用户名: 密码: 验证码:
不同地质背景地热系统水-岩作用下温泉水的地球化学特征——以重庆市温塘峡背斜温泉、滇东小江断裂带温泉为例
详细信息   下载全文 | 推荐本文 |
摘要
本文以重庆市温塘峡背斜和滇东小江断裂带出露温泉为例,探讨了其水文地球化学特征的差异。研究发现,由于地质背景条件基本相同,温塘峡背斜出露的温泉水文地球化学特征比较接近,水化学类型为SO4-Ca(Mg)型,而小江断裂带温泉水文地球化学特征差异较大,泉水水化学类型主要有HCO3-Na型(YN1)、HCO3-Ca型(YN2)、SO4-Ca(Mg)型(YN3和YN5)和SO4-HCO3-Ca-Na型(YN4),这与各泉点所处地质背景条件不同有很大关系。此外,通过对Na-K-Mg和Na-K-Mg-Ca图解模型的解读得出,所有样品均未达到水-岩平衡,仅有YN1泉点样品接近完全平衡线,表明YN1接近水-岩作用平衡状态,并由上述图解模型估算得到YN1点热储温度大概为100~120℃,与运用SiO2温标计算的热储温度(133~139℃)相差不大。此外,水化学特征和Na-K-Mg-Ca图解分析也表明,YN2与温塘峡背斜温泉水-岩作用过程比较相似。
        Taking the Wentangxia hot springs in Chongqing and the hot springs at Xiaojiang fault zone in the East Yunnan as the research object,the hydrogeochemic features are studied in the paper.It is found that the hydrogeochemic features of the hot springs outcrop from Wentangxia anticline are similar because of the same geologic backgrounds,and their hydrochemistry types are SO4-Ca(Mg);but that the hydrochemic features of the thermal water outcrop from Xiaojiang fault zone are quiet different for their difference of geologic conditions,their hydrochemistry types are HCO3-Na(YN1),HCO3-Ca(YN2),SO4-Ca(YN3 and YN5)and SO4-HCO3-Ca-Na(YN4).In addition,the Na-K-Mg diagram model and the Na-K-Mg-Ca diagram model evidently shows that all of the water samples have not reached equilibrium between water and rock,and only YN1 is closest to the complete equilibrium line to be close to equilibrium state.Moreover,the temperatures calculated with the silica geothermometer indicates a geothermal reservoir at 133~139 ℃,which is similar to the geothermal reservoir temperatures of YN1 showed by Na-K-Mg diagram and Na-K-Mg-Ca diagram(100~120 ℃).The analysis on hydrochemistry and Na-K-Mg-Ca diagram shows the water-rock process of YN2 is similar to the hot springs outcrop from Wentangxia anticline.
引文
[1]Ellis A J,Mahon W A J.Geochemistry and geothermal systems[M].New York.Academic Press,1977:1-52.
    [2]Giggenbach W F 1993.Reply to comment by P.Blattner.“Andesitic water”:A Phantom of Isotopic Evolution of WaterSilicate System[J].Earth Planet.Sci.Lett.,120:519-522.
    [3]刘文辉,胡雪生,刑宪生.咸阳市区地下热水特征[J].陕西地质,1998,17(2):49-56.
    [4]刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源——以四川黄龙沟、康定和云南中甸下给为例[J].中国科学(D辑),2000,17(2):209-214.
    [5]刘久荣,潘小平,杨亚军,等.北京城区地热田某地热井热水地球化学研究[J].现代地质,2002,16(3):318-321.
    [6]李坪.鲜水河—小江断裂带[M].北京:地震出版社,1993:1-21.
    [7]朱炎铭,邵震杰,任文忠,等.小江断裂带第三纪走滑断陷盆地的充填层序特征[J].沉积学报,2001,19(1):37-42.
    [8]陈默香,汪集?,邓孝.中国地热系统类型图及其简要说明[J].地质科学,1996,31(2):114-120.
    [9]陈默香,邓孝.中国地下热水分布之特点及属性[J].第四纪研究,1996,(2):131-136.
    [10]罗祥康.重庆市地下热水开发利用条件的初步研究[J].四川地质学报,1987,7(1).
    [11]成都地质学院水文地质72级联队.观音峡、温塘峡两背斜青木关地区的暗河水及其开发[J].成都理工大学学报:自然科学版,1975(Z1):68-78.
    [12]罗祥康,曾云松.论重庆地热——“热水库”.[C]第三次全国地热学术会议交流资料.
    [13]重庆市北碚区地方志编撰委员会.北碚自然地理[M].重庆:西南师范大学出版社,1986:1-42.
    [14]罗云菊,刘东燕,许模.重庆地下热水径流特征研究[J].地球与环境,2006.34(1):49-54.
    [15]徐青,李翠华,汪缉安,等.云南地热资源——以腾冲地区为重点进行解剖[J].地质地球化学,1997,(4):77-84.
    [16]汪缉安,徐青,张文仁.云南省大地热流及地热地质问题[J].地震地质,1990,12(4):367-378.
    [17]胡圣标,何丽娟,汪集/.中国大陆地区大地热流数据汇编(第三版)[J].地球物理学报,2001,44(5):611-626.
    [18]赵柯,姜光辉,杨炎,等.滇东主要断裂带温泉CO2成因浅析[J].地球与环境,2005,33(2):11-15.
    [19]孙亚乔,钱会,张黎,等.基于矩形图的天然水化学分类和水化学规律研究[J].地球科学与环境学报,2007,29(1):75-79.
    [20]肖琼,沈立成,袁道先,等.利用δ18O和δ34S示踪重庆都市圈地下热水循环过程[J].重庆大学学报,2011.
    [21]云南省地质矿产局.云南省地质志[M].北京:地质出版社,1990:5-135.
    [22]李瑞生,顾谷声.中国的含煤地层[M].北京:地质出版社,1994:199-203.
    [23]郑西来,刘鸿俊.地热温标中的水-岩平衡研究[J].西安地质学院学报,1996,18(1):74-79.
    [24]王莹,周训,于湲,等.应用地热温标估算地下热储温度[J].现代地质,2007,21(4):605-612.
    [25]苗慧帅.云南省下关温泉和安宁温泉的特征及成因研究[D].2009:43-54.
    [26]Yildiray P,Umran S.Geochemical assessment of Simav geo-thermal field,turkey[J].Revista Mexicana de CienciasGeológicas,2008,25(3),408-425.
    [27]Founrier R O,Potter R W.II,A revised and expanded silica(quartz)geothermometer.Geotherm.Resour.Counc.,1982,11-10:3-12.
    [28]Founrier R O.Chemical geothermometers and mixing model forgeothermal systems.Geothermics,1977,5:41-50.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700