用户名: 密码: 验证码:
China's carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies
详细信息       来源:Sirui Zhang;Xiaoyong Bai;Cuiwei Zhao;Qiu Tan;Guangjie Luo;Luhua Wu;Huipeng Xi;Chaojun Li;Fei Chen;Chen Ran;Min Liu;Suhua Gong;Fengjiao Song    发布日期:2022年8月15日
  • 标题:China's carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies
  • 关键词:Carbon budget;Carbon neutral capacity;Carbon sink;Global change;Terrestrial ecosystem;Rock weathering
  • 作者:Sirui Zhang;Xiaoyong Bai;Cuiwei Zhao;Qiu Tan;Guangjie Luo;Luhua Wu;Huipeng Xi;Chaojun Li;Fei Chen;Chen Ran;Min Liu;Suhua Gong;Fengjiao Song

全文下载

内容简介线

The global climate change situation partly depends on the climate change policies of countries around the world, including China. Therefore, it is necessary to reasonably reduce carbon emissions (CEs) and increase carbon sink in order to progressively achieve the carbon neutral (CN) goal. However, the capacity and the potential to achieve carbon neutral with the support of its ecosystem, that is to say the carbon neutral capacity (CNC) and potential, are still unclear. To this end, based on China's energy emissions data, meteorological and hydrological data, lithology data, and vegetation data, we used the GEM-CO2 model, soil respiration model, spatial autocorrelation analysis method and other methods to establish the spatial information map of China city-scale CNC from 1997 to 2017. Furthermore, based on the future climate, vegetation data, CEs data and their influencing factors in 2025–2060, the Back Propagation neural network model was used to predict the CN potential of China's provinces. This study found during the study period, annual CEs of 5.63 Pg CO2 were not absorbed, which is about 90% of the average annual CEs. And the carbon surplus regions were mainly concentrated in the less developed northeastern and southwestern border regions. Moreover, the change in the CNC in China from 1997 to 2017 was −13.37 Tg/yr, indicating that the CNC of China's terrestrial ecosystems overall reduced. It should be noted that most provinces are not highly polarized, that is, there is no significant differences in CNC between cities in the provinces. Moreover, the scenario simulation's method of IPCC provides a reference for this manuscript, so we set up two future scenarios (A2 and B1 scenarios). In the future, China is expected to achieve a carbon emission peak before 2030 under the B1 scenario while it will continue to grow under the A2 scenario. From 2017 to 2060, the CNC under the two scenarios (A2/B1) will decrease by 44.58% and increase by 15.54%. It follows then that the road to CN in China will be difficult without corresponding policy intervention. In short, this study has clarified China's CNC from the past to the future, as well as CNC's spatial distribution and changing trends. This provided theoretical and data support for China to introduce corresponding zero-carbon solutions based on its understanding of CNC. 

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700