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Abstract

Since 1970 several aerodynamic prediction models have been formulated for the Darrieus
turbine. We can identify two families of models: stream-tube and vortex. The former needs
much less computation time but the latter is more accurate. The purpose of this paper is to
show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea
is to combine a classic free vortex model with a finite element analysis of the flow in the
surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex
models. The agreement between analysis and experiment when predicting instantaneous blade
forces and near wake flow behind the rotor is better than the one obtained in previous models.
 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Darrieus Turbine is a kind of power machine used originally in wind–power
applications and recently applied to hydropower generation. These turbines have
several advantages, but the prediction of their behaviour is more complex than the
prediction of the horizontal-axis turbines.
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Since 1970 several aerodynamic prediction models have been formulated for Dar-
rieus machines. Modelling of these turbines follows two different schools: the
stream-tube modelling approach, that is based upon equating the forces on the rotor
blade to the change in streamwise momentum through the rotor, and the vortex
modelling approach, that is based upon vortex representations of the blades and their
wakes. The stream-tube approach needs much less computation time but the vortex
approach is more accurate.

Stream-tube models have evolved with time and we can distinguish several categ-
ories. The first of them is the Single Stream-Tube Model proposed by Templin [1].
It uses a single tube that covers the entire span of the rotor. The latter’s interference
is represented by an actuator disk. As the entire rotor is represented by only one
tube with one actuator disk, this model predicts a uniform flow for the entire cross
section and can not take into account variations of the flow parameters between the
upwind and downwind halves of the rotor. To improve the predictive capacities
Strickland [2] proposed the Multiple Stream-Tube Model, which uses an array of
adjacent tubes to cover the rotor’s span. It permits to know the flow variations over
the cross section. A more sophisticated approach called Double-Multiple Stream-
Tube Model was proposed by Paraschivoiu [3]. As it uses two actuator disks placed
in tandem into each tube of the multiple array, it can also predict differences between
the upwind and downwind halves. Advanced versions of Paraschivoiu’s model incor-
porate dynamic stall models. Stream-tube models (specially Paraschivoiu’s) can pre-
dict effectively the general performance of the rotor (power coefficient vs. TSR,
power output vs. wind speed, etc.) and their relatively low computational cost makes
them a useful practical tool for design. On the other hand, they exhibit differences
predicting the instantaneous forces on the blades. To calculate accurately these forces
we have to use a vortex model; the following sections aboard this subject.

2. Free vortex model

A very useful method developed for the Darrieus turbine analysis is the free vortex
model. It is based upon the replacement of the airfoil blade by a bound vortex fila-
ment called a lifting line that changes its strength as a function of azimutal position.
The use of a single line vortex to represent the airfoil is a simplification over the
two-dimensional vortex model of Fanucci and Walters [4] that uses three to eight
bound vortices positioned along the camber line. A single bound vortex represents
the flow field adequately at distances greater than about one chord length from the
airfoil ([5]). Fig. 1 shows the bounded and the shed filaments for a blade element.
Fig. 2 shows the trajectory of a vortex wake.

Because of the bound vortex variation, spanwise vortices were shed and their
strengths are equal to the change in the bound vortex strength. Thus, the wake is
modelled by a discrete set of free vortex filaments shed from the each blade end in
such a way so as to satisfy Kelvin’s theorem in a discrete way:

�sN−1��bN−1��bN, (1)
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Fig. 1. Vortex structure for a blade element.

Fig. 2. An example of a shed vortex wake calculated by the FEVDTM model.

where �sN�1 is the strength of the vortex shed at N�1 iteration, �bN is the bound
vortex strength at N iteration and �bN�1 is the bound vortex strength at N�1 iteration.

Shed vortex filaments are convected downstream at the local flow velocity. The
flow velocity at any point is determined by the sum of the undisturbed free stream
velocity and the velocity induced by the entire vortex filaments in the flow field.
The velocity induced at a point by a single vortex filament is calculated from the
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Biot–Savart law. In two-dimensional analysis, corresponding to straight bladed
rotors, infinite length rectilinear filaments perpendicular to flow plane can be used.
Then, the induced velocity at a point p is given by:

vp�(r�k̂)
�

2ph
, (2)

where h is the perpendicular distance from the vortex filament to p, r is the unit
vector in the direction from the vortex filament to p and k̂ is the unit vector in the
direction perpendicular to flow plane.

In order to allow closure of the proposed vortex model, a relationship between
the bound vortex strength and the local flow velocity at the blade must be obtained.
Up to the present, several techniques were developed to achieve this. One of the
most successful, proposed by Strickland et al. [6], equates the lift per unit span on
the blade with the one formulated in terms of the airfoil section lift coefficient. It
yields the required relationship between the bound vortex strength �b and the local
relative velocity in the plane of the airfoil section WR.

�b�
1
2

clcWR, (3)

where cl is the airfoil section lift coefficient and c is the blade chord.
It should be noted that the effects of aerodynamic stall are automatically included

into Eq. (3) through the section lift coefficient.
A curve-bladed rotor requires a three-dimensional analysis where its blades are

divided into a number of segments along their span. A rectilinear bound vortex
filament replaces each blade element. Spanwise vortices are shed from each of them
in a way that satisfies Kelvin’s theorem. It can be assumed that the elemental vortex
filament remains straight with its ends being convected at their respective local fluid
velocities. Therefore, they may stretch, translate and rotate as a function of time. At
the end of each blade element, a trailing vortex is shed as a consequence of the
Helmholtz theorem of vorticity (conservation of � along a vortex tube). It results in
shedding a quadrilateral mesh vortex system with concentrated vortices of equal
strength along each side. Spanwise and trailing vortices which are shed during any
given time period can be related to the change in bound vorticity with respect to
time and position along the blade. The velocity induced at any point in three dimen-
sions by each finite length vortex filament is calculated from the Biot–Savart law
using an expression slightly more complex than Eq. (2). Strickland’s model can treat
both straight and curve-bladed rotors.

2.1. Considerations

The free vortex model has several advantages over the previous methods. There
are, however, shortcomings of this approach:

1. All of the aerodynamic models described above require airfoil coefficients taken
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from static test data for their use. Since Darrieus rotor blades rotating at angular
velocity w experience significant cyclic variations in relative velocity and angle
of attack, the use of quasi-steady aerodynamics for the determination of forces
has been questioned. There is another version of free vortex model developed by
Wilson et al. [7] which, instead of calculating the aerodynamic loads from the
airfoil coefficient data, uses an analytical method to perform this. It employs the
circle theorem to map the airfoil into a circle plane where the Kutta condition is
satisfied and the strength of the vortices are determined. The force on the airfoil
is determined by two methods, integration of the pressure over the airfoil and
impulse of the wake vortices. This solution avoids the quasi-steady approach;
however, it introduces another two disadvantages: first, it does not cover stall
phenomena; second, it is based upon the complex potential theory that requires
the irrotational flow condition and it is not real because, still under the assumption
of non-viscous flow, there exists a rotational effect induced by turbine rotation
that potential flow theory can not manage.

2. Circulation about a pitching airfoil operating over a curvilinear path differs from
those found on non-pitching, non-rotating sections. Surface pressure distribution
differs too, and it would alter the boundary layer structure and therefore the sec-
tion characteristics.

3. Another unsteady effect is due to fluid inertia. There are non-circulatory forces
proportional to airspeed changes and angular velocity. These fall into the category
of apparent mass effects.

Wilson and Strickland included adjustment terms in their models to compensate for
the effects of pitching circulation and apparent mass.

3. Free vortex model combined with finite element analysis (FEVDTM)

The purpose of the present paper is to show a new option for modelling the aerody-
namic behaviour of Darrieus turbines avoiding some of the remaining deficiencies
in classic free vortex models. The idea is to combine a free vortex model with a
finite element analysis of the flow in the surroundings of the blades. The free vortex
scheme acts as a macro-model whose results are used as a boundary condition on
the boundary of the finite element analysis area �, which acts as a micro-model (see
Fig. 3). The bound vortex strength is determined by integration of the flow velocity
field obtained from the finite element analysis. This sequence defines an iterative
scheme; after it converges we can calculate the surface pressure distribution over
the airfoil integrating the momentum equation. From this knowledge of pressure and
velocity distributions, we can input a boundary layer model to calculate the viscous
shear stress over the airfoil surface. The aerodynamic forces on the blade are determ-
ined by integration of these pressure and shear stress distributions. A pseudo code
diagram of the FEVDTM program is shown in Fig. 4.

This model has the following advantages:

1. It does not use airfoil coefficient data, thus avoiding the quasi-steady approach
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Fig. 3. Micro-model diagram and finite element analysis area.

problem; moreover, it does not suffer from the irrotational flow condition of poten-
tial analysis because, as we shall see later, we can solve our finite element analysis
considering the rotational effect induced by turbine rotation.

2. Every point of the micro-model boundary has its corresponding velocity input,
including the rotational velocity components. Therefore, the finite element analysis
is made under curvilinear flow boundary conditions; thus, pitching circulation
effect is naturally included.

3. Apparent mass effects can be calculated exactly because they are included in the
momentum equation.

It should be noted that this model does not include the stall phenomena. When
stall occurs, the boundary layer separates from the solid contour of the airfoil and
a turbulent wake appears. Up to the present, mathematical modelling of turbulent
wakes is extremely complex (and expensive in terms of computer time). Therefore,
we can apply the new model before stall appearance, switching to a classical free
vortex model using airfoil coefficient data when stall condition is detected.

4. The finite element analysis for the micro-model

As we stated above, we shall consider the viscous effects restricted to the boundary
layer and the external flow as non-viscous. There are three options to perform the



7F.L. Ponta, P.M. Jacovkis / Renewable Energy 24 (2001) 1–18

Fig. 4. Pseudo-code diagram of the FEVDTM program.
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micro-model analysis; two of them are quite well-known and the other is a new
attempt that will be treated in detail afterwards. These options are:

1. Potential Flow Equation — It has the advantage that it is economic to compute
because: a) there is just one variable per node to solve, b) incompressibility con-
dition is automatically implicit in the equation formulation and c) the equation is
linear; thus, it means a direct solution without iterative schemes. On the other
hand, due to the irrotational flow condition of potential analysis, the problem of
the exclusion of the rotational effect induced by turbine rotation still remains.

2. Euler Equation — The obvious option for our problem is to solve the momentum
equation using Petrov–Galerkin techniques; for example, imposing incompress-
ibility by penalty, Lagrangian multipliers or augmented Lagrangian methods. This
option is quite valid; however, it implies an iterative resolution because of the
nonlinearity introduced by the convective term in the momentum equation. More-
over, due to the non-steadiness of this phenomenon, we have to use some method
to treat the time-dependent term (Crank–Nicholson, for example) and it introduces
an additional complication to the scheme. It means that we have to solve an
iterative process for the micro-model inside the macro-model iterative process.
Considering that the free-vortex approach is largely voracious on the compu-
tational resources concerned, this inclusion of a loop within a loop can become
too time-consuming for a practical solution.

3. Constant-Curl Laplacian Equation — This is a new attempt that owns the sim-
plicity and linearity of a potential analysis but includes the rotational effect
induced by turbine rotation taking advantage of the fact that this rotation is con-
stant. The idea is based upon a kinematic scheme that states the nullity of the
velocity Laplacian imposing simultaneously the conditions of incompressibility
and constant curl for the velocity field.

A well-known vector relation states

�2v��·�v��(�·v)���(��v) (4)

where v is the velocity vector in a moving reference frame fixed to the blade. By
the incompressibility condition (�·v)=0, the first term of the third member of Eq.
(4) vanishes. Thus, if the curl of the velocity field rotv=(��v) is constant, it yields:

�2v��·�v�0 (5)

It can be proved for the case of Darrieus turbine (for a brief summary of the proof
see Appendix A) that the curl of the velocity field external to the boundary layer
inside the micro-model control volume is:

rot v��2wk̂ (6)

where w is the angular speed of the turbine (assumed constant) and k̂ is the unit
vector normal to the frame.
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Thus, the curl is constant and Eq. (5) holds. A finite element routine that solves
this equation with the constraints of incompressibility (�·v)=0 and constant-curl
��(��v)=0 was implemented [8].

We use 9-nodes isoparametric elements interpolating velocities and imposing the
constant-curl condition by a modified penalty method and incompressibility by a
classical one. The 9-nodes isoparametric element has a great power of convergence
due to its biquadratic interpolation functions (including a bubble function on the
9nth node); it allows the use of coarser meshes than, for instance, triangular
element’s. And, as the geometrical coordinates are mapped by the same functions,
these elements could have curvilinear sides, so they can reproduce the airfoil’s curvi-
linear shapes more accurately than classical elements because of the quasi elimination
of the so called skin error.

On the other hand, the constant-curl Laplacian equation presents a very interesting
numerical advantage against potential-flow: we are interpolating directly the velo-
cities field (instead of a potential whose gradient gives us the velocity). This fact
implies that the exponent of the convergence index is greater than the potential-
flow’s, increasing the convergence rate (allowing the use of coarser meshes) and
making this option computationally cheaper. Fig. 5 shows the finite element mesh
used for calculation of a NACA 0012 bladed rotor and Fig. 6 shows a detailed view.

Fig. 5. Finite element mesh used for calculation of a NACA 0012 blade.
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Fig. 6. Detailed view of the finite element mesh for the NACA 0012 blade.

5. Aerodynamic forces calculation

Once the iterative micro-macro scheme has converged we proceed to the calcu-
lation of the aerodynamic forces over the blades.

Pressure distribution is calculated by integration of momentum equation. For the
micro-model’s moving reference frame, momentum equation states:

∂v

∂t
�

1
2

�|v|2�
1
r

�p�w2Rĵ�
w2

2
�|z|2�0 (7)

where p is the thermodynamic pressure, R is the turbine radius, r is the fluid density
and t is the time. The position vector with respect to the moving micro-model’s
system of coordinates is z (see Fig. 7) with components z1, z2 and z3; the respective
unit vectors are î,ĵ and k̂.

Integrating over a curvilinear path from the leading edge to any generic point P
on the contour of the airfoil and doing some algebra, we arrive at the following
expression:

pP�p0�
r
2

(v2
0�v2

P)�
rw2

2
(z2

P�z2
0)�rw2R(z2P�z20)�r�

lP

0

∂v

∂t
·t̂dl (8)
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Fig. 7. Micro-model’s system of coordinates.

where pP is the pressure at a point P, l is the curvilinear coordinate, t̂ is the unit
vector tangent to the airfoil contour, z is the modulus of vector z and v is the modulus
of vector v (v0 and z0 are the values at the leading edge, and vP and zP the values
at a point P). z2P and z20 are the values of z2 (the second coordinate of the micro-
model’s system) at a point P and at the leading edge respectively.

The time derivative could be estimated using data from two consecutive instants.
The pressure at the leading edge p0 has no influence over the resulting force because
is equivalent to a uniform pressure acting on the total contour of the airfoil; thus,
we shall assign it a zero value.

To calculate viscous forces we shall use the Von Karman integral momentum
equation for boundary layer:

d
dp
dl

�tw�U
d
dl�
d

0

rudy�
d
dl�
d

0

ru2dy (9)

where d is the boundary layer thickness, U is the velocity on the boundary layer
external border, u is the velocity inside the boundary layer, y is the coordinate perpen-
dicular to the airfoil contour and tw is the shear stress on the airfoil contour.

To implement the Von Karman model we have to assume a velocity profile inside
the boundary layer and a relationship between shear stress tw and flow parameters
(U,d). For laminar boundary layers it is usual to assume a quadratic velocity profile
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and to employ the Newton’s viscosity law to relate the stresses. Replacing Eq. (9)
and doing some algebra, it yields:

dd
dl

�
15

2U2�2Uh
d

�d�1
r

dp
dl

�
6
15

U
dU
dl �� (10)

tw�
2hrU
d

, (11)

where h is the kinematic viscosity. Eq. (10) was solved using a fourth order Runge–
Kutta algorithm beginning from the stagnation-point and following separately the
upper and lower sides of the airfoil contour towards the trailing edge. Afterwards,
we use Eq. (11) to obtain the stresses.

Pressures and shear stresses were integrated along the airfoil contour to obtain the
total aerodynamic forces actuating on the blade.

6. Validation of the FEVDTM model

To test the behaviour of the FEVDTM model we simulated a case studied by
Strickland and included by Klimas in [9]. It was an experimental test over a NACA
0012 two-bladed Darrieus rotor where normal and tangential forces acting on the
blade were measured as a function of time using a strain gages arrangement. The
test was made at a tip to wind speed ratio of 5, a blade Reynolds’ number of 40,000
and a 0.15 chord-radius ratio. Fig. 8 shows the non-dimensional normal force against
the azimutal angle after the third revolution comparing experimental data, the Strick-
land’s model V–DART and FEVDTM predictions. Fig. 9 shows the non-dimensional
tangential force case.

Strickland et al. [6] also studied the wake’s conformation by dye injection through
the trailing edge of one of the rotor blade airfoils. This streak line is indicative of
the vortex sheet produced by the airfoil or it can be thought of as a line made up
of shed vortex centres. A NACA 0012 straight bladed rotor with 1, 2 and 3 blades
was tested. Figs. 10–12 show respectively for these three cases, the FEVDTM predic-
tion superimposed over the experimental visualisation.

7. Conclusions

The results shown in Figs. 8 and 9 clearly confirm the advantages of FEVDTM
compared against the earlier models in predicting instantaneous blade forces as well
as wake constitution. Figs. 10–12 show comparisons for one-bladed, two-bladed and
three-bladed rotors respectively. That represents a range of significant cases for
which experimental wake-structure data exist.

The idea of splitting the analysis into two separate regions (micro and macro
models) allows us to improve the accuracy of the single lifting line approach. That
is because we use the results of the vortex macro-model at the border of �, i.e., at
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Fig. 8. Non-dimensional normal force against the azimutal angle after the third revolution. Comparison
of experimental data, V–DART [8] and FEVDTM predictions.

a distance at least one and half of chord length from the airfoil where the velocities
field induced by a single lifting line is acceptable.

The Constant-Curl Laplacian Equation has the advantage that we do not need to
calculate separately the rotational effects; they are included automatically in the velo-
cities used as boundary conditions for the micro-model calculation.

We remark that this model does not cover stall phenomena, but it provides instan-
taneous data of the flow at the border of the boundary layer that can be used to
detect the stall appearance. So, FEVDTM is a full theoretical tool that could be used
as the basis of a future more sophisticated model that includes theoretical stall simul-
ation.
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Appendix A

To prove the constant-curl condition we shall start analysing the velocities on the
external boundary of �, writing them with respect to a reference frame fixed to the
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Fig. 9. Non-dimensional tangential force against the azimutal angle.

moving airfoil. Considering that that boundary is sufficiently far from the airfoil, we
can neglect the latter’s influence, so that those velocities are given by the macro-
model calculation and their subsequent transformation into the moving reference
frame. We shall start with the geometrical-coordinate’s transformation. From Fig. 7:

Z(t)�Q(t)·z(t)�Z0�(t) (A1)

where Z(t) is the position vector with respect to the fixed frame, Q(t) is the orthog-
onal matrix that performs the moving-to-fixed frames transformation, Z0�(t) is the
position vector of the origin of coordinates of the moving frame and z(t) is the
position vector with respect to the moving frame.

Taking derivatives with respect of the time:

Ż(t)��·Q(t)·z(t)�Q(t)·ż(t)�Ż0�(t) (A2)

where Ż0�(t)=V0�(t)=wk̂�Rĵ is the velocity of the origin of coordinates of the moving
frame, � is the skew-symmetric matrix that of the rotation speed of the moving
frame so that Q̇(t)=�·Q(t),ż(t)=v is the velocity of any point with respect to the
moving frame and Ż(t)=V is the velocity of any point with respect to the fixed frame
(given by the macro-model).

After some algebraic manipulation we get:

ż(t)�QT(t)·(��·Q(t)·z(t)�Ż(t)�Ż0�(t)) (A3)
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Fig. 10. Shed vortex centres path for a one-bladed rotor. Comparison of experimental visualisation [6]
and FEVDTM prediction.

v�ż�[QT]·���
0 −w 0

w 0 0

0 0 0
	

�·�
cos wt −senwt 0

senwt cos wt 0

0 0 1
Q

�·�
z1

z2

z3
��[V]�[V0�]� (A4)

v���
cos wt senwt 0

−senwt cos wt 0

0 0 1�·�
−wz1senwt−wz2 cos wt

wz1 cos wt−wz2senwt

0 ��[QT]·([V]�[V0�]) (A5)

v���
−wz2

wz1

0 ��[QT]·([V]�[V0�]) (A6)



16 F.L. Ponta, P.M. Jacovkis / Renewable Energy 24 (2001) 1–18

Fig. 11. Shed vortex centres path for a two-bladed rotor. Comparison of experimental visualisation [6]
and FEVDTM prediction.

Then, the curl of v on the boundary of � is:

��v�����
−wz2

wz1

0 ����([QT]·([V]�[V0�]))���
0

0

2w� (A7)

The velocity field V, given by the macro-model, is the addition of the uniform
stream that blows over the rotor and the field induced by the vortex net. All those
fields are irrotational (the flow induced by a vortex filament is irrotational in every
point except the singularity represented by the filament itself), so V is an irrotational
field. Since V0� is spatially constant, the second term of the second member of Eq.
(A7) vanishes; and since w is constant, ��v is constant too.

We have proved that the curl of v is constant on the boundary of �; we have to
prove now that it is so at every interior point. We shall apply the Kelvin’s theorem
of conservation of � to the integration of the velocity field along a closed material
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Fig. 12. Shed vortex centres path for a three-bladed rotor. Comparison of experimental visualisation [6]
and FEVDTM prediction.

curve (a curve that touches the same particles at every time and follows their
movement). Kelvin’s theorem states that

d�v

dt
�0 (A8)

Every material curve g on the plane of analysis determines a material volume (an
infinite tube with g-shaped section). This tube displaces and deforms itself while
following the particle’s movement, but its volume could not change because of the
incompressibility condition. The curve g deforms itself too, but its enclosed area
remains constant because of the bidimensional hypothesis.

Now, we shall apply the Stokes’ theorem to g:

�v��
g

v·t̂gdg��
Sg

(��v)·n̂gds (A9)

where Sg is the area enclosed by g, t̂g is the unit vector tangent to g and n̂g is the
unit vector perpendicular to Sg.

By Eq. (A8) �v remains constant:
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�
Sg

(��v)·n̂gds�const. (A10)

Sg could be chosen arbitrarily. In particular, we can choose a tube with an infini-
tesimal cross section 
Sg, so we can consider a constant value for the curl over this
infinitesimal area. Then, from Eq. (A10) we obtain:

(��v)
Sg�const. (A11)

As we state above, 
Sg must remains constant so:

(��V)�const. (A12)

The derivative in Eq. (A8) is a material derivative, so the result of Eq. (A12)
implies that the curl of v must remain constant while it follows the particle along
its trajectory across �. Finally, as every particle inside � must have passed across
the �’s boundary, and, as we have proved (see Eq. (A7)) that on that boundary
(��v)S�

=const.=�2wk, we conclude that the curl is constant at every point of �
and Eq. (5) holds too.
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