

Available online at www.sciencedirect.com

Journal of Ethnopharmacology 96 (2005) 569-575

www.elsevier.com/locate/jethpharm

Screening of New Caledonian and Vanuatu medicinal plants for antiprotozoal activity

M. Billo^a, A. Fournet^{a,b,*}, P. Cabalion^b, J. Waikedre^b, C. Bories^c, P. Loiseau^c, E. Prina^a, A. Rojas de Arias^e, G. Yaluff^e, C. Fourneau^a, R. Hocquemiller^a

^a Laboratoire de Pharmacognosie (associé au CNRS-BioCIS), Faculté de Pharmacie, Université Paris-Sud, rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France

^b Laboratoire Substances Naturelles Terrestres & Savoirs traditionnels ('SNT&ST'), DRV, US EnBioPac, IRD, BP A5, 98848 Nouméa, Nouvelle-Calédonie

^c UMR-CNRS 8076 Biocis, Antiparasitic Chemotherapy, Faculté de Pharmacie, Université Paris-Sud, rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France

^d Unité d'Immunophysiologie et Parasitisme Intracellulaire, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France

^e Department of Tropical Medicine, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunciòn, CP 2511 Asunciòn, Paraguay

> Received 7 April 2004; received in revised form 1 October 2004; accepted 7 October 2004 Available online 1 December 2004

Abstract

Sixty-seven extracts of 30 medicinal plants traditionally used in New Caledonia or Vanuatu by healers to treat inflammation, fever and in cicatrizing remedies were evaluated in vitro for their antiprotozoal activity against *Leishmania donovani*, *Leishmania amazonensis* and *Trypanosoma cruzi*. Among the selected plants, *Pagiantha cerifera* was the most active against both *Leishmania* species; four extracts were active against promastigotes of *Leishmania donovani* at EC₅₀ values inferior to 5 μ g/ml. *Garcinia pedicillata* extract had an EC₅₀ value of 12.5 μ g/ml against intracellular amastigotes of *Leishmania amazonensis*. Alone *Amborella trichopoda* reduced by more of 80% the trypomastigotes of *Trypanosoma cruzi* in the blood.

© 2004 Published by Elsevier Ireland Ltd.

Keywords: New Caledonia; Vanuatu; Leishmanicidal activity; Trypanocidal activity

1. Introduction

Research on antiprotozoal drugs of medicinal plant origin is a multidisciplinary task which involves researchers and students in the fields of botanics, phytochemistry, parasitology, pharmacology and medicine. New Caledonia possesses a relatively rich flora. The quotient of the number of species of native phanerogams by surface area (density/km²) is 0.157, which is a high figure compared to those obtained for other Pacific islands. Its high specific endemicity ratio is remarkable (near 75%) (Jaffré et al., 2001). Although parasitic diseases as leishmaniasis and trypanosomiasis are absent from New Caledonia and Vanuatu, the IRD (Institut de Recherche pour le Développement) initiated investigations to find new natural active compounds from traditional medicines of these countries. Leishmania and South American trypanosomiasis produce skin lesion (cutaneous ulcer, Carlo Romaña oedema) and our aim was to discover new lead compounds from plants used in traditional medicine for healing skin diseases. Ethnopharmacological data employed in our selection of plants are based on prior information collected amongst traditional healers. The selected plants were used in traditional medicines of New Caledonia or Vanuatu for the treatment of inflammation and fevers.

^{*} Corresponding author. Tel.: +33 1 46 83 55 94; fax: +33 1 46 83 53 99. *E-mail address:* Alain.Fournet@ird.fr (A. Fournet).

^{0378-8741/\$ –} see front matter @ 2004 Published by Elsevier Ireland Ltd. doi:10.1016/j.jep.2004.10.006

The current study was undertaken to evaluate in vitro crude extracts of 30 plants in a screening for activity against leishmaniasis and South American trypanosomiasis (Chagas disease).

2. Materials and methods

2.1. Plant material

Thirty plants from 20 families, native from New Caledonia and Vanuatu, were selected on the basis of ethnopharmacological information or on their potential cicatrizing or antiinflammatory properties, as presumed following local medicinal knowledge. They were identified at the SNT&ST and at the Botany Laboratories, Institut de Recherche pour le Développement (IRD), Nouméa, New Caledonia. Voucher specimens are deposited at the Herbarium of IRD Centre, Nouméa. Plant materials were oven-dried at 40 °C and then ground.

2.2. Preparation of plant extracts

2.2.1. Preparation of crude ethanolic extracts

Dried powdered material (50 g) was extracted by maceration with 250 ml of ethanol (80%) or dichloromethane, for 3 h under shaking at room temperature. Total extracts were filtered and concentrated to dryness at reduced pressure.

2.2.2. Preparation with Soxhlet apparatus

Acronychia laevis (136 g, leaves), Codiaeum peltatum (61 g, stem bark), Crossostylis multiflora (102 g, leaves, 139 g stem bark) were successively extracted in Soxhlet with petroleum ether, dichloromethane and methanol. Filtered extracts were dried using a rotary evaporator under reduced pressure at 45 $^{\circ}$ C.

2.2.3. Preparation of essential oils

Extracts of *Myoporum crassifolium* heart wood were obtained by hydrodistillation (essential oil) or by Soxhlet extraction with hexane.

2.3. Biological assays

The following parasites were used in this study: *Leishmania donovani* from the department of Parasitology of the Faculty of Pharmacy of Châtenay-Malabry (Paris XI, France), *Leishmania amazonensis* from the Pasteur Institute and *Trypanosoma cruzi* from the Department of Tropical Medicine, IICS, Asuncion, Paraguay. Biological tests were performed twice and each tested concentration in triplicate.

2.3.1. Antileishmanicidal assay

Leishmania donovani (MHOM/ET/L82/LV9) promastigotes were kindly provided by Pr. S.L. Croft from the WHO collection at the London School of Hygiene and Tropical Medicine. The test was performed as previously described by M'Bongo et al. (1997) and Okpekon et al. (2004). Briefly, promastigotes grown at 27 °C and cultivated in HEPES (25 mM)buffered RPMI 1640 medium containing 10% fetal calf serum (FCS) and 50 µg/ml gentamycin. The test was performed in 96-well microtitre plates maintained at 27 °C. Promastigotes forms from a logarithmic phase culture were suspended to yield 10⁶ cells/ml after haemocytometer counting. Each well was filled with 100 µl of culture medium and the plates were incubated at 27 °C for 1 h before drug addition. Each extract was dissolved in DMSO, then in medium and placed in microtitre plates in triplicate. The viability of parasites was evaluated by the tetrazolium-dye (MTT) colorimetric method. The results are expressed as the concentration inhibiting parasite growth by 50% after a 72 h incubation period. The starting concentration for screening was 100 µg/ml. Pentamidine was the reference drug.

In vitro activity against intracellular Leishmania amazonensis amastigotes. Female BALB/c mice aged 2-4 months were obtained from the breeding center of the Pasteur Institute. Leishmania amazonensis strain LV79 (MPRO/BR/1972/M1841) was propagated in BALB/c mice. Leishmania amazonensis amastigotes were isolated from lesions and purified as described earlier (Antoine et al., 1989). Bone marrow plugs from tibias and femurs of BALB/c mice were suspended in RPMI 1640 medium (Seromed) supplemented with 10% heat-inactivated fetal calf serum (FCS, Dutscher, Brumath, France), 50 mg/ml of streptomycin, 50 IU/ml of penicillin (culture medium) and with 15% L-929 fibroblast-conditioned medium. Cells were then distributed in bacteriologic Petri dishes (Greiner, Germany) and were incubated at 37 °C in a 5% CO₂ atmosphere. Five days later, adherent macrophages were washed with Dulbecco's phosphate buffered solution (PBS) and taken off by treatment for 20 min at 37 °C with Ca²⁺ and Mg²⁺-free Dulbecco's PBS containing 2 mg/ml of glucose. Recovered macrophages were suspended in culture medium and they were then deposited in flat-bottom 96-well plates (Tanner, Switzerland) at a density of 4×10^4 cells/well. Twenty-four hours after replating, macrophages were infected at a multiplicity of 5 amastigotes per host cell and were incubated at 34 °C, which is the permissive temperature for the survival and multiplication of LV79 strain amastigotes. In most instances, more than 95% of the macrophages were found to be infected.

For all drugs, stock solutions were prepared in DMSO at a concentration of 500 μ g/ml. Two fold serial dilutions were made from 250 μ g/ml in culture medium supplemented with 0.5% DMSO final. Twenty-four hours after infection, freshly prepared drugs were added to the infected cultures in triplicate. The first final drug concentration was 25 μ g/ml and the final DMSO concentration 0.1%. This DMSO concentration was proven to have no effect on control cultures.

Thirty hours after drug addition, infected cultures were examined using an inverted phase contrast Zeiss microscope (magnification of 400). Toxic effects in the macrophages were evidenced by the change in morphological features i.e. loss of refringency, vacuolation of cytoplasm or loss of cytoplasmic material.

Leishmanicidal effects of drugs are easily detectable looking at the regression of parasitophorous vacuoles and the overall decrease in parasite number. For some drugs, a complete clearance of amastigotes was achieved. Amphotericin B, miltefosine and an alkenylquinoline, E-3-Quinol-2-yl-prop-2en-1-ol (Fakhfakh et al., 2003).

Table 1

Table 1			
Ethnobotanical	data	of studied	plants

2.3.2. Antitrypanosomal assay

For in vitro tests against Trypanosoma cruzi, Albino mice infected with Trypanosoma cruzi were used 7 days after infection. Blood was obtained by cardiac puncture using 3.8% sodium citrate as anticoagulant in a 7:3 blood/anticoagulant ratio. The parasitemia in infected mice ranged from 1×10^5 to 5×10^5 parasites per millilitre. The extracts were dissolved in cold DMSO to give a final concentration of 250 µg/ml.

Family name	Scientific name	Voucher	Local name	Part used	Uses
Amborellaceae	Amborella trichopoda Baillon	PC21-1-03	No name collected		No use known
Apocynaceae	Cerberiopsis candelabra Vieillard var. candelabra	PC3310	candélabre (ncf)	Latex	Poison
Apocynaceae	Melodinus scandens Forster & G. Forster	JWRG6	girawa (nemi), kuimuea (xârâcuu)	Leaves	Pulmonary congestion
Apocynaceae	Pagiantha cerifera (Pancher & Sébert) Markgraf	PC3310	arbre à cire (ncf)	Latex, bark	Rhumatisms
Clusiaceae	Calophyllum caledonicum Vieillard	JWRG22	No name collected		
Clusiaceae	Garcinia pedicillata Seeman	DN 55	No name collected		
Cyperaceae	Scleria scrobiculata Nees & Meyen	JWRG25	No name collected		
Droseraceae	Drosera neocaledonica Raymond	PC3194 & 3229	gobe-mouche (ncf)	Whole plant	Tuberculosis, chest pains
Euphorbiaceae	<i>Codiaeum peltatum</i> (Labillardière) P.S. Green	JWRG23	Croton	Bark	Tuberculosis
Euphorbiaceae	Fontainea pancheri (Baillon) Heckel	DN 72	No name collected		Ichtyotoxic
Euphorbiaceae	Glochidion billardieri Baillon	JWRG3	Hmana (drehu)	Leaves	Cicatrization
Fabaceae	Erythrina variegata var. fastigiata Guillaumin (comb. ined)	JWRG8 & DN 68	peuplier canaque mâle (ncf) amî (iaai), ngetae	Bark	Fever
			(fagauvea)		
Loganiaceae	Fagraea berteriana A. Gray	JNN 18	bois pétrole, bois tabou (ncf), mindugo (arhö)	Bark, leaves	Rhumatisms, irritations caused by <i>Semecarpus</i>
Myoporaceae	<i>Myoporum crassifolium</i> Forster & G. Forster	DN93	ndji (kwênyii)	Wood essential oil	spp.
Myristicacae	Myristica fatua Houttuyn	PC1046	nandai (bislama pidgin, Vanuatu)	Sap, fruit	Yaws
Myrtaceae	Babingtonia leratii (Schlechter) A.R. Bean	JWRG5	fausse bruyère (ncf), noku in (kwênyii)	Flowering branches	Rhumatisms
Myrtaceae	Tristaniopsis calobuxus Brongniart & Gris	DN 17	No name collected		
Myrtaceae	Tristaniopsis glauca Brongniart & Gris	DN 18	No name collected		
Myrtaceae	Tristaniopsis yateensis J.W. Dawson	DN 84	No name collected		
Piperaceae	Piper methysticum G. Forster	commercial	kava	Root	Rhumatisms
Polygonaceae	Polygonum subsessile R. Brown	JWRG13	No name collected		
Rhizophoraceae	Crossostylis multiflora Brongniart & Gris	JWRG20	hêtre noueux (ncf), chêne gris de farino	Bark	Ulcerations
			(ncf), opwäro (paici)		
Rubiaceae	Gardenia urvillei Montrouzier	JW 77	tiaré des forêts sèches (ncf), peiokwé (ajië)	Bark	Candidosis
Rutaceae	Acronychia leavis Forster & G. Forster	JWRG14	bolè (nengone)	Wood or leaves	Cicatrization
Rutaceae	Murraya crenulata (Turzaninow) Oliver	JW36	No name collected		
Rutaceae	Zieridium melicopaefolium Guillaumin	JWRG10	wayiü (cèmuhî)	Bark	Vulnerary
Santalaceae	Santalum austrocaledonicum Vieillard	JWRG7	santal (ncf), tapaka (drehu)	Leaves	Vulnerary
Sapindaceae	Cupaniopsis glomeriflora Radlkofer	JWRG4	chêne blanc (ncf)	Leaves	Ulcerations (external)
Smilacaceae	<i>Smilax orbiculata</i> Vieillard ex A. de Candolle	JWRG1	wênyii (ôrôê)	Leaves	Cicatrization
Urticaceae	Cypholopus decipiens Winckler	JWRG28	No name collected		

Table 2 Antiprotozoal activity of some medical plants from New Caledonia and Vanuatu

Family name	Scientific name	Part used	Extract	Leishmania donovani (EC 50 µg/ml)	<i>Trypanosoma cruzi</i> (% reduction) at 250 μg/ml	Leishmania amazonensis (IC 50 µg/ml)	<i>Cytotoxicity</i> upon macrophages
Amborellaceae	Amborella trichopoda Baillon	Seeds	MeOH	>10	0	>25	>25
		Bark	CH_2Cl_2	>10	12.1 ± 1.5	>25	>25
		Leaves	CH_2Cl_2	>10	80.4 ± 5.3	>25	>25
Apocynaceae	Cerberiopsis candelabra Vieillard var. candelabra	Leaves	CH ₂ Cl ₂	>10	20.7 ± 1.2	>25	>25
			MeOH	>10	43.0 ± 2.7	>25	>25
		Fruits	CH_2Cl_2	>10	70.1 ± 4.8	>25	>25
			MeOH	>10	28.9 ± 3.2	>25	>25
Apocynaceae	Melodinus scandens Forster & G. Forster	Leaves	EtOH	>10	44.5 ± 3.3	>25	>25
Apocynaceae	Pagiantha cerifera (Pancher & Sébert) Markgraf	Fruits	CH ₂ Cl ₂	>10	71.8 ± 5.7	25	25
	-	Leaves	CH_2Cl_2	5	24.4 ± 1.9	12.5	>25
Clusiaceae	Calophyllum caledonicum Vieillard	Bark	CH_2Cl_2	>10	37.8 ± 3.1	>25	>25
		Leaves	CH_2Cl_2	>10	11.2 ± 0.9	>25	>25
Clusiaceae	Garcinia pedicillata Seeman	Leaves	CH ₂ Cl ₂	>10	20.7 ± 1.1	12.5	12.5
Cyperaceae	Scleria cf. polycarpa Boeckeler	Aerial parts	CH_2Cl_2	>10	0	>25	>25
Droseraceae	Drosera neocaledonica Raymond	Whole plant	MeOH	6.5	50.9 ± 4.1	>25	>25
Euphorbiaceae	Codiaeum peltatum (Labillardière) P.S. Green	Bark	CH ₂ Cl ₂	5	64.1 ± 4.7	25	25
Euphorbiaceae	Fontainea pancheri (Baillon) Heckel	Leaves	CH_2Cl_2	>10	60.8 ± 5.4	>25	>25
Euphorbiaceae	Glochidion billardieri Baillon	Leaves	EtOH	>10	0	25	25
I		Bark	EtOH	>10	71.4 ± 5.3	25	25
Fabaceae	<i>Erythrina variegata</i> var. <i>fastigiata</i> Guillaumin (comb.ined.)	Bark	EtOH	>10	76.3 ± 6.0	25	25
	Fagraea berteriana A. Gray	Leaves	MeOH	>10	NT	NT	NT
			CH_2Cl_2	>10	60.0 ± 5.7	>25	>25
		Bark	MeOH	>10	NT	NT	NT
			CH_2Cl_2	>10	14.6 ± 1.2	>25	>25
		Flowers	Hexane	>10	65.6 ± 5.8	>25	>25
Myoporaceae Myoporum cro Forster	<i>Myoporum crassifolium</i> Forster & G. Forster	Wood	Hexane	>10	28.9 ± 3.2	25	25
			Hydrodistillate	>10	14.4 ± 1.7	25	25
Myristicacae	Myristica fatua Houttuyn	Fruits	CH_2Cl_2	9	59.3 ± 5.9	25	>25
			MeOH	>10	63.0 ± 6.1	>25	>25
Myrtaceae	<i>Babingtonia leratii</i> (Schlechter) A.R. Bean	Leaves	EtOH	>10	42.8 ± 4.9	25	25
Myrtaceae	<i>Tristaniopsis callobuxus</i> Brongniart & Gris	Leaves	MeOH	>10	25.6 ± 3.2	>25	>25
			Petroleum Et	>10	29.1 ± 3.4	>25	>25
		Bark	MeOH	>10	37.6 ± 4.3	>25	>25
			Petroleum Et	>10	26.4 ± 2.9	>25	>25
		Root	MeOH	>10	67.3 ± 6.4	>25	>25
			Petroleum Et	>10	NT	NT	NT

Myrtaceae	Tristaniopsis glauca Brongniart & Gris	Leaves	MeOH	>10	40.8 ± 5.1	>25	>25
			Petroleum Et	>10	0	>25	>25
		Bark	MeOH	>10	NT	NT	Nt
			Petroleum Et	>10	30.3 ± 2.5	>25	>25
Myrtaceae Tristaniopsis yateensis J.W. Dawson	Tristaniopsis yateensis J.W. Dawson	Leaves	Petroleum Et	>10	31.7 ± 3.2	25	25
		MeOH	>10	NT	NT	NT	
		Bark	Petroleum Et	>10	36.8 ± 3.4	>25	>25
		MeOH	>10	26.0 ± 2.1	>25	>25	
Piperaceae	Piper methysticum G. Forster	Bark	EtOH	>10	40.9 ± 3.9	>25	>25
		Leaves	EtOH	>10	0	>25	>25
		Methysticin		>10	60.4 ± 6.8	>25	>25
		Yangonin		>10	57.3 ± 6.1	>25	>25
		Kavain		>10	66.8 ± 6.1	>25	>25
		Dihydrokavain	>10	0	>25	>25	
Polygonaceae	Polygonum subsessile R. Brown	Bark	CH ₂ Cl ₂	>10	35.7 ± 3.9	>25	>25
		Leaves	CH ₂ Cl ₂	>10	0	>25	>25
Rhizophoraceae	Crossostylis multiflora Brongniart & Gris	Leaves	CH ₂ Cl ₂	5.5	34.2 ± 2.8	>25	>25
		Bark	CH ₂ Cl ₂	>10	41.3 ± 5.7	>25	>25
Rubiaceae	Gardenia urvillei Montrouzier	Flowers	Hexane	4.5	34.9 ± 2.7	>25	>25
			CH ₂ Cl ₂	>10	22.1 ± 1.9	>25	>25
			EtOH	>10	44.0 ± 5.4	>25	>25
Rutaceae	Acronychia leavis Forster & G. Forster	Leaves	CH_2Cl_2	>10	32.5 ± 4.1	>25	>25
Rutaceae	Murraya crenulata (Turczanimow) Oliver	Wood	Hydrodistillate	>10	37.4 ± 4.8	>25	>25
			Hexane	>10	0	>25	>25
Rutaceae	Zieridium melicopaefolium Guillaumin	Bark	EtOH	3.5	48.8 ± 5.9	>25	>25
Santalaceae	Santalum austrocaledonicum Vieillard	Bark	EtOH	>10	42.2 ± 3.9	25	25
		Leaves	EtOH	>10	0	25	25
Sapindaceae	Cupaniopsis glomeriflora Radlkofer	Leaves	EtOH	3.3	38.7 ± 5.0	>25	>25
Smilacaceae	Smilax orbiculata Vieillard ex A. de	Leaves	EtOH	>10	71.3 ± 7.9	25	25
	Candolle						
Urticaceae	Cypholopus decipiens Winckler	Leaves	CH ₂ Cl ₂	>10	59.4 ± 6.4	25	25
		Bark	CH_2Cl_2	>10	34.9 ± 4.5	>25	>25
Reference drugs							
	Amphotericin B					0.06	25
	Miltefosine			1.5		3.12	12,5
	Alkylquinoline:					0.78	7.8
	E-3-Quinol-2-yl-prop-2-en-1-ol						
	Violet gentiane				100		

NT: not tested.

Aliquots (10 µl) of each extract at different concentrations (4, 20, 40, 100, 250 µg/ml) in triplicate were mixed in microtiter plates with 100 µl infected blood containing different parasite concentrations (1×10^5 and 1×10^6 parasites/ml). Infected blood and infected blood containing gentian violet at a 250 µg/ml concentration were used as control. The plates were shaken for 10 min at room temperature and kept at 4 °C for 24 h. Each solution was examined microscopically at 400×, placing a 5 µl-sample on a slide and covering it with a 22 mm × 22 mm coverglass for parasite counting. The activity of each extract (% of parasite reduction) was compared with the standard drug gentian violet at the concentration of 250 µg/ml (Rojas de Arias et al., 1994).

3. Results and discussion

Sixty-three extracts (methanol, ethanol, dichloromethane, petroleum ether, hexane, hydrodistillate) of 30 plants belonging to 20 botanical families were screened for their antiprotozoal activity against two species of Leishmania ssp. (Leishmania amazonensis and Leishmania donovani) and Trypanosoma cruzi. We added four kavalactones isolated from Piper methysticum (methysticin, yangonin, kavain and dihydrokavain) and three reference drugs amphotericin B (Fungizon[®]), miltefosine and violet gentian. The selections of plants based on the collected ethnobotanical data are presented in Table 1. Seven plants are used in traditional remedies (Glochidion billardei, Fagraea berteriana, Crossostylis multiflora, Gardenia urvillei, Acronychia laevis, Cupaniopsis glomeriflora and Smilax orbiculata). The in vitro antiprotozoal and cytotoxic activities (EC₅₀ values) of extracts are shown in Table 2. Among the 67 samples investigated in this study, 9 plants showed variable levels of activity against one or more of the test organisms. Nevertheless the activity degrees of the extracts were generally far removed from the reference drugs.

Extracts from Pagiantha cerifera, Codiaeum peltatum, Gardenia urvillei, Zieridium melicopaefolium and Cupanopsis glomerifera exhibited the strongest activity against Leishmania donovani (EC₅₀ below 5 µg/ml). Alone the leaves dichloromethane extract of Pagiantha cerifera displayed activity against the promastigote forms of Leishmania donovani and the intracellular amastigotes of Leishmania amazonensis. This activity is probably linked to presence of indole alkaloids (Van Beek et al., 1984; Bert et al., 1989). Various indole alkaloids have been previously found to be active against Leishmania donovani (Iwu et al., 1994). For the other part, the activity of the hexanic flowers extracts could be linked to a possible presence of triterpenes as described from Gardenia saxatilis (Suksamrarn et al., 2003). For Codiaeum peltatum and Cupaniopsis glomerifera no data in relation with their phytochemical composition is available. Three extracts from Crossostylis multiflora, Drosera neocaledonica and Myristica fatua showed only moderate activity against Leishmania donovani (EC50 ranging between 5 and 10 μ g/ml). From the genera *Drosera*, various naphthoquinones were isolated (Budzianowski, 2000), the presence of naphthoquinones known for their activity against *Leishmania amazonensis* (Fournet et al., 1992) could explain the leishmanicidal activity of this plant.

Against the intracellular amastigotes of *Leishmania amazonensis*, the most active extracts were *Pagiantha cerifera* and *Garcinia pedicillata* with an IC₅₀ value of 12.5 μ g/ml, but with a cytotoxicity to macrophages observed in the case of *Garcinia pedicillata* (12.5 mg/ml). Recently, cancer chemopreventive agents were isolated from two *Garcinia* species collected in New caledonia (Ito et al., 2001). Fourteen extracts had IC₅₀ value of 25 μ g/ml, this activity may be due to their cytotoxicity macrophages.

Against the bloodstream forms of *Trypanosoma cruzi*, alone the *Amborella trichopoda* leaves extract lead to a reduction by 80% of parasites in the blood; this activity is not far from that of the reference drug, violet gentian (100%). Five extracts had some trypanocidal activity reducing by 70% the number of parasites in the blood, *Glochidion billardieri*, *Erythrina variegata* var. *fastigiata*, *Smilax orbiculata* and two Apocynaceae, *Cerberiopsis candelabra* and *Pagiantha cerifera*.

4. Conclusion

In this first screening for antiprotozoal activity with 30 medicinal plants collected in New Caledonia and Vanuatu, some plants presented interesting in vitro activities for visceral leishmaniasis. Against Chagas disease, alone Amborella trichopoda had an interesting activity against the trypomastigotes in the blood. Among the plants tested in this study, only Pagiantha cerifera was previously studied, yielding phytochemicals like indole alkaloids (Harmouche et al., 1976; Bert et al., 1989). Finally, these essays were the first attempts to search antiprotozoal activities in endemic or native species of the floras of New Caledonia and Vanuatu. In these leishmania- and tryponosoma-free countries, no direct links with related pathologies and treatments could be expected from traditional medicine. However, we tried to focus on some species employed in remedies against fevers and/or inflammation. No systematic treatment was done of the whole group of species locally administered in antipyretic and antiinflammatory aims; it seems however that a plant having such reputations in traditional medicine may be worth to be selected in priority, especially if it is endemic or still original, respectively in terms of botany and chemistry. This approach could be a good way to a source of new drugs to treat protozoal diseases.

References

Antoine, J.C., Jouanne, C., Ryter, A., 1989. Megasomes as the targets of leucine methyl ester in *Leishmania amazonensis* amastigotes. Parasitology 99, 1–9.

- Bert, M., Tillequin, F., Baudoin, G., Koch, M., Sévenet, T., 1989. Alkaloids of *Pagiantha cerifera*. Fitoterapia 60, 141–146.
- Budzianowski, J., 2000. Naphthoquinone glucosides of *Drosera gigantea* from in vitro cultures. Planta Medica 66, 667–669.
- Fakhfakh, M.A., Fournet, A., Prina, E., Mouscadet, J.F., Franck, X., Hocquemiller, R., Figadère, B., 2003. Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorganic and Medicinal Chemistry 11, 5013– 5023.
- Fournet, A., Angelo, A., Muñoz, V., Roblot, F., Hocquemiller, R., Cavé, A., 1992. Biological and chemical studies of *Pera benensis*, a Bolivian plant used in folk medicine as a treatment of the cutaneous leishmaniasis. Journal of Ethnopharmacology 37, 159–164.
- Harmouche, A., Mehri, H., Koch, M., Rabaron, A., Plat, A., Sevenet, T., 1976. Plants of New Caledonia. XXXIX. Alkaloids of leaves of Pagiantha cerifera Mrgf (Apocynaceae). Annales Pharmaceutiques Française 34, 31–35.
- Ito, C., Itoigawa, M., Mishina, Y., Tomiyasu, H., Litaudon, M., Cosson, J., Mukainaka, T., Tokuda, H., Nishino, H., Furukawa, H., 2001. Cancer chemopreventive agents. New depsidones from Garcinia plants. Journal of Natural Products 64, 147–150.
- Iwu, M.M., Jackson, J.E., Schuster, B.G., 1994. Medicinal plants in the fight against leishmaniasis. Parasitology Today 10, 65–68.

- Jaffré, T., Morat, P., Veillon, J.M., Rigault, F., Dagostini, G., 2001. Composition and characterisation of the native flora of New Caledonia. Documents scientifiques et techniques, II4, Volume spécial, Nouméa, Nouvelle-Calédonie.
- M'Bongo, N., Loiseau, P., Lawrence, F., Bories, C., Craciunescu, D.G., Robert-Gero, M., 1997. In vitro sensivity of *Leishmania donovani* to organometallic derivatives of pentamidine. Parasitology Research 83, 515–517.
- Okpekon, T., Yolou, S., Gleye, C., Roblot, F., Loiseau, P., Bories, C., Grellier, P., Frappier, F., Laurens, A., Hocquemiller, R., 2004. Antiparasitic activities of medicinal plants used in Ivory Coast. Journal of Ethnopharmacology 90, 91–97.
- Rojas de Arias, A., Fournet, A., Inchausti, A., Ascurra, M., Fleitas, N., Rodriguez, E., 1994. In vitro activity and mutagenicity of bisbenzylisoquinoline and quinones against *Trypanosoma cruzi* trypomastigotes. Phytotherapy Research 8, 141–144.
- Suksamrarn, A., Tanachatchairatana, T., Kanaokmedhakul, S., 2003. Antiplasmodial triterpenes from twigs of *Gardenia saxatilis*. Journal of Ethnopharmacology 88, 275–277.
- Van Beek, T.A., Verpoorte, R., Svendsen, A.B., Leeuwenberg, A.J.M., Bisset, N.G., 1984. *Tabernaemonta* L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology. Journal of Ethnopharmacology 10, 1–156.