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a b s t r a c t

Histone modifier proteins have come to the forefront in the study of gene regulation. It is

now known that histone methyltransferases, acetytransferases, kinases, ubiquitinases,

deacetylases and demethylases orchestrate expression of target genes by modifying both

histone and non-histone proteins. The nuclear receptor (NR) superfamily govern such

diverse biological processes as development, physiology and disease, including human

cancer. The involvement of NR in complexes with coactivators and corepressors is neces-

sary for regulation of target genes. This review focuses on the newly recognized interactions

between the NR and histone modifying enzymes. In addition to regulating histones, the

histone modifying proteins directly modify and thereby regulate NR activity. In the same

manner that signaling platforms exist within the histone tails that are post-translationally

processed by histone modifying proteins, cascades of post-translational modification have

been identified within the NR that coordinate their activity. This review focuses on the

regulation of the NR estrogen receptor (ERa), androgen receptor (AR) and peroxisome

proliferator activated receptor-gamma (PPARg), given their role in tumor onset and pro-

gression.
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ChIP, chromatin

immunoprecipitation

LSD1, lysine specific demethylase
1. Introduction

Nuclear receptors (NR) are part of multi-protein complexes

that include transcription factors and coactivator proteins

that modify chromatin. The BRG/BRM proteins, for example,

bind NR and regulate chromatin structure in an ATPase-

dependent manner. NR associate with histone modifying

proteins that convey transcriptional repression or activation.

These histone modifying proteins, including histone acetyl-

transferases, kinases, ubiquitinases, deacetylases, histone

methyltransferases and demethylases, can regulate the

activity and/or the expression of NR. Several NR are directly

modified by kinases and histone acetylases including the

estrogen receptor a (ERa), androgen receptor (AR) and

peroxisome proliferator receptor g (PPARg). The acetylation

of NR occurs at a conserved motif. This motif is observed in

most NR and is conserved between species. Acetylation of NR

is regulated by physiological stimuli. This review focuses on

the regulation of NR by histone modifying proteins and the

effects of NR acetylation on their biological function.
2. Epigenomic modification

Epigenomic modifications can be defined as heritable, yet

reversible, chromatin alterations that govern the expression of

genes. This area has been examined for many years, beginning

in 1983 with the discovery of methyltransferases that alter

DNA [1]. While examining colorectal cells Feinberg and

Vogelstein were the first to note an altered DNA methylation

pattern in tumors. It was not until the identification of histone

acetyltransferases, or HATs, in 1995 [2], that histone modifica-

tion involved in cellular differentiation was more thoroughly

examined. Since then several main chemical alterations of

histones that regulate gene expression have been determined

and well-studied. In addition to histone acetylation and DNA

methylation, these alterations include histone phosphoryla-

tion, ubiquitination and methylation, all of which can either

silence or activate gene expression.

In 1999 Holliday and Beck, Olek and Walter [3,4] commen-

ted on epigenomic modifications, hinting at the idea of

‘‘deciphering an epigenetic code’’. Strahl and Allis [5] proposed

an inherited order to post-translational histone modifications;

which became known as the ‘histone code hypothesis’.

Histone acetyltransferases (HATs) (CBP, p300, etc.), deacety-

lases (HDACs), kinases (Aurora) and methyltransferases

(HMTs) have already been shown to play significant roles in

cancer. As the epigenetic phenotype may be reversible,

enzymes regulating these epigenomic changes may be ideal

targets for cancer drug development. In fact, several different

histone deacetylase inhibitors are currently in phase I or II

clinical trials.
3. Nuclear receptors (NR)

NR, or steroid receptors, share structurally conserved domains

and are regulated through steroids, thyroid hormone, retinoic

acid, vitamins or other proteins. They function as transcrip-

tion factors, often in complex with other coregulators, that

govern transcription of target genes involved in such varied

processes as homeostasis, reproduction, development and

metabolism [6]. All NR contain four main conserved domains,

the activation function domain (AF), the DNA binding domain

(DBD), the hinge region and the ligand-binding domain (LBD).

Protein–protein interactions are typically found through an N-

terminal domain and the LBD. The DBD binds specific target

DNA sequences, while the LBD additionally binds hormones.

Coregulator proteins that bind to NR help to modify target

gene expression through protein complex formation. These

interactions aid in either corepression or coactivation of gene

expression. Coactivators work by recruiting protein com-

plexes to function as a link between the NR and the

transcriptional apparatus. They also can use their histone

modifying abilities to alter the local chromatin structure. The

coactivators that bind NR include steroid receptor coactivator-

1 (SRC-1), amplified in breast cancer 1/thyroid and RA

receptor/steroid receptor coactivator-2 (AIB1/ACTR/SRC-2),

glucocorticoid receptor interacting protein 1/transcriptional

intermediary factor 2/steroid receptor coactivator-3 (GRIP1/

TIF-2/SRC-2), p300/CBP and p/CAF (p300/CBP-associated fac-

tor) [7–9]. NR corepressors typically interact with unliganded

NR and recruit histone modifying proteins, like HDACs, to

silence target gene expression. Several NR corepressors have

been identified and include nuclear receptor corepressor (N-

CoR), silencing mediator of retinoid and thyroid hormone

receptor (SMRT), Sin3, HDACs, thyroid hormone receptor

uncoupling protein (TRUP), BRCA1, NuRD, Suv39h1, DNMT1,

pRb2/p130, and E2F4/5.

3.1. Histone methylation

Histone methylation is dynamically regulated by HMTs and

demethylases, such as Lysine Specific demethylase 1 (LSD1),

JHDM1, JHDM2A and JMJD2. Histone methylation regulates

chromatin structure, transcription and the epigenetic state of

the cell. Methylation occurs at lysine and arginine residues.

Lysine residues can be mono-, di- or tri-methylated. Euchro-

matic histone methylation contributes to both transcriptional

repression and activation. Methylation at H3-K4 and H3-K36 is

typically linked to transcriptional activation, while H3 Lys 9 is

typically a repressive mark.

All of the histone lysine methylases, except Dot, share a

SET (Su(var), Enhancer of zeste, Trithorax) domain that is

responsible for the addition of the S-adenosyl-L-methionine

cofactor. HMTs add methyl groups to the e-amino group of
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lysine residues. The histone H3 Lys 9 methyltransferase group

(Suv39h1, Suv39h2, G9a, G9a-related protein, SETDB1 gene

products) catalyze H3-K9 methylation, G9a is a HMT that

silences genes in euchromatic regions of DNA and forms homo

or heterodimers with the related protein GLP. G9a regulates

histone H3-K9 mono- and di-methylation.

The protein arginine methyltransferases (PRMT) consist of

two types that differ in the symmetry of the di-methyl arginine

product. The Type I PRMT enzyme forms mono-methyl arginine

and asymmetric di-methyl arginine, whereas Type II PRMT

formsmonomethylarginineandsymmetricdi-methylarginine.

The PRMT1, 2, 3, 4 and 6 are Type I PRMT and PRMT5 is a type II

PRMT. PRMT7 may be a third type of PRMT. PRMT5, known as

CARM1 (co-activator associated arginine methyltransferase)

was identified as a p160 co-activator of nuclear receptors by

Stallcup and co-workers [10], providing a fundamental new

mechanism for cross talk between nuclear receptors and this

enzyme family, and showing for the first time that these

enzymes can function as transcriptional regulators.

The histone lysine demethylases identified to date involve

distinct biochemical processes as LSD1 functions via FAD-

dependent oxidative reactions (amine oxidase family) [11] and

the JHDMs require Fe(II) and a-ketoglutarate as cofactors for

oxidative hydroxylation through the JmjC domain (JmjC

domain containing family) [12]. LSD1, was identified in a

search for new AR-interacting partners [13].

3.2. The cyclin D1 gene

The cyclin D1 gene encodes the regulatory subunit of the

holoenzyme that phosphorylates the retinoblastoma, pRB,

protein and associates with HDACs/HATs to regulate activity

of several transcription factors. The cyclin D1 protein is both a
Fig. 1 – Regulation of nuclear receptors by cyclin D1. (A) BRCA1

by antagonizing BRCA1 repression of ERa activity [15]. (B) Cyclin

AR [16].
coactivator as well as a corepressor of NR. Cyclin D1 is a

coactivator of ERa transcription and a corepressor of AR,

PPARg and the Thyroid Receptor (TR). Cyclin D1 can bind

directly to ERa and recruits SRCs to the ERa promoter [14]. It

acts to upregulate ERa gene expression by antagonizing BRCA1

mediated repression of ERa [15], see Fig. 1A. Cyclin D1

physically associates with the AR, inhibiting AR transactiva-

tion by competing with p/CAF binding [16], see Fig. 1B.
4. Estrogen receptor a

ERa regulates the numerous activities of estrogen, a steroid

hormone important in normal development and reproduction

as well as diseases such as breast cancer, cardiovascular

disease, osteoporosis and Alzheimer’s disease. Upon ligand

binding, ERa can bind either target DNA sequences directly or

through other coactivators/corepressors to regulate transcrip-

tion of specific genes. Proteins that cooperate with ERa in

transcriptional regulation include the p160 family (SRC-1,

TIF2/SRC-2/GRIP1, AIB1/ACTR/SRC-3), cyclin D1 and several

HATs (CBP, p300 and P/CAF) [17–19].

4.1. Silencing of the ERa gene through histone
deacetylation, DNA methylation and histone modifier protein
complexes

Many genes are silenced through a combination of both DNA

methylation and/or histone deacetylation. Importantly, a

significant number of breast cancers lose expression of the

ERa gene as a result of DNA hypermethylation within the ERa

promoter [20,21]. Yang et al. [22] demonstrated that the

treatment of ER-negative breast cancer cells with the DNA
represses ERa activity. Cyclin D1 upregulates ERa activity

D1 inhibits AR by competing with p/CAF for binding to the
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methylation inhibitor, 5-aza-20-deoxycytidine (5-aza-dC)

yielded demethylation of the ERa promoter and reexpression

of both ERa mRNA and protein. siRNA mediated reduction in

the DNA methyltransferase, DNMT1 induced ERa expression

[23,24].

The histone deacetylase, HDAC1, binds ERa and sup-

presses its transcriptional activity [22]. ER-negative cells

that were treated with an inhibitor of HDAC1 activity,

Trichostatin A (TSA), like the 5-aza-dC treated cells, had

induced ERa mRNA and protein expression [25]. TSA and 5-

aza-dC synergistically induce ERa expression in cells

considered ER-negative [26]. DNA hypermethylation, his-

tone hypoacetylation, H3-K9 methylation and recruitment

of methyl CpG binding proteins (MeCP2, MBD1, MBD2), DNA

methyltransferases (DNMT1 and DNMT3b) and HDAC1 all

can work together to silence the ER promoter [27]. This was

in contrast to ERa positive breast cancer cells, in which H3

and H4 acetylation and H3-K4 methylation increased with

little methyl CpG binding protein and DNMT1 association

and increased H3-K9 methylation at the ERa promoter. In

ChIP assays, complexes containing histone modifiying

enzymes and DNMTs (pRb2/p130-E2F4/5-HDAC1-SUV39H1-

p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 com-

plexes) bound the ERa promoter to silence ERa gene

expression [28]. Consistent with this finding, 5-aza-dC and

TSA increase ERa expression and release the methyl CpG

binding proteins (MeCP2, MBD1 and MBD2), DNMTs (DNMT1

and DNMT3b), methylated H3-K9 and HDAC1 [27].

4.2. ERa acetylation regulates ERa activity

Acetylation of ERa occurs both in vitro and in vivo through the

HAT, p300 [29]. One acetylation site is located within the

hinge/LBD of ERa which regulates transactivation, hormone

sensitivity and phosphorylation function [30]. Glutamine or

Arginine substitutions at the ERa acetylation site increase

ERa’s hormone sensitivity. Somatic mutations of the ERa

Lys630 occur in breast cancer [31]. In 34% of patients with

breast hyperplasia a Lys-to-Arg substitution at residue 303 was

reported. The K303R mutation in the ERa resulted in an

increased sensitivity to estrogen and resistance to repression

by metastasis associated protein 2 (MTA-2) [32] and to BRCA1

[RGP unpublished] and therefore may play a role in breast

cancer development.
5. Androgen receptor (AR)

The AR is important in the production of secondary sexual

characteristics as well as in prostate cancer. Activity of the AR

is regulated by hormones, and by hormone-independent

(through EGF, IGF-1, KGF, IL-6 or HER-2/neu signaling [33–

36]) mechanisms. Several coactivators enhance AR activity,

including the SRC (p160) coactivators, p300/CBP, Ubc9, ARA70,

ARA55, TIP60 and others [37–39]. An equally diverse group of

corepressors inhibit AR activity through recruitment of HDAC

activity or inhibition of HAT activity [37–39]. Post-translational

modification by acetylation and phosphorylation regulate AR

activity through modifying local chromatin and directly

modifying the AR itself.
5.1. Acetylation of the AR

The AR is acetylated within its hinge domain by HATs,

including p/CAF, p300 and TIP60 [40]. AR acetylation governs

distinct properties of the AR including its transcriptional

activity, its affinity for p300, and its ability to regulate prostate

cancer cell growth. The AR acetylation site determines

association with corepressor complexes. Acetylation dead

mutants show enhanced binding of corepressors and reduced

binding of coactivators in cultured cells. Conversely the AR

acetylation mimic mutants have increased p300 and

decreased N-CoR/HDAC/Smad3 corepressor binding [41,43,44].

The AR is acetylated in cultured cells, AR acetylation is

regulated by physiological stimuli [44] and substitution

mutations of the residues acetylated in vitro induce ligand-

dependent transcriptional activity of the AR [41]. AR point

mutations identified in prostate cancer patients at the

acetylation site (ARK630T) convey gain of function in human

prostate cancer cells when implanted into nude mice. AR

acetylation site mutants mimicking acetylation (ARK630Q and

ARK630T) increased cellular proliferation and colony formation

of prostate cancer cell lines in culture and in nude mice in vivo.

The AR acetylation site growth properties may be mediated in

part through enhanced recruitment to the promoters of a

subset of target genes that augment cellular growth, including

the cyclin D1 gene [41–43]. Both cyclin D1 and cyclin E protein

levels and activity were increased in prostate cancer cell lines

expressing the AR acetylation mimic mutant compared with

AR wild type. Furthermore, in ChIP assays, when comparison

was made between the wild type AR and AR gain of function

acetylation mimic mutants, increased recruitment of the

mutant AR was observed at the cyclin D1 promoter. Thus

aberrant acetylation of the AR may lead to enhanced growth

through activation of cell cycle control genes [41].

The AR acetylation site regulates both cellular prolifera-

tion and evasion of apoptosis. Prostate cancer cells expres-

sing the AR acetylation mimic mutants showed significantly

reduced apoptosis compared to wild type controls [41]. The

evasion of apoptosis was seen primarily through the

apoptotic signals mediated by MEKK1 and JNK [43]. The

contribution of AR acetylation to evasion of current therapies

may become of increasing importance. AR acetylation mimic

mutants show reduced response to current AR antagonists

used to treat patients with prostate cancer [41,43]. In

addition, the mechanisms governing AR acetylation and

deacetylation may be an ideal new area for therapeutic

intervention. Studies to date have shown the AR function is

repressed by TSA-sensitive HDACs. p300 is a key coactivator

of the AR, and p300 is deacetylated and repressed by the

NAD-dependent HDAC, SIRT1 [45]. It will be of interest to

determine whether the AR functions as a direct target for the

NAD-dependent HDACs.

5.2. AR regulation by G9a

Recently Lee et al. [46] have demonstrated that the histone

methylase G9a can either silence or activate target transcrip-

tion factors including the AR and ER in reporter gene assays.

G9a, CARM1, GRIP1 and p300 cooperate to activate the

expression of both AR and ER, linking histone arginine and
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Fig. 2 – Interactions between histone modifying proteins,

cyclin D1 and PPARg. (A) PPARg inhibits expression of the

cyclin D1 promoter by competing with p300 at the AP-1

site of the cyclin D1 promoter [52] (B) Cyclin D1 recruits

HDACs to inhibit PPARg transactivation [67,68]. (C) Cyclin

D1 also recruits histone modifying proteins to the local

chromatin at PPARg Response Elements (PPRE) where
lysine methylation. They further demonstrate that the histone

modifications normally associated with transcriptional acti-

vation of proteins like the HMT and HAT activity of CARM1 and

p300 work to inhibit the G9a’s HMT activity, consistent with

the histone code hypothesis.

5.3. The histone demethylase, LSD1, regulates AR function

Metzger et al. [13] demonstrated that AR and LSD1 proteins

interact both in vitro and in vivo in normal prostate and prostate

tumors. The loss of LSD1 protein, through either siRNA

knockdown, mutations or specific LSD1 inhibitors, blocked

androgen-induced transcriptional activation of reporter genes

and LSD1 knockdown inhibited androgen-induced LNCaP

cellular proliferation. JHMD2A also directly binds the AR and

is recruited in a hormone-dependent manner [12]. Differen-

tially methylated lysine residues are thought to serve as

docking sites for platforms of chromatin remodeling proteins,

thus the role of the AR acetylation site in the activity of these

demethylases will be of considerable interest.

5.4. Promoter methylation of the AR

DNA methylation of the AR promoter is an example of

epigenetic silencing and is regulated in prostate cancer. In

2000, Nakayama et al. [47] examined the methylation status of

prostate cancer cell lines and hormone-refractory patient

samples. In 20% of the primary cell lines and 28% of the

hormone-refractory patient samples they found aberrant DNA

methylation. They further examined AR expression after

combination treatments with 5-aza-dC and TSA in DU145

prostate cancer cells. They demonstrated, as was the case with

the ERa, that AR expression increased upon treatment with

these epigenetic modification inhibitors. Increased AR activity

present in patients with premature puberty is also a result of

aberrant AR receptor promoter methylation [48] suggesting

methylation-dependent AR expression plays a role in diverse

disease processes.

repression of target genes is seen.
6. Peroxisome proliferator-activated receptor
g (PPARg)

PPARg is a NR that mediates adipocyte differentiation, insulin

sensitivity and can inhibit cellular proliferation [49–52].

Importantly, PPARg ligands have been shown to inhibit growth

of many cancer cell types, including colon, breast, gastric,

adenocarcinoma and prostate cancers [53–60]. PPARg can bind

to DNA directly through heterodimerization with the retinoic

X receptor (RXR). Upon ligand stimulation, PPARg binds

several coactivators (CBP, p300, SRC-1 family members, PPAR

interacting protein (PRIP) and Med220 (PBP, TRAP220 or

DRIP205) [61–63]), and in the absence of ligand, forms

complexes with the coactivator PGC-1 [64] or corepressors

N-CoR, SMRT or HDAC3 [65,66].

6.1. PPARg regulation by cyclin D1 and HDACs

PPARg inhibits the expression of cyclin D1, a key gene governing

the cell cycle during cellular proliferation and adipocyte
differentiation. With the addition of ligand, PPARg competes

with p300 for a c-Fos binding site and inhibits expression of

cyclin D1 [52], see Fig. 2A. Furthermore, cyclin D1 can regulate

ligand-induced PPARg transactivation, expression and promo-

ter activity independent of cyclin dependent kinase- and Rb

protein-binding [67], as seen in Fig. 2B. It was recently

determined that cyclin D1 could mediate PPARg regulation by

binding toHDACs 1, 2,3 and 5 and increasing their activity [68]. It

was also shown that cyclin D1 enhanced recruitment of other

histone modifying enzymes, like the HMT Suv39H1, to the

PPARg promoter and concurrently led to decreased acetylation

of Histone H3 [68]; see Fig. 2. Consistent with these findings

Wang et al. [69], demonstrated that HDAC1 overexpression in

transgenic mice reduced PPARg protein levels. p300 is a rate

limiting activator in PPARg transactivation and p300 is

repressed by cyclin D1 [70]. ChIP assays have demonstrated

that cyclin D1 binds to p300 and represses its activity at the

PPARg-responsive element of the lipoprotein lipase promoter.

Together these results suggest that cyclin D1, through the
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regulation of epigenetic modifiers, plays a very important role in

regulating the activity of PPARg and therefore adipocyte

differentiation.

6.2. SIRT1 regulation of PPARg

The epigenomic modifier, mammalian NAD-dependent pro-

tein deacetylase, SIRT1, is a protein that is known to be

important in fat mobilization in adipocytes upon food scarcity

[71,45]. Picard et al., [72] have demonstrated that this

regulation is due to SIRT1’s ability to regulate PPARg. In

fasting mice, it was demonstrated that SIRT1 bound to and

repressed genes normally controlled by PPARg. It was also

seen that SIRT1 bound to the PPARg corepressors NCoR and

SMRT and together these proteins repressed PPARg. They

further hypothesize a novel connection between calorie

restriction and extending mammalian lifespan through

SIRT1-mediated repression of PPARg.
7. Conclusions

Histone modifying enzymes (HATs (p300, p/CAF), HDACs

(HDACs, SIRTs), HMTs (G9a, Suv39h1) and demethylases

(LSD1)) can regulate NR expression and activity. The labile

growth factor- and oncogene-inducible factor, cyclin D1,

regulates histone acetylation at the promoters of target gene

sites within the chromatin at which NR reside. The deace-

tylation of histone H3 Lys 9 at PPARg binding sites and

recruitment of HDACs and methylases to NR binding sites by

cyclin D1 provides a mechanism by which growth factor

signals may coordinate epigenetic changes at NR binding

sites. NR are acetylated and the acetylation sites regulate

cellular growth. Single amino acid substitutions at the

acetylated residues of the AR are sufficient to induce contact

independent growth of human prostate cancer cells. NR are

modified by phosphorylation, acetylation and sumoylation

and these modifications coordinate NR function. Finally,

cyclin D1 interacts with NRs and histone modifying enzymes

suggesting a mechanism by which cyclin D1 may regulate

tumor development and other human diseases. This knowl-

edge will undoubtedly lead to new therapies and treatments

to combat disease initiation and progression.
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