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Abstract

A potential flow 2-D vortex panel model (VPM2D) for unsteady hydrodynamics calculation of the vertical axis straight blade variable
pitch turbine was given for tidal streams energy conversion. Numerical results of predicted instantaneous blade forces and wake flow of
the rotor showed good agreement with the test data. The model was also compared with the previous classic free vortex model (V-
DART) and vortex method combined with finite element analysis (FEVDTM). It showed that the present model was much better than
the former, less complex than the latter and suitable for designing and optimization of the vertical axis straight blade turbine.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Since 1970, several fluid dynamic prediction models
have been formulated for vertical axis turbines such as
the Darrieus turbine. These models can be classified as
two families according to their theory basis: the stream
tube modeling method, which is based upon equating the
forces on the rotor blade to the change in streamwise
momentum through the rotor; and the vortex modeling
method, which is based upon vortex representations of
the blades and their wakes.

The stream tube approach needs much less computation
time, but the vortex approach is more accurate. Stream
tube models such as the Single Stream-Tube Model pro-
posed by Templin [1], the Multiple Stream-Tube Model
by Strickland [2], the Double-Multiple Stream-Tube Model
by Paraschivoiu [3] and the Stream-Tube Model with mod-
ification by Zhang et al. [4] can predict effectively the gen-
eral performance of the rotor (power coefficient vs. tip to
speed ratio, etc.); and their relatively low computational
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cost makes them a useful practical tool for design. On
the other hand, they exhibit difficulties in predicting the
instantaneous forces on the blades and the details of the
flow field, but all these informations are important to
the improvement and optimal design of the turbine. In
order to calculate these forces in detail and accurately,
vortex models have to be used. In the present paper, a
potential flow 2-D vortex panel model is formulated and
compared with the previous classic free vortex model (V-
DART) proposed by Strickland et al. [5] and the vortex
method combined with finite element analysis (FEVDTM)
proposed by Ponta and Jacovkis [6]. The idea is to find a
sufficiently accurate and much less sophisticated model.

2. Previous vortex models

2.1. Free vortex model

Several free vortex models for vertical-axis wind tur-
bines have been developed in the past such as those due
to Fanucci and Walters [7], Wilson [8], Holmes [9] and
Strickland et al. [5]. They are based upon replacement
of the rotor blade by a bound vortex filament (or several
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filaments) called a lifting line that changes its strength as a
function of the azimuthal position. In these methods, the
V-DART model [5] is the most popular. This model
requires that every rotor blade be divided into a number
of segments along its span. Every segment is represented
by a bound vortex filament (a lifting line) positioned
along the camber line. Because of the bound vortex vari-
ation, spanwise vortices are shed, and their strengths are
equal to the change of the bound vortex strength. Thus,
the wake is modeled by a discrete set of free vortex fila-
ments shed from each blade element in such a way as
to satisfy Kelvin’s theorem:

CðkÞw þ CðkÞf ¼ Cðk�1Þ
f ð1Þ

where CðkÞw is the strength of the vortex shed at the kth iter-

ation, CðkÞf is the bound vortex strength at the kth iteration

and Cðk�1Þ
f is the bound vortex strength at the (k � 1)th iter-

ation. A simple representation of this vortex system associ-
ated with a blade element is shown in Fig. 1.

In order to allow closure of the proposed vortex model,
a relation between the bound vortex strength Cf and the
local flow velocity at the blade must be obtained. Up to
the present, several techniques have been developed to
achieve this. One of the most successful is as follows:

Cf ¼
1

2
CLCV R ð2Þ

Here, CL is the foil section lift coefficient, C is the blade
chord length and VR is the local relative fluid velocity.
The lift per unit span on a blade segment can be given by
the Kutta–Joukowski law in terms of the bound vortex
strength Cf; and the lift can also be formulated in terms
of the airfoil section lift coefficient. Equating these two
expressions for lift yields the required relationship at a par-
ticular blade segment.

The free vortex model has several advantages over the
previous methods. There are, however, shortcomings of
this approach too. The required airfoil section lift coeffi-
cients are taken from static test data for their use, but
the circulation about a pitching airfoil moving over a cur-
vilinear path differs from those found on non-pitching,
non-rotating sections. The surface pressure distribution dif-
fers too, and it would alter the boundary layer structure
and, therefore, the fluid dynamic characteristics. So, the
Kutta condition may be poorly matched and the calculated
forces not sufficiently accurate.
Fig. 1. Vortex structure for single blade element of V-DART model.
2.2. Free vortex model combined with finite element analysis

In order to avoiding some remaining deficiencies in the
classic free vortex models, Ponta and Jacovkis presented
the FEVDTM model combining the free vortex model with
a finite element analysis of the flow in the surroundings of
the blades [6]. The free vortex method acts as a macro-model
whose results are used as a boundary condition on the
boundary of the finite element analysis area, which acts as
a micro-model (see Fig. 2). The bound vortex strength is
determined by integration of the flow velocity field obtained
from the finite element analysis. This sequence defines an
iterative scheme; and after it converges, the surface pressure
distribution over the foil can be calculated by integrating the
momentum equation. From this knowledge of the pressure
and velocity distributions, a boundary layer model to calcu-
late the viscous shear stress over the foil surface is applied.
The fluid dynamic forces on the blade are determined by
integration of these pressure and shear stress distributions.

This model is a fully theoretical tool because it does
not use airfoil test data. Moreover, it includes the rota-
tional effect induced by turbine rotation, so that it does
not suffer from the irrotational flow condition of potential
analysis, and therefore, it allows improving the accuracy
of prediction.

3. Two-dimensional vortex panel model (VPM2D)

The purpose of the present paper is to show a 2-D vor-
tex panel method (VPM2D) for modeling the vertical axis
straight blade turbine. The method is based on the surface
distribution of singularity elements to fulfill the boundary
conditions on the actual surfaces of turbine blades. In
detail, discrete source elements are distributed along the
blade section contour with discrete vortex elements along
the camber line; and a wake model is established by the dis-
tribution of discrete concentrated vortices on the wake
shedding lines. The Kutta condition is realized by forcing
the pressure difference at the trailing edge (TE) between
the suction and pressure sides to approach zero. The time
stepping method is applied to get the strength of each
singularity element and the velocity distribution along the
blade section contour. The fluid dynamic pressures and
xθ
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Fig. 2. Finite element analysis area and macro-model area for FEVDTM.
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the loads generated by the blade can be calculated by using
the unsteady Bernoulli’s equation.

3.1. Theoretical background

As shown in Fig. 3, the origin of an inertial frame of ref-
erence (X,Y) is selected to coincide with the center axis of
the turbine with the X axis direction coinciding with the
free stream velocity V1. A body fixed coordinate system
(x,y) is built on one of the blades with the x axis pointing
to the trailing edge along the chord line. The motion of the
blade is assumed to be known and can be defined in the
inertial frame of reference by the velocity U which is
the motion of the center of the body fixed system, and
the angular velocity X which is the rotation rate of the
body fixed reference system as shown in Fig. 4.

The fluid surrounding the blades is assumed to be invis-
cid, irrotational and incompressible in the entire flow field,
excluding the solid boundaries Sb and the wakes Sw of the
blades. So, the perturbation velocity potential / formu-
lated in the body fixed system (x,y) satisfies:

r2/ðx; y; tÞ ¼ 0 ðin fluidÞ ð3Þ
The time dependent boundary condition requiring zero
flow across the surface is:

r/ �n¼ðU�V1þX� rÞ �n ðon the blade surfacesÞ ð4Þ
Here, r is the position vector and n is the normal to the sur-
face of the solid boundaries.

The second boundary condition requires that the flow
disturbance due to the turbine’s motion through the fluid
should diminish far from the turbine
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Fig. 3. Reference coordinate system for VPM2D model.
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Fig. 4. Body-fixed coordinate system for VPM2D model.
r/! 0 ðat infinityÞ ð5Þ
and the initial disturbance is zero,

r/! 0 ðt ¼ 0Þ ð6Þ
The Kutta condition is necessary to make this lifting

flow problem unique by applying equal pressures at the
up and down sides of the blade section trailing edge:

pu ¼ pd ðat the TEÞ ð7Þ
The pressure follows from the unsteady Bernoulli’s

equation, namely

p � p1
q

¼ � o/
ot
þ ðU � V1 þX� rÞ � r/� 1

2
ðr/Þ2 ð8Þ

So Eq. (7) can be expressed as:

pu � pd

q
¼ o/d

ot
� o/u

ot
þ ðU � VA þX� ruÞ � r/u

� ðU � VA þX� rdÞ � r/d þ
1

2
ðr/dÞ

2

� 1

2
ðr/uÞ

2

¼ 0 ð9Þ

If the up and down sides of the trailing edge are very
close to each other, then it will suffice to write:

ru � rd �
1

2
ðru þ rdÞ ¼ �rTE ð10Þ

So Eq. (8) can be simplified as:

oð/u � /dÞ
ot

¼ oCf

ot
� ðU � VA þX� �rTEÞ � ðr/u �r/dÞ

þ 1

2
ðr/d �r/uÞ � ðr/d þr/uÞ

¼ ðU � VA þX� �rTE � VTEÞ � ðr/u �r/dÞ
ð11Þ

where VTE ¼ 1
2
ðr/d þr/uÞ.

For the unsteady case, the Kelvin condition will supply
an additional equation that can be used with the Kutta
condition to determine the streamwise strength of the vor-
ticity shed into the wake. In general, this condition can be
expressed as:

dCTotal

dt
¼ dðCf þ CwÞ

dt
¼ 0 ðfor any tÞ ð12Þ

or

oCf

ot
¼ � oCw

ot
� �CðkÞw � Cðk�1Þ

w

Dt
¼ � cðkÞw

Dt
and

CðkÞf þ cðkÞw � Cðk�1Þ
f ð13Þ
3.2. Numerical model

Because the turbine undergoes a time dependent motion
that starts at t = 0, the solution can be calculated at succes-
sive intervals of time:
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tk ðt0 ¼ 0; k ¼ 1; 2; 3; . . .Þ ð14Þ
At time tk, the section contour and the chord line of

every blade are, respectively, replaced by n and m
straight line elements (see Fig. 5). To the pth blade
(p = 1, . . .,Z), a uniform source distribution rðkÞi;p is placed
on the ith element (i = 1, . . .,n) of the section contour
with a uniform vorticity distribution cðkÞf;p on each chord
element, where the superscript (k) refers to the time tk,
the subscript p to the pth blade and Z to the blade num-
ber of the turbine. If the chord line length is Cf,p, the
overall circulation of the pth blade CðkÞf;p equals cðkÞf ;p � Cf ;p.
The vorticity on the trailing edge wake cðkÞw;p is modeled
by the discrete concentrated vortex for every blade, and
from Eq. (13), it satisfies

cðkÞw;p ¼ Cðk�1Þ
f;p � CðkÞf ;p ð15Þ

Thus, the circulation of this vortex is the change of that
around the blade between times tk�1 and tk, assuming that
Cðk�1Þ

f ;p has already been evaluated. It is assumed further to
be convected from the trailing edge with the velocity of that
point, so its position can be calculated as:

rðkÞw;p ¼ �rTE;p � b Up � V1 þXp � �rTE;p � VTE;p

� �
Dt ð16Þ

Here, b is the position coefficient of the newly shedding
vortex. In the present calculation, b = 0.5 is assumed.

The downstream wake is formed by discrete concen-
trated vortices from the vorticity shed at earlier time
intervals. Each of these vortices is assumed to be con-
vected according to the resultant velocity calculated at
the center of itself at each successive time interval. Thus,
the pattern of the downstream discrete vortices, their
strengths and their positions are regarded as known at
time tk.

Now, the velocity potential / can be constructed by
summing up the basic solutions of the source and vorticity
distributions over the solid contours, chord lines and wakes
of the blades. Thus, at time tk, there are (n + 2) Æ Z total
unknowns: ri,p, cf,p and cðkÞw;p ði ¼ 1; 2; . . . ; n; p ¼ 1; 2; . . . ;
ZÞ. The basic equation systems can be formulated as fol-
lows (noting that, for briefness, the superscript k is omitted
if not leading to misunderstanding).

1. From Eq. (4), there are n Æ Z equations for the condi-
tions of zero normal flow at the midpoint of each blade
section contour panel:
Contour
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Fig. 5. Model for the pth blade at time tk.
XZ

q¼1

Xn

j¼1

Aip;jqrj;q

 !
þ Aip;ðnþ1Þqcf ;q þ

Xk

j¼1

Cip;jqc
ðjÞ
w;q

 !" #

¼ nip � ðUp � V1 þXp � ripÞ
ði ¼ 1; 2; . . . ; n; p ¼ 1; 2; . . . ; ZÞ ð17Þ

2. From Eq. (11) there are Z equations for Kutta
conditions:

XZ

q¼1

Xn

j¼1

Aðnþ1Þp;jqrj;q

 !
þ Aðnþ1Þp;ðnþ1Þqcf;q

"

þ
Xk

j¼1

CðNþ1Þp;jqc
ðjÞ
w;q

 !#
¼ �

cðkÞw;p

Dt
ð18Þ

3. From Eq. (13), there are Z equations for Kelvin
conditions:

Cf ;p � cðkÞf ;p þ cðkÞw;p ¼ Cf ;p � cðk�1Þ
f ;p ð19Þ

where i = 1,2, . . .,n and p = 1,2, . . .,Z and Aip,jq and
Cip,jq are appropriate influence coefficients, which
depend on the instantaneous coordinates of the relevant
panel elements.
3.3. Method of solution

Now the solution will be unique. However, the equation
system defined by Eqs. (17)–(19) is nonlinear, so an iterative
scheme is needed. At the beginning of each time step, an ini-
tial value is given to VTE;p (e.g. zero) to linearize the equation
system, and the unknowns can be solved. Then, a new value
of VTE;p can be calculated with the new solved unknowns.
After that, recalculate the equation system by introduce this
newly solved VTE;p to get the new results of the unknowns.
Continue this iterative process until it converges.

Calculating shows that using the last time interval’s con-
verged value of VTE;p as the initial value of the present time
interval will accelerate the iterative process; i.e. setting

V
ðkÞ
TE;p0 ¼ V

ðk�1Þ
TE;p ð20Þ

where V
ðkÞ
TE;p0 is the iterative initial value at time tk and

V
ðk�1Þ
TE;p is the converged value at time tk�1.
Once the source and vorticity strengths have been deter-

mined, the velocity distribution over the blade sections can
be calculated. The velocity potential / is obtained by inte-
grating the velocity field along the blade section contour
from the down side to the upside of the blade trailing edge.

/ðqÞ ¼ /0 þ
Z q

q1

V � dl ð21Þ

Here, /0 = /(q1) is the velocity potential at the down side
of the trailing edge.

The value of o//ot at the midpoint of the ith element of
the pth blade at time tk is approximated by

o/
ot

����
ðkÞ

ip

¼
/ðkÞip �/ðk�1Þ

ip

tk� tk�1

ði¼1;2; . . . ;n; p¼1; . . . ;ZÞ ð22Þ
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The pressure can be calculated by applying the unsteady
Bernoulli’s equation as in Eq. (8), and the pressure coeffi-
cient on the single blade is defined as:

Cp ¼
p � p1
0:5qV 2

1
ð23Þ

The force on the blade can be expressed as:

F ¼ ðF x; F yÞ ¼ 0:5qV 2
A �
Z

Sb

CpndS ð24Þ

Once the solution at time tk has been determined, the
model is set up for the time tk+1. Every discrete concen-
trated vortex of each blade is assumed to move at the local
velocity of the center of itself, namely

rðiþ1Þ
w;p ¼ rðiÞw;p þ ðtkþ1 � tkÞ � V ðiÞw;p

ði ¼ 1; 2; . . . ; k; p ¼ 1; . . . ; ZÞ ð25Þ

Here, rðiÞw;p is the position vector to the center of the pth
blade’s ith wake vortex, V ðiÞw;p is the total velocity of that
point at time tk and the strengths of the wake vortices
are assumed to remain unchanged.

Additional consideration must be paid to the blade
vortex interaction. If a vortex can impinge on the blade,
its trajectory needs to be regulated. The criterion is based
Fig. 6. Comparison of non-dimensional n

Fig. 7. Comparison of non-dimensional ta
on the principle that the vortex can at most slide along
the blade surface. Here, the method of Yao and Liu
[10] is referenced. If the predicted position of the vortex
is in the blade, the new position must be corrected by
modifying Eq. (25) as follows:

rðiþ1Þ
w;p ¼ rðiÞw;p þ ðtkþ1 � tkÞ � V ðiÞw;p

��� ��� � l ð26Þ

Here, l is the unit tangential vector at the predicted imping-
ing location on the blade surface.

In present model, a correction method based on the Von
Karman integral momentum equation for the boundary
layer is applied in order to calculate the viscous forces after
the potential flow computation. It can be expressed as:

dd
dn
¼ 15

2U e

2m
d
� 3

5
d

dU e

dn

� �
; djn¼0 ¼ 0 ð27Þ

where d is the boundary layer thickness, Ue is the veloc-
ity on the boundary layer external border and is known
after the potential flow calculation, n is the coordinate
along the blade section contour and m is the kinematic
viscosity coefficient. The fourth order Runge–Kutta algo-
rithm is used to solve this problem by assuming a qua-
dratic velocity profile inside the boundary layer. Then,
the shear stress sw on the blade section contour is calcu-
lated by
ormal force against azimuthal angle.

ngential force against azimuthal angle.
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sw ¼
2lU e

d
ð28Þ

Here, l is the dynamic viscosity coefficient. At last, the
shear stresses are integrated along the foil contour to ob-
tain the total viscous force actuating on the blades.

4. Validation of the VPM2D model

In the present part, the VPM2D model will be applied to
an example of Strickland et al. [5] (also included by Klimas
[11] and re-simulated by Ponta and Jacovkis [6]). This
example is based on an experimental test over a NACA
0012 straight bladed rotor with 1, 2 or 3 blades. The wake
vorticity visualizations were recorded for all three blades;
but the normal and tangential forces acting on the blade
were measured only in terms of the two bladed rotor.

The test was made at a tip to speed ratio k = xR/
V1 = 5.0, the blade chord length Reynolds’ number Re =
CV1/m = 40,000 and the chord radius ratio C/R = 0.15.
Here, R is the rotor’s radius and x is the rotor’s angular
velocity.

The lift and drag coefficients of the blade section are,
respectively, defined as:
Fig. 8. Wake vortex centers path of experimental visualization superim-
posed over by FEVDTM prediction (one blade rotor).

Fig. 9. Wake vortex centers path of VPM2D prediction (one blade rotor).
CL ¼
L

0:5qV 2
RC

; CD ¼
Dr

0:5qV 2
RC

ð29Þ

Here, L and Dr are, respectively, the lift and drag on the
blade section, q is the fluid density and VR is the relative
velocity of the blade. They can be expressed as:

L ¼ F y cos a� F x sin a ð30Þ
Dr ¼ F x cos aþ F y sin a ð31Þ

V R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRx cos hÞ2 þ ðV 1 þ Rx sin hÞ2

q
ð32Þ

where h = xt is the azimuthal angle as shown in Fig. 3; a is
the blade section angle of attack

a ¼ arctan
V 1 cos h

V 1 sin hþ Rx
¼ arctan

cos h
sin hþ k

ð33Þ

The non-dimensional tangential force F t and normal
force F n of the blade section are defined as follows:

F t ¼
F t

0:5qV 2
1C
¼ Ct

V R

V 1

� 	2

ð34Þ

F n ¼
F n

0:5qV 2
1C
¼ Cn

V R

V 1

� 	2

ð35Þ

Ct and Cn have relations to the foil lift and drag coefficients
as follows:

Ct ¼ CL sin a� CD cos a ð36Þ
Cn ¼ CL cos aþ CD sin a ð37Þ

The calculated results of the VPM2D model will be com-
pared with those of the V-DART model, FEVDTM model
and experiment. Fig. 6 shows this comparison of the non-
dimensional normal force F n against the azimuthal angle
h starting from h0 = 90�, while Fig. 7 shows the non-dimen-
sional tangential force case.

In the experiment of Strickland et al. [5], the wake’s
conformation was studied by dye injection through the
trailing edge of one of the rotor’s blades. This streak line
Fig. 10. Wake vortex centers path of experimental visualization superim-
posed over by FEVDTM prediction (two blade rotor).



Fig. 13. Wake vortex centers path of VPM2D prediction (three blade
rotor).

Fig. 12. Wake vortex centers path of experimental visualization superim-
posed over by FEVDTM prediction (three blade rotor).

Fig. 11. Wake vortex centers path of VPM2D prediction (two blade
rotor).
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is indicative of the vortex sheet produced by the foil or it
can be conceived as a line made up of shed vortex centers.
Figs. 8–13 show, respectively, the comparison for these
three cases of 1, 2 and 3 blades of the VPM2D prediction,
the FEVDTM prediction and the experimental visualiza-
tion (noting that the FEVDTM prediction and the experi-
mental visualization are superimposed together in the
plots).

5. Conclusions

The VPM2D model prediction results in Figs. 6 and 7
show good agreement with the experiment data when pre-
dicting instantaneous blade forces. From the comparisons,
it can be seen clearly that these results are better than those
of the V-DART model and no worse than those of the
FEVDTM model, and the VPM2D model has the advantage
of simpleness and requiring less computer processing time.

From these plots, it is apparent that the non-dimen-
sional tangential and normal forces on the blade in the
upstream region are much greater than those in the down-
stream region. As might be expected, the minimum value of
F t and the zero value of F n occur at azimuthal angles
greater than 90� instead of 90�. In the upstream region,
F t and F n are not symmetrical about an azimuthal angle
of 180�, the same occurring in the downstream region at
the angle of 360�. These phenomena occur because of the
blade–blade and vortex–blade interactions and the induced
lateral flow velocity, and the prediction of these character-
istics is the advantage of the vortex method over the stream
tube method.

Figs. 8–13 show comparisons of the wake vorticity
streak lines for one blade, two blade and three blade rotors,
respectively. The comparison between the two models’ pre-
dicted and experimental results show good agreement too.
The increase in blockage and interaction with increasing
turbine solidity is clearly seen.

From the above comparisons and analyses, the valida-
tion of the VPM2D model should be assured in some
respects. This model is more accurate than the V-DART
model and simpler and needs less CPU time than the
FEVDTM model. Thus, it can be used for performance
prediction and design of the vertical axis straight blade tur-
bine, especially for the optimal design of the turbine
through appropriate choice of the blade pitching method
because it automatically includes the rotational effect of
the blade around the axis of itself [see Eq. (17)].

However, this model does not include consideration of
the phenomenon of dynamic stall, which often occurs at
low tip to speed ratio and high turbine solidity conditions,
and it can only focus on the 2-D problem (straight blade
turbine with big foil span to chord ratio). So the VPM2D
model is a fully theoretical tool that could be used as the
basis of a future more sophisticated model that includes
theoretical stall and three-dimensional simulation.
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