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Increase in number of the gap junctions between satellite neuroglial
cells during lifetime: An ultrastructural study in rabbit spinal

ganglia from youth to extremely advanced age
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Abstract

This study investigated quantitative aspects of the gap junctions between satellite neuroglial cells that envelope the spinal ganglion neurons
in rabbits aged 1 year (young), 3.6 years (adult), 6.7 years (old), and 8.8 years (very old). Both the total number of gap junctions present in
30,000�m2 of surface area occupied by perineuronal satellite cells, and the density of these junctions increased throughout life, including the
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xtremely advanced age. By contrast, the mean length of individual gap junctions did not change with age. Thus, the junctional sy
rovides morphological support for the metabolic cooperation between satellite cells in rabbit spinal ganglia becomes more exten
ge of the animal increases. These results support the hypothesis that the gap junctions between perineuronal satellite cells are in
patial buffering of extracellular K+ and in neuroprotection.
2005 Elsevier Inc. All rights reserved.
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. Introduction

Neuroglial cells were long believed to simply provide
tructural support for neurons. However, evidence has now
ccumulated to show that these cells closely and actively

nteract with neurons in most functions of the nervous sys-
em (e.g. see[17]). As a result, interest in neuroglial cells and
heir interactions with neurons has greatly increased.

We have been studying the neuroglial cells that envelope
he neurons in sensory ganglia for many years (for reviews,
ee[26,27]). These cells are usually called satellite cells and
ill be referred to as such in what follows. The satellite cells
omprising a given perineuronal sheath are coupled to each
ther via gap junctions[11,19,25,26,28,29]. Gap junctions
re important because they make possible metabolic cooper-
tion between cells (e.g. see[2,39]) which in turn enhances
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the efficiency of satellite cells in their role of meeting
demands of the neurons with which they are associated

Information on age-related changes of the gap junc
between perineuronal satellite cells is still incomplete. In
study, we report our findings on gap junctions in the sp
ganglia of rabbits from the young to the extremely advan
age.

2. Materials and methods

The present study was carried out on rabbits (Orycto-
lagus cuniculus) of both sexes. Rabbits aged 1 year (th
animals, 3.4–3.5 kg body weight), 3.6 years (three anim
3.6–3.8 kg body weight), 6.7 years (three animals, 4.0–4
body weight), and 8.8 years (three animals, 4.2–4.5 kg
weight) were used. The rabbits were cared for accordin
the European Community Council Directive (86/609/EE
on the use of laboratory animals. The dates of birth o
animals were documented; all had been raised by a spe
361-9230/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
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rabbit breeder with particular attention to hygiene and regular
veterinary inspections and had been fed an unrestricted diet.
Because the mean life span of the normal healthyOryctola-
gusis approximately 5.6 years[12] and the maximal life span
is approximately 8 years[38], the 1-year-old rabbits were
young, the 3.6-year-old rabbits were adult, the 6.7-year-old
rabbits were old, and the 8.8-year-old animals were very old.

The animals were perfused transcardially with a solution
containing 2% formaldehyde and 2% glutaraldehyde in 0.1 M
sodium cacodylate buffer (pH 7.3) under deep anaesthesia
with Nembutal i.p. (80 mg/kg). After fixation for about 3 h,
the thoracic spinal ganglia were removed, washed in cacody-
late buffer (0.2 M, pH 7.3) for 2 h and then postfixed on ice
for 1.5 h in 2% OsO4, buffered with 0.1 M sodium cacody-
late. The specimens were washed in distilled water, stained
with 2% aqueous uranyl acetate, dehydrated in alcohol, and
embedded in Epon–Araldite resin.

As even during optimum fixation, dehydration and embed-
ding there is some degree of cellular swelling or shrinkage,
to study the surface area occupied by perineuronal satellite
cells and the length of each gap junction a basic assumption
was that any artifactual surface area and length changes were
about the same in all four age groups. This assumption seems
justified by the fact that all the ganglia used for the study sat-
isfied the following conditions: (a) the interval between the
nerve cell body and the enveloping satellite cell sheath was of
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tify differences between individual age groups. Values were
expressed as means± S.E.M. Both for ANOVA and post hoc
Tukey test, differences were considered significant forP-
values < 0.01.

3. Results

The morphological relationships between nerve cell body
and satellite cells did not change with advancing age. Gap
junctions were never observed at the neuron-satellite cell
boundary, but in all age groups occurred between the satel-
lite cells comprising a single perineuronal sheath (Fig. 1).
As described in the literature (e.g. see[4,30]), at these junc-
tions, the normal intercellular space was abruptly reduced to
about 2 nm. The width of this gap remained constant through-
out the junctional area. Most gap junctions occurred singly;
occasionally they were found close to adhering junctions.
Sometimes mitochondria were close to gap junctions (Fig. 1),
but it was not clear whether this association had some func-
tional significance or was due to chance.

The mean densities of gap junctions (numbers of junctions
per unit of surface area (100�m2) occupied by perineuronal
satellite cells) did not differ significantly between the three
rabbits of each age group. In each age group we examined a
total surface area occupied by perineuronal satellite cells of
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niform width; (b) the clefts between the satellite cells w
f constant width; (c) neither nerve cell bodies nor perin
onal satellite cells showed signs of swelling or shrinka
d) neither empty areas nor clumping were observed in
onnective tissue space surrounding the satellite cell sh
verall, 96 ganglia (8 for each animal) were used for
tudy.

Isotropic uniform random (IUR) sections were obtai
ollowing the orientator procedure[20]. For each ganglion

single IUR thin section (about 0.15 mm× 0.10 mm) wa
hotographed under the electron microscope. Each se
as photographed in its entirety at a magnification of 80×
nd the negatives printed to a final magnification of 32,00×.
montage of 60–70 prints was necessary to reconstruct

ection. The following were determined in each section
he total number of gap junctions occurring between peri
onal satellite cells; (2) the length of each gap junction
he total surface area occupied by perineuronal satellite
his area was measured with the aid of a digitizing ta
onnected to a computer. Subsequently, the mean num
ap junctions per unit of surface area (100�m2) occupied by
atellite cells was calculated for each rabbit (eight gang
he mean length of gap junctions for each rabbit was
alculated.

The values obtained for the three rabbits in each age g
ere compared by one-way ANOVA to establish whe

hey differed significantly. Subsequently, the values obta
or each age group were compared by one-way ANO

hen ANOVA revealed significant differences, the p
oc Tukey test for multiple comparisons was used to i
.

0,000�m2. Both the total number of gap junctions found
his area, and the density of these junctions increased pro
ively with age.Fig. 2A shows the density of gap junctio
n the four age groups. The differences between the de
f gap junctions in very old rabbits and those in young, a
nd old animals were significant (P< 0.01, in all cases).

The mean length of individual gap junctions did not di
etween the three rabbits of each age group, or betwee

our age groups (Fig. 2B).

. Discussion

In the rabbit, both the total number of gap junctions pre
n a surface area of 30,000�m2 and the mean density of the
unctions increased progressively throughout life, includ
he extremely advanced age. By contrast, the mean s
ndividual gap junctions did not change with age. These
ngs indicate that the total area of this system of junct
ncreases throughout life.

To our knowledge, the relationships between aging
umber or total area of gap junctions, studied in the elec
icroscope using strict criteria for identifying these ju

ions [4,30], have not been investigated in other region
he nervous system. However, the literature contains re
n the relationships between aging and gap junctions
re based on other approaches. For example, Cotrina

7] revealed connexins immunohistochemically and obse
hat the coupling between astrocytes in the mouse brai
ot change significantly with age. Further studies are req
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Fig. 1. Electron micrograph showing a gap junction (arrow) within a perineuronal satellite cell sheath (sc); ct: connective tissue, N: nerve cell body of a sensory
neuron. The asterisk indicates a mitochondrion close to the gap junction. The latter is shown at greater enlargement in the inset. Spinal ganglion from a very
old rabbit (8.8 years). Scale bar: 0.5�m. Inset:scale bar: 0.25�m.

to determine whether the number and total area of gap junc-
tions, and gap junction coupling change with age in different
species and in different regions of the nervous system. Stud-
ies on relationships between age and density, and age and size
of gap junctions have been carried out in pure fibroblast cul-
tures[16]. The authors reported that gap junctions were more
sparsely distributed and distinctly smaller in old than young
cultures. Our findings, that gap junctions are more numerous
in very advanced age and that the mean size of individual
gap junctions remains constant with age, are in sharp con-
trast to these in vitro findings. This discrepancy could be due
to the difference in cell type or to differences between pure
cell cultures and ganglia. The cultured fibroblasts of Kelley
et al.[16] were only in contact with each other and thus gap
junction formation between them depended exclusively on
their intrinsic properties. By contrast, in the ganglia we stud-
ied, satellite cells were under the influence of the sensory
neurons they surrounded. It is known, for example, that cen-
tral nervous system neurons may influence the formation of
astrocyte gap junctions (for review, see[32]).

With regard to the functions of the gap junctions between
satellite cells, the following hypotheses seem the most plausi-
ble. (1) K+ concentration increases in the perineuronal envi-
ronment as a result of neuronal activity and a rapid removal of
this excess K+ is required to maintain neuronal excitability
(for review, see[33]). It is widely accepted that astrocytes
play a major role in the spatial buffering of extracellular
K+ within the central nervous system (e.g. see[8,13,18,24]).
Satellite cells are believed to perform the same function in
sensory and autonomic ganglia (for reviews, see[26,27]).
The satellite cells closest to the enclosed neuron may take
up the extracellular K+ into their cytoplasm and redistribute
it to the other satellite cells within the sheath. K+ would
eventually be discharged into the connective tissue space
or returned to the neuron. Studies on the central nervous
system have shown that gap junctions between neuroglial
cells improve the buffering capacity of these cells (e.g. see
[14,22]). It is likely that the gap junctions between satellite
cells in sensory ganglia have the same function. (2) Neurons
cultured in vitro are less vulnerable to various types of insult
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Fig. 2. (A) number (No) of gap junctions per unit of surface area (100�m2) of perineuronal satellite cells in rabbits aged 1 year (young, Y), 3.6 years (adult, A),
6.7 years (old, O), and 8.8 years (very old, VO). Values are means± S.E.M.: Y = 0.158± 0.022, A = 0.224± 0.027, O = 0.320± 0.038, and VO = 0.598± 0.073.
The differences between Y and A, and between A and O are not significant (P< 0.01, Tukey test), whereas the differences between Y and O, between Y
and VO, between A and VO, and between O and VO are significant (P< 0.01, Tukey test). (B) length (L) of individual gap junctions in perineuronal satellite
cells of rabbits aged 1 year (young, Y), 3.6 years (adult, A), 6.7 years (old, O), and 8.8 years (very old, VO). Values are means± S.E.M.: Y = 0.445± 0.075,
A = 0.487± 0.076, O = 0.460± 0.082, and VO = 0.454± 0.049. These values did not differ significantly (ANOVA).

if they are cocultured with astrocytes (e.g. see[21]). This
and other data indicate that astrocytes play a neuroprotective
role. In sensory ganglia, each neuron is usually enveloped
by an individual satellite cell sheath whose outer contour
faces the interstitial connective tissue containing capillaries.
Thus, all substances from the blood must pass through the
satellite cell sheath to reach the neuron. Since neurons in sen-
sory ganglia lack the protection provided to central nervous
system neurons by the blood–brain barrier, only the satellite
cell sheath controls the traffic of substances to the ganglionic
neuron. Therefore, the satellite cells in these ganglia are well
placed to perform a neuroprotective function. Recent findings
[37] support this hypothesis. That gap junctions participate
in the neuroprotection carried out by astrocytes, is indicated
by the finding that the blockade of gap junctional commu-
nication between these cells results in a markedly enhanced
neuronal vulnerability to oxidative damage[3]. Gap junctions
between perineuronal satellite cells are likely to have a similar
role.

The permeability of gap junctions in non-nervous tissues
[9,34,36], in the central nervous system[31], and in spinal
ganglia[15] is regulated by a number of conditions. In the
absence of data on the gap junction permeability in satel-
lite cells of various ages, it is not clear what influence the
age changes in number and density of gap junctions have
on the functions of perineuronal satellite cells. Nevertheless,
o pro-
v tion

between satellite cells in rabbit spinal ganglia becomes more
extensive with advancing age.

Gap junctions consist of connexins, a family of closely
related proteins, whose members are identified according to
their predicted molecular mass in kDa (for review, see[1]).
Several connexins have been detected in the nervous sys-
tem. Among neuroglial cells, the vast majority of astrocytes
express connexin43, oligodendrocytes express mainly con-
nexin32, while Schwann cells express a variety of connexins
but mainly 32 and 46 (for reviews, see[5,8,10,23,35,39]).
However, little information is available on the connexins
expressed by satellite cells in sensory ganglia. The only study
we are aware of was carried out on the rat petrosal ganglion,
where immunostaining for connexin43 was present in satel-
lite cells enveloping large neurons, but absent from those
enveloping other neurons[6]. Future studies should aim to
establish: (1) what connexins are expressed by perineuronal
satellite cells in spinal ganglia, and (2) whether these con-
nexins remain the same throughout life or change with age.
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