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Abstract

We present the results of efficiency and power output for irreversible Carnot-like heat engines with
nonlinear inverse, Dulong–Petit and Stefan–Boltzmann heat transfer laws when optimized with a recent
criterion. A unified working regime is found intermediate between those predicted by the maximum effi-
ciency and maximum power for all realistic values of the parameters accounting for the irreversibilities:
finite rate heat transfer between the working fluid and the external heat sources, internal dissipation in the
working fluid, and heat leak between reservoirs. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has been stressed on several occasions that it would be desirable for the efficiency of a real
heat engine to be larger than its maximum power efficiency and also have a power over the value
predicted by the maximum efficiency regime [1]. Along this line, several thermodynamics and
thermoeconomics optimization criteria have been proposed in the context of finite time ther-
modynamics. See Refs. [2,3] for two recent reviews on this and related subjects. In particular, the
so-called ecological criterion (best compromise between power output and entropy generation)
has been applied to analyze endoreversible Carnot-like heat engines with linear [4] and nonlin-
ear Dulong–Petit [5] heat transfer laws. From these studies, it was found that in the endore-
versible limit, the efficiency at maximum ecological function can be expressed approximately as the
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semi-sum of the Carnot efficiency and the efficiency at maximum power (semi-sum property),
independently of the used heat transfer law. On the contrary, the efficiency under maximum power
changes with the heat transfer law [6]. An extension of this property to heat engines with internal
irreversibilities in the working fluid has also been developed [7].
In a recent paper [8], we have reported a unified optimization criterion (the X criterion), based

on the analysis of the best compromise between energy benefits and losses, which apply for mi-
croscopic and macroscopic (traditional) energy converters. The two main features of this criterion
are its independence of any environment parameter and its prediction of an optimum working
regime intermediate between those obtained under maximum efficiency (or coefficient of perfor-
mance) and under maximum useful energy (power output in a heat engine, cooling power in a
refrigerator and heating power in a heat pump) criteria. In such work, the considered irreversible
Carnot-like heat engines were assumed to have linear heat transfer laws.
The main goal of this work is to show the predictions of this optimum operating X criterion in

Carnot-like heat engines but for the usual nonlinear heat transfer laws (inverse, radiative and
Dulong–Petit laws), whose importance have been pointed out by different authors. Although the
criterion is easily applicable to any cyclic model, here we choose a standard irreversible Carnot-
like model because of its simplicity to account for the main irreversibilities that usually arise in
real heat devices: finite rate heat transfer between the working fluid and the external heat sources,
internal dissipation of the working fluid, and heat leak between reservoirs. For this cycle model,
we have analyzed three working regimes: maximum efficiency, maximum work and maximum X.
For the three nonlinear heat transfer laws considered, it is found that the efficiency under max-
imum X conditions is located between the maximum possible efficiency and the efficiency at
maximum power output, while the power at maximum X conditions is located above the power at
maximum efficiency. These results could be considered as a generalization to the broader irre-
versible conditions of the semi-sum property and to reinforce the X criterion as an optimum
working regime.

2. The criterion and the model

Briefly, the X criterion [8] states a compromise between energy benefits and losses for a specific
job and formally can be expressed as

Xðx; fagÞ ¼ 2zðx; fagÞ � zminðfagÞ � zmaxðfagÞ
zðx; fagÞ Euðx; fagÞ; ð1Þ

where x denotes an independent variable, fag denotes a set of parameters which can be considered
as controls, Euðx; fagÞ is the useful energy delivered by the heat device along a given, nonideal
process from the conversion of an input energy Eiðx; fagÞ, and zðx; fagÞ is the conventional effi-
ciency of this heat device, defined as the ratio between the useful and input energies zðx; fagÞ ¼
Euðx; fagÞ=Eiðx; fagÞ, which can vary between a minimum zminðfagÞ and maximum zmaxðfagÞ
values in the allowed range of values of x for given a’s.
In particular, for finite time heat engines, Eq. (1) becomes [8]

_XX ¼ ð2g � gmaxÞj _QQHj ¼ ð2g � gmaxÞj _WW j=g; ð2Þ
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where j _QQHj is the rate of heat supply (input energy), j _WW j is the power delivered (the useful energy),
g the thermal efficiency and gmax the maximum possible value of g for given values of the controls.
The theoretical model we consider is the usual steady flow (continuous) irreversible Carnot

power cycle sketched in Fig. 1, where j _QQhj and j _QQcj are, respectively, the rate of heat supplied by
the hot reservoir at temperature Th and absorbed by the heat sink at temperature Tc, j _QQij is the rate
of heat leak between the external sources, j _WW j is the power output per cycle, T 0

hð< ThÞ and T 0
cð> TcÞ

are, respectively, the temperatures of the working fluid along the upper and the lower isothermal
processes, rh and rc are, respectively, the external hot end (steam boiler) and cold end (condenser)
thermal conductances, and ri is the internal heat conductance.

3. Inverse heat transfer law

The importance of the inverse heat transfer law lies in its connection with the phenomenological
law of irreversible thermodynamics. It has been analyzed with similar irreversible models under
the maximum power regime and the relation between power and efficiency (the so-called

Fig. 1. Schematic diagram of the considered irreversible Carnot cycle.
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fundamental optimal relation) was obtained [9,10]. Here, we shall focus on the results concerning
the _XX criterion. The involved heat flows are given by (see Fig. 1)

j _QQhj ¼ rh
1

T 0
h

�
� 1
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�
¼ rh

Th
ðah � 1Þ; ð3Þ
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; ð5Þ

where ah ¼ Th=T 0
h P 1, ac ¼ T 0

c=Tc P 1, s ¼ Tc=Th6 1, rhc ¼ rh=rc, and rih ¼ ri=rh. The internal
irreversibilities, accounted by a global parameter I, and the working fluid temperatures are related
through the Clausius inequality as [9,10]

j _QQhj
T 0
h

¼ I
j _QQcj
T 0
c

ð0 < I 6 1Þ: ð6Þ

At sight of Eqs. (3), (4) and (6), ac can be expressed in terms of ah, s, rhc and I. Then, we will
consider ah as our independent variable, while s, rhc, rih and I will be considered as the set fag
of controls. In particular, for this heat transfer law, the Clausius inequality gives ac ¼
ðI �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � 4s2ahðah � 1ÞIrhc

p
Þ=2s2ahðah � 1ÞIrhc. Since ac should be positive, then ahðah � 1Þ6 I=

ð4s2rhcÞ. This inequality is a constraint among ah and the involved irreversibility parameters,
which should be taken into account in any calculation. All results we show below have been
obtained from a Mathematica code.
Power j _WW jðah; s; I; rhcÞ ¼ j _QQhj � j _QQcj, efficiency gðah; s; I; rhc; rihÞ ¼ j _WW j=ðj _QQhj þ j _QQijÞ, and _XXðah;

s; I; rhc; rihÞ ¼ ð2g � gmaxÞj _WW j=g are plotted in Fig. 2 in terms of ah for a realistic set of values
of the controls. The results for the power and _XX are normalized to rh=Th. Note in this figure
how the typical parabolic behavior of the efficiency and power with respect to ah also applies
for the _XX function. More important is the fact that the efficiency under maximum X conditions,
gmax _XX, is located between the maximum efficiency, gmax, and the efficiency at maximum power,
gmax j _WW j. The values of ah for which these optimal efficiency values apply, satisfy the inequality

Fig. 2. Efficiency g, dimensionless power j �_WW_WW j and dimensionless �_XX_XX in terms of ah for the inverse heat transfer law and
the following values of the controls: s ¼ 0:2, I ¼ 0:9, rhc ¼ 1, rih ¼ 0:1.
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ah;max j _WW j > ah;maxX > ah;max g. Since Th is fixed, the above inequality means that the maximum ef-
ficiency regime needs greater T 0

h values than the
_XX regime which, in turn, needs greater T 0

h values
than the maximum efficiency regime. The s-behavior of the three optimized efficiencies is plotted
in Fig. 3a and for the three optimized powers in Fig. 3b. These figures illustrate clearly how the _XX
regime is intermediate between the maximum efficiency and maximum power regimes. In par-
ticular, we note in Fig. 3a how gmax _XX is practically coincident with the semi-sum of the maximum
efficiency and efficiency at maximum power and in Fig. 3b how the power for the _XX regime is very
close to the maximum power. Thus, the _XX criterion gives a working regime for which the efficiency
is greater than the maximum power efficiency and the power is close to its maximum possible
value. The above features also apply for all sets of values of the controls we have checked.

4. Dulong–Petit and Stefan–Boltzmann heat transfer laws

The Dulong–Petit heat transfer law ðDT Þn with n ¼ 5=4 has been considered as a phenome-
nological fit to take into account combined conductive–radiative heat transfers between the
working fluid and the external heat reservoirs [5,7,9]. The Stefan–Boltzmann law, T k � T 0k, with
k ¼ 4, applies for radiative heat engines used in solar energy conversion [11]. As before, we restrict
ourselves to the results concerning the X criterion. The involved heats are given by

j _QQhj ¼ rhðT k
h � T 0k

h Þ
n ¼ rhT

ðknÞ
h 1

�
� 1

akh

�n

; ð7Þ

Fig. 3. Efficiency and power for the inverse heat transfer law with I ¼ 0:9, rhc ¼ 1, rih ¼ 0:1. (a) Maximum efficiency
gmaxðsÞ (upper solid line), efficiency at maximum _XX conditions gmax _XXðsÞ (intermediate dashed line), efficiency at maxi-
mum power gmax j _WW jðsÞ (lower solid line). The intermediate solid line is ½gmaxðsÞ þ gmax j _WW jðsÞ�=2. (b) Maximum power

j _WW jmax (upper solid line), power at maximum _XX conditions j _WW jmax _XX (intermediate dashed line) and power at maximum

efficiency j _WW jmax g (lower solid line).
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j _QQcj ¼ rcðT 0k
c � T k

c Þ
n ¼ rhT

ðknÞ
h

sðknÞ

rhc
ðakc � 1Þ

n; ð8Þ

j _QQij ¼ riðT k
h � T k

c Þ
n ¼ rhT

ðknÞ
h rihð1� skÞn; ð9Þ

with k ¼ 1, n ¼ 5=4 for the Dulong–Petit and k ¼ 4, n ¼ 1 for the Stefan–Boltzmann laws. The
implicit constraints between the independent variable and the controls ac ¼ acðah; s; I; rhcÞ,
coming from the Clausius inequality are now given by rhca1�n

h ðah � 1Þn ¼ Isn�1ðac � 1Þn=ac (with
n ¼ 5=4) for the Dulong–Petit and by rhcðah � a�3h Þ ¼ Is3ða3c � a�1c Þ for the Stefan–Boltzmann
laws.
From Eqs. (7)–(9), it is easy to obtain the power output, the efficiency and _XX. Similar qualitative

behaviors to those shown in Fig. 2 for the inverse law, are obtained with these two heat transfer
laws, and they are not plotted here. The s behavior of the optimized efficiencies and powers is
more interesting. Fig. 4a shows gmax, gmax j _WW j and gmax _XX, while Fig. 4b shows j _WW jmax, j _WW jmax _XX, and
j _WW jmax g (in reduced units rhT

5=4
h ) for the Dulong–Petit heat law. Fig. 5a and b show the corre-

sponding values for the Stefan–Boltzmann law (the powers in reduced units rhT 4h ). In spite of the
different qualitative behavior of these functions, depending on the particular heat transfer law, we
stress from Figs. 4 and 5 the intermediate character of the efficiency and power when optimized
under the _XX criterion in relation to the maximum efficiency and maximum power regimes. As
before, we have checked that these features also apply for all sets of realistic values of the controls.

5. Endoreversible limits

When I ¼ 1 and ri ¼ 0, the overall irreversibilities are those coming from the coupling between
the working fluid and the external reservoirs, i.e. the heat engine is endoreversible. In this case,
gmax ¼ 1� s � gC, independently of the relative conductance rhc. On the other side, the entropy

Fig. 4. As Fig. 3a and b but for the Dulong–Petit heat transfer law.
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generation is given by _SS ¼ ðj _QQcj=TcÞ � ðj _QQhj=ThÞ ¼ ðj _QQhj=TcÞðgC � gÞ. Thus, the ecological function
(as defined by Angulo [4]) E ¼ j _WW j � Tc _SS ¼ ½g � ðgC � gÞ�j _QQhj � _XX, i.e. the ecological and the X
criteria are identical in the endoreversible limit. However, they may differ under irreversible
conditions [8]. In this endoreversible limit and for the three nonlinear heat transfer laws under
consideration, the efficiency under maximum power conditions is rhc-dependent [12]. Indeed, the
same happens for the efficiency under maximum _XX conditions. Although the results are not
plotted, in this limit and for all realistic values of rhc, the close coincidence between gmax _XX and the
semi-sum property for the three nonlinear heat transfer laws under consideration has been found.

6. Conclusions

In summary, we have found that both irreversible and endoreversible Carnot-like heat engines
with inverse, Dulong–Petit and Stefan–Boltzmann heat transfer laws and working under optimal
X conditions have: (i) an efficiency lying between the maximum possible efficiency and the effi-
ciency at maximum power and (ii) a power close to the maximum possible value. These findings,
together with those obtained in Ref. [8] for the linear heat transfer law, can be considered a
generalization to irreversible situations of the previous results concerning the semi-sum property.
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Fig. 5. As Fig. 3a and b but for the Stefan–Boltzmann heat transfer law.
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