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Abstract

The purpose of the present study was to examine the oral drug absorption predictability of the theoretical passive absorp-
tion model (TPAM). As chemical descriptors of drugs, the octanol/buffer distribution coefficient at pH 6.0 (Dow), intrinsic
octanol–water partition coefficient (Pow), pKa, and molecular weight (MW) were calculated from the chemical structure. Total
passive intestinal membrane permeation consists of transcellular, paracellular and unstirred water layer (UWL) permeation.
Transcellular permeation was modeled based on the pH-partition hypothesis with correction for cationic species permeation,
and the independent variables wereDow,Pow, and pKa. Paracellular permeation was modeled as a size-restricted diffusion within
a negative electrostatic field-of-force, and the independent variables were MW and pKa. UWL permeation was modeled as dif-
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fusion across a water layer, and the independent variable was MW. Cationic species permeation in the transcellular p
model and the effect of a negative electric field-of-force in the paracellular permeation model were the extensions to the
TPAM. The coefficients of the paracellular and UWL permeation models were taken from the literature. A data se
compounds with observed values of Fa% (the fraction of a dose absorbed in humans) taken from the literature was
to optimize four fitting coefficients in the transcellular permeation model. The TPAM predicted Fa%, with root mean
errors of 15–21% and a correlation coefficient (CC) of 0.78–0.88. In addition, the TPAM predicted the effective human i
membrane permeability with a CC of 0.67–0.77, as well as the contribution of paracellular permeation. The TPAM w
to predict oral absorption from the chemical structure of drugs with adequate predictability for usage in drug discover
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1. Introduction

In the recent drug discovery and development pro-
cess, in silico prediction of absorption, metabolism,
distribution, and excretion (ADME) is recognized as a
key technique (van de Waterbeemd and Gifford, 2003).
Among ADME properties, oral absorption has been
most intensively investigated for in silico prediction. As
an oral absorption parameter, the fraction of a dose ab-
sorbed in humans (Fa%), the effective intestinal mem-
brane permeability in humans (Peff), Caco-2 perme-
ability, etc., have been studied as targets for in silico
prediction (Wessel et al., 1998; Winiwarter et al., 1998;
Zhao et al., 2001; Yamashita et al., 2002). Oral absorp-
tion from a solid dosage is determined by the disso-
lution rate, the solubility, and the intestinal membrane
permeability (Yu and Amidon, 1999). Intestinal mem-
brane permeation consists of transcellular, paracellular,
and unstirred water layer (UWL) permeation. Most of
the previous in silico prediction studies scrambled these
absorption processes, and the contribution of each pro-
cess cannot be predicted. In addition, the previous in
silico methods often used descriptors that are not easy
to translate into better drug design.

Previously, the theoretical passive absorption model
(TPAM) had been proposed for describing passive in-
testinal membrane permeation (Camenisch et al., 1996,
1998). The TPAM consists of three partial models, i.e.,
the transcellular, paracellular and UWL permeation
models. The TPAM is beneficial for qualitatively com-
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equations (Collander, 1950, 1951; Camenisch et al.,
1998).

Ptrans= a · Dα
ow (1)

To reflect the pH at the intestinal epithelial mem-
brane surface, theDow at pH 6.0 was employed
(Maxwell et al., 1968). The pragmatic reason for using
the 1-octanol/buffer system is its high publicity in the
drug discovery process (Kerns and Di, 2003). Further-
more, various computational prediction systems have
been developed for 1-octanol/buffer system (van de
Waterbeemd and Gifford, 2003). Because the intrinsic
octanol/water partition coefficient of ionized species
is negligibly small, Eq.(1) represents the permeation
of non-ionized species (pH-partition hypothesis)
(Hogben et al., 1959). However, recently, the perme-
ability of basic compounds was found to be larger than
expected from theDow (Sugano et al., 2001). It was
suggested that cationic species of basic compounds
can permeate the negatively charged membrane with
the aid of anionic lipids in the membrane, depending
on the lipophilicity of the cationic species (Neubert
et al., 1988; Ozaki et al., 2000; Sugano et al., 2001,
2004). The intestinal epithelial membrane contains
anionic lipids (Proulx, 1991; Lipka et al., 1991).
Therefore, Eq.(1) was extended for the permeability
of mono-cationic species of basic compounds. The
lipophilicity of the cationic species may be scaled
by the octanol–water partition coefficient (Pow) of
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oint of both the physiology of the intestine and
hemical structure of drugs. However, the predicta
ty of the TPAM for the oral absorption in humans h
ot been examined. The purpose of the present s
as to quantitatively examine the oral drug absorp
redictability of the TPAM.

. Calculation

.1. Transcellular permeation model

Passive transcellular permeation is diffusion ac
lipid bilayer. Therefore, the permeability depe

n the lipophilicity of the permeant. In the previo
PAM, the passive transcellular permeability (Ptrans)
as expressed by the 1-octanol/buffer distribu
oefficient (Dow), with the help of so-called Colland
neutral species, with the help of Collander equat
(Collander, 1950, 1951). Eq.(1) was extended to:

Ptrans= a · Dα
ow + b · f+1 · P

β
ow (2)

where f+1 is the fraction of mono-cationic specie
Thef+1 was calculated from the pKa. Coefficientsa, b,
α, andβ are fitting parameters to be optimized in
present study.

2.2. Paracellular permeation model

Paracellular permeation is diffusion through
negatively charged tight junction between
intestinal epithelial cells, and was modeled by a s
restricted diffusion within a negative electrostatic fie
of-force (Adson et al., 1994, 1995; Sugano et al., 20
2003). Small and cationic species can easily perm
the paracellular pathway, whereas large and an
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species permeates little. As a molecular-sieving func-
tion, the Renkin function (F(B), Eq.(4)) was employed.
In addition, an electric field-of-force function (E(Z),
Eq.(6)) was employed, as an extension to the previous
TPAM (Camenisch et al., 1996, 1998). The paracellular
permeability (Ppara) is expressed as:

Ppara= A · 1

MW1/3
· F (B)


f0 +

z(z�=0)∑
fz · E(z)




(3)

F (B) = (1 − B)2(1 − 2.104· B + 2.09 · B3

−0.95 · B5) (4)

B = MW1/3

RMW
(5)

E(Z) = C · z

1 − e−C·z (6)

wherez is the molecular charge,fz the fraction of each
charged species, MW the molecular weight, andRMW
is the apparent pore size of the paracellular pathway
based on a MW scale. Previously, molecular volume
was employed as a parameter of molecular size. How-
ever, in the present study, MW was employed, because
MW is more public in the drug discovery process, and
easier to calculate. The replacement of molecular vol-
ume to MW did not affect the predictability of thePpara
model (data not shown).RMW, A, andC were previ-
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2.4. Total passive intestinal membrane
permeability and Fa%

It may be assumed that total resistance to permeation
(Rtot) is the sum of the resistances of the membrane
(Rm) and UWL (RUWL) on the membrane:

Rtot = Rm + RUWL (8)

Resistance is the inverse of permeability. There-
fore, the total passive permeability across the intestinal
membrane (Ptot) is expressed by the membrane perme-
ability (Pm) andPUWL (Camenisch et al., 1996; Pade
and Stavchansky, 1997).

1

Ptot
= 1

Pm
+ 1

PUWL
(9)

Pm is the sum ofPtrans andPpara. Therefore,Ptot is
converted to:

1

Ptot
= 1

Ptrans+ Ppara
+ 1

PUWL
(10)

The contributions of the transcellular pathway per-
meability of neutral species (Transn%), mono-cationic
species (Transc%), and the paracellular pathway per-
meability (Para%) toPm are expressed as:

Transn% = a · Dα
ow

Pm
× 100 (11)
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usly optimized utilizing Fa% and artificial membra
ermeability data, as previously reported (Sugano
t al., 2002). RMW = 8.46, A= 2.41× 10−2, and
= 2.39 were used in the present study.

.3. Unstirred water layer permeation model

The UWL is adjacent to the intestinal epithe
embrane. UWL permeation was modeled as a si
iffusion process in a water layer. The UWL perm
bility (PUWL) is reciprocal to MW1/3 (Larhed et al.
997). Previously, thePeff of glucose, the permeatio
f which is rate-limited by the UWL, was reported to
0× 10−4 cm/s (Lennern̈as, 1998). MW of glucose is
80. Therefore, thePUWL of each drug is expressed

UWL = 10× 10−4
(

180

MW

)1/3

(7)
ransc% =
Pm

× 100 (12)

ara%= Ppara

Pm
× 100 (13)

The contribution of the UWL to the total resistan
s expressed as:

UWL% = RUWL

Rtot
× 100=

(
1 − Ptot

Pm

)
× 100 (14)

When we employ a plug-flow model as an abs
ion model from the intestinal tube (Yu and Amidon
999), the calculated Fa% is expressed as:

a%calc = (1 − exp(−Gz · Ptot)) × 100 (15)

here Gz is the lump constant of available inte
al surface area and transit time. In the pre
tudy, Gz = 1.39× 104 was employed to arrange t
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scale identical betweenPtot andPeff (cm/s) (Yu and
Amidon, 1999).

2.5. Human intestinal absorption data and
physicochemical parameters

Three hundred forty three observed Fa% values
(Fa%obs) were collected from literature compilations,
and stored in the in-house database (Noel, 1979;
Dressman et al., 1985; Taylor et al., 1985; Artursson
and Karlsson, 1991; Chong et al., 1996; Walter et al.,
1996; Palm et al., 1997; Yee, 1997; Chiou and Barve,
1998; Chiou et al., 2000; McEvoy, 1998; Yazdanian
et al., 1998; Balon et al., 1999; Irvine et al., 1999;
Wessel et al., 1998; Winiwarter et al., 1998;
Karlsson et al., 1999; Wohnsland and Faller, 2001;
Zhao et al., 2001). Most of these literatures were in
silico–in vitro correlation or in vitro–in vivo corre-
lation studies. Therefore, we assumed that Fa% data
from these literatures compilations were also suitable
for the purpose of the present study. In addition, drugs
which undergo active transport (both influx and ef-
flux), intestinal metabolism, and solubility-limited ab-
sorption were excluded from the analysis (Adair and
McElnay, 1987; Adam and Timmler, 1982; Avdeef,
2001; Behrens et al., 2001; Chiou et al., 2001; Chong
et al., 1996; Dantzig et al., 1992; Eneroth et al., 2001;
Fraga Fuentes et al., 1997; Groen et al., 1988; Hashida,
1995; Hochman et al., 2001; Holdiness, 1984; Kim
et al., 1998; Koup et al., 1988; Liang et al.,
2 laos
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ortho-carbonyl phenol fragment, 0.55 per fragment was
added to logPow and logDow (Pallas was found to un-
derestimate these drug’s logPow at an average of 0.55
(data not shown)).

2.6. Optimization of coefficients

Coefficientsa,b,α, andβ in the transcellular perme-
ation model (Eq.(2)) were optimized by fitting Eq.(15)
to Fa%obs values using the least square method. Eqs.
(2)–(7)were converted toPtot by inserting into Eq.(10),
and Eq.(10) was converted to Fa% by inserting into
Eq.(15). The sum of squares of the difference between
Fa%calc and Fa%obs (Fa%diff ) was minimized using
the Quasi-Newton method (EXCEL 2000, Microsoft,
Redmont, WA). After preliminary optimization of the
prediction scheme, large outliers are additionally sur-
veyed by literature and excluded if they were reported
to undergo active transport, intestinal metabolism, and
solubility-limited absorption.

3. Results and discussion

Previously,Wenlock et al. (2003)reported that the
mean logDow (pH 7.4) of the marketed oral drugs was
1.0 and the standard deviation was 3.4. Distribution of
logDow (pH 7.4) and electrical charge of drugs col-
lected in this study (N= 343) is shown inFig. 1. The
m rd
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i ility
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F l
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000;Matsuda et al., 1998a,b; McEvoy, 1998; Nico
t al., 2003; Orlowski et al., 1998; Overdiek a
erkus, 1986; Poschet et al., 1996; Pradhan
ajumdar, 1986; Schanker et al., 1963; Seelig, 1
hu et al., 2001; Smith et al., 2001; Takanaga e
994; Tamai and Tsuji, 1996; Thwaites et al., 19
suji et al., 1982; Wakasugi et al., 1998; Walter et
996; Welker et al., 1998; Wenzel et al., 19
illiams and Harding, 1984; Yee, 1997). Drugs with

ogDow > 4 were excluded because low solubi
as expected (Yalkowsky and Valvani, 1980; Avdee
003). Quaternary ammonium compounds and p
ers were also excluded because Pallas 3.1 (Co
rug, Hungary) could not calculate logPow adequately
Typical Fa%obsvalues and physicochemical para

ters are shown inTable 1. TheDow at pH 6.0,Pow
nd pKa were calculated from the chemical str

ure of drugs by Pallas 3.1. When the drug conta
ean logDow (pH 7.4) was−0.41 and the standa
eviation was 3.3. After excluding efflux substra

ntestinal metabolism substrates and low solub
rugs, the mean logDow (pH 7.4) was−0.62 and th

ig. 1. Distribution of calculated logDow (pH 7.4) and electrica
harge of drugs used in this study.
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Table 1
Fa%, physicochemical properties, and predicted oral absorption parameters

No. Compound MW pKa
a,b logPow

a logDow
a Fa%obs

c logPeff
c Fa%calc

e logPtot
e Transn%e Transc%e Para%e RUWL%e

1 Amiloride 230 5.26 (b) −1.03 −1.10 50 −3.79 70 −4.06 65 3 32 9
2 Antipyrine 188 1.79 1.79 97 −3.35 100 −3.26 97 0 3 55
3 Atenolol 266 10.08 (b) 0.44 −2.10 50 −4.70 72 −4.04 22 34 44 10
4 Carbamazepine 236 2.28 2.28 d −3.37 100 −3.20 99 0 1 68
5 Cimetidine 241 6.71 (b) −0.09 −0.87 64 −4.52 84 −3.88 51 16 33 15
6 Creatinine 113 −1.82 −1.82 80 −4.52 84 −3.88 20 0 80 11
7 Desipramine 266 10.63 (b) 4.00 0.67 100 −3.36 99 −3.48 70 22 8 38
8 Fluvastatine 411 4.32 (a) 4.71 3.03 100 −3.62 100 −3.19 100 0 0 85
9 Furosemide 331 4.06 (a) 2.20 0.25 61 −5.30 93 −3.72 99 0 1 23

10 Hydrochlorothiazide 298 −0.36 −0.36 67 −5.40 82 −3.91 92 0 8 14
11 Ketoprofen 254 3.49 (a) 3.67 1.18 100 −3.08 99 −3.43 99 0 1 42
12 Metoprolol 267 10.08 (b) 1.97 −0.90 95 −3.89 87 −3.83 43 33 24 17
13 Naproxen 230 4.06 (a) 3.26 1.32 99 −3.08 100 −3.39 99 0 1 44
14 Piroxicam 331 4.66 (b) 0.45 0.43 100 −3.11 95 −3.65 96 1 3 27
15 Propranolol 259 10.08 (b) 3.00 −0.08 90 −3.54 96 −3.64 57 27 15 26
16 Ranitidine 314 9.04 (b) 0.79 −1.71 50 −4.57 71 −4.05 34 39 27 11
17 Terbutaline 225 12.01 (b) 1.07 −1.63 62 −4.52 83 −3.90 25 29 46 14
18 Acyclovir 225 −2.08 −2.09 20 d 47 −4.34 47 0 53 5
19 Ceftriaxone 555 2.33 (a) −1.53 −4.68 1 d 2 −5.79 98 0 2 0
20 Cefuroxime 424 2.12 (a), 6.10 (b) −1.09 −3.29 5 d 11 −5.08 78 0 22 1
21 Oxacillin 401 2.52 (a) 1.56 −1.69 33 d 37 −4.48 97 0 3 4
22 Timolol 316 10.5 (b) 0.51 −2.06 90 d 66 −4.11 27 42 31 9

a Calculated by Pallas 3.1.
b The pKa values of the acid (pKa < 7.3) and base (pKa > 4.6) are indicated ((a): acid and (b): base).
c Obtained from the literature listed in the text.
d Not reported.
e Calculated with the coefficients set V inTable 2.
187
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Table 2
Fitting coefficients and Fa% predictability statistics

Set N a (×10−4) α b (×10−4) β RMSE CC

I 258 1.4 0.32 0.23 0.19 19 0.81
IIa 258 1.3 0.34 0.43 0.14 19 0.80
III b 258 1.6 0.29 20 0.80
IVa,b 258 1.8 0.29 21 0.78
V 242 1.9 0.44 0.30 0.15 15 0.88
VIa 242 1.8 0.46 0.50 0.13 16 0.87
VII b 242 2.1 0.38 16 0.87
VIII a,b 242 2.3 0.35 18 0.84

a Without the extension for electric field-of-force in paracellular pathway model.
b Without the extension for cationic species permeation in transcellular pathway model.

standard deviation was 2.8 (N= 258). The drugs used in
this study were biased to low lipophilicity, comparing
with the marketed oral drugs. Because logDow of dis-
sociable molecule is lower than that of neutral species,
the percentage of neutral compounds would increase at
high logDow.

Coefficientsa, b, α, andβ were optimized using
258 Fa%obs values (Table 2, the coefficients set I–IV).
Sixteen large outliers (Fa%diff > 2× root mean square
error (RSME)) were identified. Eight of these out-
liers were due to the pKa andPow calculation error
(data not shown). Other outliers were amphotericin B
(Fa%obs, Fa%calc: 5%, 44% (same order in the follow-
ing parentheses)), carfecillin (100%, 59%), cymarin
(47%, 97%), dantrolene (35%, 98%), mercaptethane-
sulfonic acid (77%, 27%), metaproterenol (44%, 83%),
miglitol (100%, 59%), and nizatidine (100%, 61%).
Reasons for these outliers could not be clarified by a
literature survey. Optimization ofa,b, α, andβ without
large outliers was also performed (Table 2, the coeffi-
cients set V–VIII).

The relationship between Fa%obs and Fa%calc with
the coefficients set V is shown inFig. 2A. In addi-
tion, the relationship between Fa%obsandPtot is shown
in Fig. 2B. Correlation coefficients (CC) and RMSE,
which are predictability indicators, are summarized in
Table 2. The TPAM calculated Fa% with adequate cor-
relation (CC = 0.78–0.88, RMSE = 15–21). Therefore,
the TPAM was suggested to be applicable for drug dis-
covery. Without the extensions to the previous TPAM,
i cel-
l per-
m pre-
d

Fig. 2. Relationship between calculated oral absorption data and ob-
served Fa%. (A) Fa%obs vs. Fa%calc. (B) Fa%obs vs.Ptot. Fa%calc

andPtot were calculated with the coefficients set V inTable 2. Cross
indicates large outliers excluded from the analysis (see text).
.e., the negative electric field-of-force in the para
ular permeation model and the cationic species

eation in the transcellular permeation model,
ictability was slightly lowered (Table 2).
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Fig. 3. Relationship betweenPtot and Fa%diff . Fa%diff was calculated
with the coefficients set V inTable 2.

The relationship betweenPtot and Fa%diff with co-
efficients set V is shown inFig. 3. The Fa%diff was
largest around logPtot =−4.5, probably because the
Fa%–logPtot relationship was sigmoidal, and had a
large slope around this logPtot value (Fig. 2B). From
Fig. 3, we can estimate the prediction probability.
Prediction probability is important information for
decision-making in drug discovery, however it was not
often considered in the previous in silico studies.

The relationship betweenPeff andPtot with coeffi-
cients set V was also investigated (Fig. 4). Peff values
were measured using a technique based on single-pass
perfusion of a human jejunum segment between two in-
flated balloons (Lennern̈as, 1998). Eighteen in vivoPeff
values were collected from the literature (Winiwarter

F h
t

et al., 1998; Takamatsu et al., 2001; Lennernäs
et al., 2002). Peff of actively transported compounds
were excluded.Ptot correlated toPeff with CC = 0.67
(set V). Peff of furosemide and hydrochlorothiazide
were underestimated. However, theirPeff were also
lower than expected from their Fa% (61% and 67%)
and Caco-2 permeability (0.11± 0.01 and 0.42± 0.03
(×10−6 cm/s)) (Wessel et al., 1998; Yamashita et al.,
2000), suggesting that theirPeff could have been un-
der assessed. Without furosemide and hydrochloroth-
iazide,Ptot correlated toPeff with CC = 0.77.

Relative contributions of paracellular permeation
(Para%) and transcellular permeation (Transn% and
Transc%) were calculated with coefficients set V
(Table 1). Previously, in Caco-2 at pH 5.4, the relative
contributions of paracellular permeation for cimeti-
dine, furosemide, naproxen, and propranolol were re-
ported to be 31%, 1%, 0%, and 3%, respectively (Pade
and Stavchansky, 1997). In the present study, they were
predicted as 33%, 1%, 1%, and 15%, respectively.
Therefore, it is suggested that the TPAM adequately
predicted the main permeation pathway. Relative
contribution of mono cationic species permeation
(Transc%) in metoprolol and timolol were 33% and
42%, respectively (Table 1). Previously, the permeabil-
ity of basic compounds across bio-mimetic artificial
membrane was found to be larger than expected from
theDow, suggesting that contribution of the permeation
of cationic species is significant (Sugano et al., 2001,
2004). Relative contribution of the UWL to the total
r
o cus
l igh
l h-
w
H to
b tion
( ce.
C ttled
i

ich
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s ach.
P for
r ach
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ig. 4. Relationship betweenPtot andPeff. Ptot was calculated wit
he coefficients set V inTable 2.
esistance was also calculated (Table 1). The UWL
f the gastrointestinal tract was maintained by mu

ayer. In case of fluvastatine, because of its h
ipophilicity (logDow = 3.03), the transcellular pat
ay permeability could be high (logPtrans=−2.38).
owever, the UWL resistance was suggested
e more effective on total resistance to permea
RUWL% = 85%) than the membrane resistan
onsequently, the total permeability could be se

n the upper limit (logPtot =−3.19, logPeff =−3.62).
Prediction of the permeation mechanism, wh

as not incorporated in the previously reported
ilico methods, is an advantage of the TPAM appro
ermeation mechanism is important information

ational drug design. In addition, the TPAM appro
as several other pragmatic advantages. The pred
cheme is explicit and corresponds to physiolog
tructure of intestinal membrane. In the present TP
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study, simple molecular descriptors, which are public
and available to most drug discovery scientists were
utilized. The possibility of over-learning is low, be-
cause only four fitting coefficients in the transcellular
permeation model were optimized by fitting with
hundreds of Fa%obs values. The coefficients in the
paracellular and UWL permeation models had been
derived and checked by physiological and/or model
experiments. These features of TPAM may increase
the accountability for users in the drug discovery
stage.

In conclusion, for the use in drug discovery, the
TPAM has adequate predictability and provides infor-
mation about permeation pathway for drug discovery
scientists. To improve the predictability, the effect of
villosity of the intestinal membrane and pH variation
along the absorption process can be incorporated to the
TPAM (Said et al., 1986; Winne, 1989). Also, addi-
tional molecular descriptors might be required for the
transcellular permeation model to correct the difference
between octanol and the phospholipid bilayer (Zhao
et al., 2001). The parallel artificial membrane perme-
ability assay, which is an assay for passive transcellular
permeation, may contribute to increasing the pre-
dictability of the transcellular permeation model
(Kansy et al., 1998; Sugano et al., 2001; Avdeef,
2003). To predict the oral absorption of low solubility
compounds, solubility/dissolution processes and
the gastro-intestinal transit process are additionally
required (Yu and Amidon, 1999). In addition, effects
o be
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