in
studying the genetic basis of retinal development.

In this article, we will discuss the statistical consideration
for experiments that fall into two different classes. The first
type of experiment utilizes different retroviral vectors in the
left and right eyes of mice with the same genetic background.
For example, one eye of a mouse carrying a floxed allele of a
. (A) A series of replication incompetent murine retroviral
ene such as alkaline phosphatase or nuclear β-galactosidase
pitope tag and a 6×His tag for protein analysis. (B) For in vivo

ive a subretinal injection of 0.5 μl of viral stock with a titer of
ater after retinal development is complete, the retinae are
le tissue samples (C). Cryosectioning of these stained retinae
cells that were derived from single infected retinal progenitor
is shown. (E, F) For analyzing retinal progenitor cell
virus that encodes nuclear β-galactosidase. Even large clones
hown of a virus that ectopically expresses p27which induces
tions: IRES, internal ribosome entry site. Scale bars: 1 mm in
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gene may receive a Cre-expressing retrovirus in the left eye
and a control virus lacking Cre recombinase in the right eye
(Fig. 1D). The other type of experiment applies the same virus
to both eyes in each mouse but the mice belong to different
groupswith different genetic backgrounds such as +/+, +/− and
−/− for a particular targeted gene (Fig. 1E). These two types of
experiments present a number of important challenges for the
data analysis. For each type of experiment, these questions
include how to summarize data and how to perform statistical
comparisons of the number of clones and the number of cells
per clone (i.e. clone size).We provide some statistical guidance
on these critical questions.

Here, we analyze one data set (Table 1) in which the two
eyes from eachmouse received different retroviral vectors and
a second data set (Table 2) in which the retinae from litter-
mateswith different genotypes received intraocular injections
of the same retroviral vector. The data used in this paper are
actual retroviral clonal data generated for an ongoing study on
the role of cell cycle regulators in retinal development. These
data sets were selected because they illustrate the importance
of using the proper statistical methods for retroviral clonal
analysis. We analyze both data sets with various statistical
strategies to illustrate good and poor approaches.

1.1. Statistical models for inference

Statistical inference procedures are based on statistical
models. In biology, model organisms are often used to help
Table 1 – Data collected by infecting each eye with a different

Mouse ID 1 2 3

Treatment Cont Exp Cont Exp Cont Exp C

No. cells

1 9 9 11 7 6 6
2 3 5 7 2 1 3
3 8 5 4 4 3 4
4 2 2 5 1 7
5 1 2 8 1 2 1
6 1 5 2 4 3 2
7 1 1 4 2 1 1
8 2 1 3 2 2 2
9 1 2
10 1 1 1
11 1 1
12
13
14 1
15 1 1
16
17 1 1
18 1
19 1
20 1
Summaries
No. clones 29 32 47 30 20 26
Mean size 4.28 3.88 4.70 4.90 4.55 3.54

Differences
No. clones 3 −17 6
Mean size −0.40 0.20 −1.01
understand human disease. For instance, various mouse
models of human cancers have been developed. Similarly,
statistical models are used in data analysis to help determine
whether observed trends are not attributable to chance alone.
Theapplicability of conclusionsdrawn frompreclinicalmodels
to humandisease depends uponhowwell the biologicalmodel
represents the human disease. Likewise, the validity of an
inference suggested by a specific data set depends on the
appropriateness of the statistical model and the analytic
methods that are employed. Therefore, the result of data
analysis (such as a p-value) should be interpreted in light of
whether the underlying model used in the analysis is
appropriate for the specific application at hand.

1.2. Assumptions used in classical statistical methods

One common element of the models underlying the classical
methods (t-test, analysis of variance, rank-sum test, Kruskal–
Wallis test) used to compare the means or medians of one vari-
able across two or more groups is an assumption that all obser-
vations are statistically independent. Biologists commonly use
the term “independent” tomean “non-deterministic.” For exam-
ple, a biologist may state that height and sex are independent
variables in humans. Generally, men tend to be taller than
women but some women are taller than some men. Hence, sex
does not determine height and a biologist may use the term
“independent” to indicate that the two variables are not deter-
ministically related. However the statistical definition of
virus

4 5 6 Total

ont Exp Cont Exp Cont Exp Cont Exp

6 1 5 1 6 8 43 32
5 1 4 7 3 4 23 22

1 1 4 3 20 17
5 3 4 2 3 1 15 20
7 1 2 1 19 7
1 1 1 1 2 1 10 14
4 2 3 2 1 1 14 9
3 2 1 2 2 14 8

4 1 8 1
2 1 1 1 1 6 3
1 1 3 1
1 1 1 1 3 1
3 2 5 0

0 1
1 3 0

0 0
1 1
1 0
1 0
0 1

38 10 30 18 25 22 189 138
5.55 5.00 5.97 4.44 4.52 3.32 4.97 4.10

−28 −12 −3 −51
−0.55 −1.52 −1.20 −0.87



Table 2 – Data collected in comparison of genotypic groups

Group Wild-type Knock-out Total

Mouse no. 1 2 3 1 2 3 4 Wild-type Knock-out

No. cells

1 8 14 34 77 54 17 54 56 202
2 6 15 26 54 37 18 30 47 139
3 8 8 13 36 23 9 23 29 91
4 6 2 21 30 17 7 12 29 66
5 6 8 17 34 23 10 26 31 93
6 2 6 10 22 18 2 9 18 51
7 3 5 11 19 19 5 8 19 51
8 3 7 8 15 19 7 11 18 52
9 1 2 10 12 8 4 6 13 30
10 1 2 10 14 3 6 5 13 28
11 4 1 3 2 2 2 0 8 6
12 2 4 5 6 1 3 2 11 12
13 1 0 3 3 2 2 1 4 8
14 0 0 5 3 5 3
15 2 3 4 4 2 6 9 12
16 1 0 1 2 5 2 7
17 0 0 1 1 0
18 0 1 0 1 0
19 1 1 2 0
20 1 1 1 4 1 1 7
21 1 1 1 4 1 1 7
22 1 1 4 0 6
23 1 1 1 4 2 5
24 1 1 4 1 5
25 4 0 4
26 1 0 1
27 1 1 2 0
28 1 1 0
29 0 0
30 0 0
41 1 1 2 0
51 1 1 0
70 1 1 0
Summaries
No. clones 59 81 188 335 232 124 195 328 886
Ave. size 8.71 6.05 5.93 4.63 4.48 9.01 4.26 46.46 5.12
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“independent” has a very precise probabilistic meaning and is
not synonymous with non-deterministic. Two variables are
statistically independent if knowledge of the value of one
variable provides no knowledge regarding the distribution of
the other variable in the population. Thus, height and sex in
humans are not statistically independent variables because
knowledge of sex gives some information regarding the dis-
tribution of height in the population. It is important to recognize
that a statistical method assuming independence may yield
misleading results if applied to a set of observations that do not
meet the statistical definition of independence.

The classical methods to compare means or medians of
one variable are different in other assumptions of their under-
lying models. The t-test and analysis of variance assume that
data values are normally distributed within each group.
Methods that assume a specific probability model for the
distribution of data (such as the normal distribution) are called
parametric methods. If the parametric model accurately
represents the actual distribution of the data files, then the
corresponding parametric method is usually the method of
choice.
However, in many applications, the data are not accurately
represented by the assumed distribution of parametric meth-
ods. In these cases, non-parametric methods such as the
signed-rank, rank-sum and Kruskal–Wallis tests that operate
on ranks of data values instead of the actual data values are
usually preferred. Thesemethods do not assume that the data
values follow a specific parametric model. Instead, non-
parametric methods assume that the distribution of data
values within each group has the same basic shape. Thus, the
non-parametric procedures are applicable in a wider variety of
settings than parametric methods, but may have less statis-
tical power when the parametric models are reasonable. We
have not found a parametric model that fits the retroviral
clonal data verywell (Fig. 2). Therefore, we recommend the use
of non-parametricmethods in the analysis of retroviral lineage
experiments.

1.3. The importance of variability

These experiments generate data at a number of levels. For
example, one can consider the clone size, the number and size



Fig. 2 – Poor fit of several commonly used statistical models.
(A) Histogram shows the number of clones of each size for
wild-type mouse number 1 in Table 2. (B) For several
statistical models, the difference between the fitted model
quantile and the empirical quantile of clone size is plotted
against the empirical quantile. The lack-of-fit is shown
because the differences do not fluctuate around y=0. The
models were fit using the maximum likelihood method
(Casella and Berger, 1990).
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of clones per eye, the number and size of clones per mouse,
and the number and size of clones per group. Data can vary
considerably at each level. However, it is most import to
consider the variability in measurements from mouse to
mouse. Otherwise, the results from one unusual mouse may
drive the results of the entire analysis. For example, one
mouse may be especially prone to infections or receive a
slightly greater multiplicity of infection (MOI) due to differ-
ences in viral titer or injection efficiency. An analysis that
ignores such mouse-to-mouse variation may have its results
determined entirely by such an unusual mouse. Thus, it is
critical for statistical analysis of clonal data to include the
appropriate number of animals to reduce the contribution of
individual mice that may be outliers due to these types of
variables. Additionally, it is important to include the appro-
priate number of animals in each group to determine whether
any differences between groups could be attributed to chance
given the observed degree of variability from mouse to mouse
within the groups.

1.4. Implications for the analysis of clonal data

Clonal data produce data at a number of levels including the
number of clones per eye and the clone sizes. There are many
ways to summarize these data to make comparisons between
the groups. The primary question for analysis is how to sum-
marize and compare these data in such a way that the implicit
underlying statistical models are reasonable for the specific
experiment. Therefore, we now describe and comment on
appropriate and inappropriate analysis approaches for each
type of experiment.
For experiments that test the same vector in animals of
different genotypes, one approach would be to average the
clone sizes across all eyes belonging to one group and average
the clone sizes across all eyes for the other group and simply
note which group has a greater average. This analysis can be
viewed as descriptive but not inferential. The analysis does not
account for variation of the mice or have a clearly defined
underlying model of chance to determine statistical signifi-
cance. Fromapractical perspective, by ignoring thevariationof
mice, the result could be driven by one mouse with unusually
large or small clones. Another approach would be to apply a t-
test to the individual clone size observations. This approach is
flawedbecause theunderlying statisticalmodel is basedon the
unrealistic assumption that all clone sizes are independent.
The assumption is unrealistic because clones within the same
animal are not statistically independent. For example, knowl-
edgeof the size of one clone in amousewill likely provide some
information about the distribution of the sizes of the other
clones within the same mouse or eye. Observations from the
same animal are statistically dependent because the environ-
ment of the clones with the same eye or animal is influenced
by the same immune system, light exposure, vasculature, diet,
etc… Additionally, subtle variations in the preparation and
administration of the injection could possibly contribute to
eye-to-eye variation in characteristics of clone size distribu-
tions. For example, if the reactive gliosis induced by the
puncture in the retina to perform the subretinal injection is
more extensive in one eye as compared to another eye this
could influence the clonal data in a dependentmanner for that
eye. Also, the actual MOI delivered from the injection could
vary from animal to animal. Thus, it is questionable to assume
that observations from the same animal are statistically
independent.

For experiments that inject two different vectors into the
eyes of a set of animals with the same genotype, one could
also envision averaging clone size across all eyes receiving
one vector and comparing it to the average of clone size
across all eyes receiving the other vector. This analysis cannot
be considered inferential for reasons similar to those men-
tioned above (e.g., no underlying model and ignores mouse-
to-mouse variation). Similarly, applying a t-test to the
individual clone sizes is also invalid. Another approach
would be to compute eye-level summaries such as the
average size and then compare them with the two-sample t-
test or rank-sum test. These tests assume that all observa-
tions are independent and thus the analysis would ignore the
dependency of eye-level summaries computed from the same
mouse.

The assumption of independence implicit in classical
statistical methods is usually reasonable when each data
value represents a distinct animal. Thus, analyses using
classical methods should be applied to data sets with each
animal represented by one data value. This can be accom-
plished by computing a meaningful summary data value for
each animal. We describe a simple and useful way to perform
such an analysis for each type of experiment below.

In experiments that use the same virus in both eyes of the
animal, one could compute the average clone size for each
animal and thenuse the rank-sum test to compare these values
across genotypes. The lack-of-fit of the normal model to the



Table 3 – Minimum possible p-value for non-parametric
methods

Apply one treatment
to each eye in each
mouse

Compare two genotypic
groups of mice

N Minimum p-value Per group N a Minimum p-value

2 0.5000 2 0.3333
3 0.2500 3 0.1333
4 0.1250 4 0.0714
5 0.0625 5 0.0444
6 0.0313 6 0.0303
7 0.0156 7 0.0220
8 0.0078 8 0.0167
9 0.0039 9 0.0131
10 0.0020 10 0.0105

a Calculations assume that each group has the same sample size.
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individual clone sizes (Fig. 2) makes us concerned that the
normality assumption of the t-test and analysis of variance
(ANOVA) is unreasonable. (Theoretically, the central limit theo-
rem implies that the average clone size should be normally
distributed if a very large number of clones are observed. How-
ever, in practice, it may be unclear how many clones must be
observed for the central limit theorem to justify use of the t-test
or ANOVA in the analysis.) Therefore, we recommend that the
rank-based methods be used to compare the animal-specific
average clone sizes across genotypes.

In experiments that inject a different virus into each eye,
one can compute the average clone size for each eye and then
use the between-eye difference as a summary measure for
each animal. Then, one can use the signed-rank test to deter-
mine whether the mean or median of these between-eye
differences is significantly different from zero. We recom-
mend the use of the signed-rank test over the paired t-test due
to previously mentioned concerns regarding the accuracy of
the normal distribution as a model for the data.
Table 4 – Sample size required to achieve 80% statistical
power

o

Type of experiment Comparison of
two vectors

Comparison of
two genotypes

Ratio of difference to
standard deviation

Total no. of
subjectsa

No. subjects per
genotypea

0.5 61 69
1.0 17 20
1.5 9 11
2.0 6 8
2.5 6 6
3.0 6 6

aCalculations are based on using the sign test for vector
comparisons, the rank-sum test for genotype comparisons, and
assume that mouse-level data are normally distributed.
2. Results

To illustrate the principles described above, we have collected
two data sets that represent the two types of experiments
shown in Fig. 1. First we consider various approaches to
perform data analysis for infection of left and right eyes with a
different retroviral vector (Table 1). The bottom of the table
shows the total for the number of clones per eye for the control
retrovirus and the experimental retrovirus (e.g. Cre-expressing
virus). Examining those totals without considering mouse-
level summaries might lead one to infer that the experimental
retrovirus is associated with a reduction in the number of
clones per eye and a reduction in the number of cells per clone.
The total number of clones across eyeswith the control virus is
37% greater than that among eyeswith the experimental virus.
When ignoringmouse-to-mouse variability, the average clone
size differs by almost one cell between experimental and
control virus.When applied to individual clone sizes, the t-test
indicates that the average clone size differs significantly
between the two viruses (t=2.13 with 319 degrees of freedom,
p=0.03).
However, when carefully considering these variables
within each individual mouse, this inference is not so readily
apparent. In 2 of the 6 mice (animal numbers 1 and 3), the eye
receiving the experimental retrovirus had a larger number of
clones than the eye receiving the control retrovirus. In one
mouse (animal number 2), the clones in the experimental
virus infected eye had a larger number of cells per clone on
average than did the clones in the contralateral eye with the
control retrovirus. We computed the within-mouse differ-
ence between the control and experimental eyes in each
mouse and applied the signed-rank test to those differences.
Using this approach, we found did not find statistically
significant evidence that the experimental retrovirus had any
effect on the total number of clones per eye (p=0.25). Also, we
found that the difference in average clone size between the
two vectors was not as significant as previously indicated
(p=0.063).

Next, we considered data from the other type of experi-
ment in which mice with different genotypes received the
same retrovirus in each eye (Table 2). The summary data
indicate that there were 886 clones in the knockout mice and
only 328 in wild-type mice. In our experience, most experi-
ments that utilize littermates with different genotypes and
retroviral injection show this type of asymmetric data
distribution. It may reflect the Mendelian ratio of different
genotypes or some other secondary consequence of differ-
ences in viability of one genotype over another. The average
clone sizewas 5.12 for the knockoutmice and 6.46 for thewild-
type mice. One might be tempted to conclude that these
differences are statistically significant. After all, 886 is almost
3 times greater than 328 and 6.46 is more than 1 cell larger
than 5.12. When applied to the sizes of the individual clones,
the t-test finds a very significant difference between the
average clone size of knockout mice and that of wild-type
mice (t=3.7 with 443 degrees of freedom, p=0.002).

However, examining the mouse-specific totals and
averages again suggests that these results may not be
significant. In particular, a knockoutmouse (knockout number
3) had the largest average clone size (9.01 cells per clone) across
the entire experiment, thus raising doubts about whether the
wild-type animals really tend to have a larger clone size.
Additionally, one of the wild-type animals had more clones
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than one of the knockout animals (wild-type 3 compared to
knockout 3) making it less clear whether the knockout mice
tend to have a larger number of clones per eye. To compare the
clone number and clone size of the two groups, we applied the
rank-sum test to the mouse-specific average clone sizes and
number of clones. We do not find significant evidence of a
difference between wild-type and knockout mice in terms of
the median number of clones per eye (p=0.12) or the median
clone size (p=0.40).
3. Discussion

Retroviral clonal experiments in the developing retina pro-
duces detailed data at a number of levels. It is imperative to
consider whether the underlying assumptions of themethods
used in a statistical analysis are reasonable for this applica-
tion. In particular, it is essential to account for mouse-to-
mouse variation and to not treat observations from the same
mouse as statistically independent observations.We note that
applying classical non-parametric procedures to mouse-level
summary values satisfy both of these requirements. With this
approach, it is the number of mice instead of the number of
clones that determines whether the experiment has adequate
statistical power to identify meaningful effects. We recom-
mend the Rice Virtual Lab in Statistics (http://onlinestatbook.
com/rvls.html) as an additional resource for further statistical
education.

Knowledge of how the statistical analysis is performed can
assist in designing experiments to more effectively use labo-
ratory resources andminimize thenumberof animals required
for each experiment. In particular, it is important to note that
the sample size for the statistical analysis is the number of
mice, not the number of eyes or the number of clones. Thus, it
is important to include enoughmice in the experiment so that
it is possible to have a statistically significant result. As
mentioned above, we recommend non-parametric procedures
be used in the analysis of these experiments. Therefore, it is
important to include enough animals in the experiment to
ensure that the non-parametric procedure used will have
adequate statistical power to detect the biologically relevant
effects.

Non-parametric procedures have a mathematical lower
boundary for the p-value that depends on the sample size
(Table 3). Thus the experiment should include at least asmany
animals as required to make it mathematically possible to
achieve the desired level of statistical significance. However, it
is important to realize that having a sample size adequate to
make it possible to achieve statistical significance does not
necessarily mean that it is probable that statistical signifi-
cance will be achieved. Experiments should be planned to
have adequate power to detect practically meaningful effect
sizes.

The smallest sample size that gives adequate statistical
power depends on the ratio of the difference to be detected to
the standard deviation of the mouse-level summary data in
the population. In Table 4, we use an approximation based
on the normal distribution to estimate the sample size
required to have 80% probability to yield a p-value less than
0.05. It is clear that small sample sizes can detect only the
largest effect sizes. For example, in Table 1, the standard
deviation of the intra-mouse differences of average clone size
is 0.6. Thus, to have an 80% probability to detect differences
in average clone size of 0.6 cells, 1.2 cells, 1.8 cells, and 2.4
cells as statistically significant at the p=0.05 level requires
roughly 61, 17, 9, and 6 mice respectively. In Table 2, the
standard deviation of average clone size among wild-type
mice is 2.3. Thus, to have an 80% probability to detect
differences in average clone size of 2.3, 4.6, 6.9, and 9.2 cells
as statistically significant at p=0.05 requires roughly 69, 20,
11, and 8 mice of each genotype (wild-type and knockout),
respectively. Certainly, improvements in experimental tech-
niques that reduce the standard deviation can potentially
result in dramatic savings in terms of the number of mice
that are required. The accuracy of these sample size
calculations depends on how well the normal distribution
represents the actual distribution of the mouse-level sum-
mary data. Nevertheless, we believe these estimates may be
of practical utility until a data set with a very large number of
mice is available and can be used to compute more accurate
sample size estimates without assuming that the data are
normally distributed.
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